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n
ABSTRACT. Suppose En=0 anZ has radius of convergence R and ON(Z)

n17’n=N anZ I" Suppose < z21 < R, and T is either z
2

or a neighborhood of

z 2. Put S {N[ ON(Z I) > ON(Z) for z e T}. Two questions are asked: (a) can S

be cofinite? (b) can S be infinite? This paper provides some answers to these

questions. The answer to (a) is no, even if T z 2. The answer to (b) is no,

for T z
2

if lim an a # O. Examples show (b) is possible if T z2 and for T

a neighborhood of z 2.
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1. INTRODUCTION.

This paper originated in a question of approximation by power series

raised in Query 51 in the American Mathematical Society Notices Ill. (The

query originated in considerations of analytically continuing a polynomial

series from the interval [-1,1] to the region of convergence of the series.)

Suppose f(z) m n m n
n=O anZ has radius of convergence R and ON(Z) IXn=N anZ I.

Suppose Zll < z21 < R and T is either z
2

or a neighborhood of z
2.

Put S

{nlOn(Z I) > On(Z) for z g T}. S is cofinite if its complement is finite. Two

questions are asked-

(a) can S be cofinite?

(b) can S be infinite?

One might expect the answer to both questions to be no since one expects the

approximation to f by partial sums of its power series to be worse, closer to

the circle of convergence.

This paper provides some answers to these questions. Section 2 shows (a)

is impossible for any T. Section 3 shows (b) is impossible if T z
2

and

lim an a # 0. Section 4 shows (b) is possible for T z
2 and Section 5 shows

(b) is possible for T a neighborhood of z2.

Section 5 suggests the conjecture that if T is a neighborhood of z2, then

S must be "thin." The S which appears in Section 5 is lacunary.

These questions can also be raised about other series of orthonormal

polynomials with elliptic domains of convergence. (cf. Szeg [5], pp. 309-10).
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2. S CANNOT BE COFINITE.

The following theorem was suggested by P. Lax [3].

TEOREM 1 If lira a 11/n
n 1/R < , 0 < [Zl[, [z2[ < R and 0 < 6 <

k 6n k
[z2[/[Zl[ then the set S {n[[k=n akz2 < [k=n akZl [} cannot be

cofinite.

PROOF. Suppose S contains a nonempty tail set I; i.e. n_l implies n+l

I. Then for n,

O (z) > (z) [a [[z in > 6-(n+1)
n 1 n+l 1 n 1 Crn+l (z2) [an] [z

1
[n

> 6-(n+l)[[a ][z2 ]n
n n(Z2)] [an[[Zl In

> [a [6-(n+l)[z2 In [Zl [n] -6-1 0 (Zl)n n

Hence

(1+6-1) On(Z1) > lan[ [6-(n+1)[z2 In- [zl[n]

Suppose 1/R 0. Choose g > 0 so that (R-1 + e)[Zl[ < 1 and choose n z

so large that lakl
1/k < (1/R + ) for k _> n. Also choose n so, that lan I1/n

>

I/R e,. Then

[(R-l+)[Zl[] n
1-(R-I+:) Iz

> ’k=n lakl IZl Ik > n(Zl)

[an[
> [6-(n+l)lz2 In

1+6-1 IZl In]
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> (R- l-g)n (n+l) n n]
-1

[6- Iz21 Izl1+6

Now in addition to the other conditions on n, choose n large enough so that

Then, since

(R-l+g) [Zl[ R-l_g [z2[
>

[l_(R-l+)lZll]l/n- (l+6-1)l/n 6

one obtains upon letting g + 0 and n + m"

contradicting 6 < [z2]/[z1[.
Suppose R-1 O. Then [a [1/n converges to zero. If we add zero to the

n

set, {la l/nln > 1 the new set is closed and bounded and thus compact with
n

the Iargest eiement lanlll/nl. Deleting lall la211/2,..., lanlll/nl, there

is a iargest element lan211/n2 in the remaining set and so forth. Thus we

obtain a sequence ni, i 1,2,..., with [an I/nii[ g 0 and [a [1/n < .
1 n i

for n _> n..1 Also lim
i g’1 O. Thus for i large enough that gi[Zl[ < I"
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no

1-ilZl[
k> [k=n. [ak[ [Zl[ > o (Zl)

1

243

i -(ni+l) n n

1+5-1
[z2[ l- [Zl[ l

nil Iz2l 6[z
-1 1

1+5-1 6 Iz2l

Now choose n.x so that (61Zll/Iz21)ni < 5-1 Then

ei IZll lan 61z
> i Iz2l -1 1

1/n.- -1 1/n. 6 Iz21(1-eilzl) (1+5

or

Izll
(1-ilzll)

>
1/n. 1 1/n

i / Iz215(1+5

Letting :. + 0 and n. + m, one obtains
1 1

Iz21
Izll>- 6

contradicting 6 < lz2[/[z I [. This completes the proof of Theorem 1.

The following observation about general series was made by a referee. Let

O Ap be convergent If 0 p lbpl < then

E Ap < E Apbp
p>N >N
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is not cofinite. For let R p>n A
n p

finite, then for n > n
o

If S were co-Then A Rn-Rn+l"

p Rn+l >_n
or

p>N p>Np>n p>N

If N is selected so large that plb < 1/2, then for N > N
o o

1

p>N p>N p>N

which is a contradiction. If one puts

A a
zl )PP z2 bp= 22

then under the hypothesis of Theorem I, one obtains the weaker result that the

set

Z akz2
k=n

kI akZl
k=n

cannot be cofinite.

3. CASE OF LIMN AN A 0.
In this section it is shown that (b) is impossible for even a single point

if limn an a # 0. The proof is as follows. For > 0, N large enough,

and ]z] < R 1
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ON(Z) nN anzn a + (a a)zn
nn=N n=N

< lal Izln
ll-zl

/ g [z[ n

Also

N
Izl
ll-zl a Z zn

n=N
a + (a-a)zn
n nn-N

N
< o (z) + e Izl

n 1-1zl

Thus

lal IzlN IzllN IzlN
I-zl e i’ zl <- N(Z) <- lal I-zl

+ e
N

(1)

Suppose oN(z2) < ON(ZI) for infinitely many N. Then (I) gives

lal

N N
Iz2l Iz2l

I1_z21 1_lz21 <-ON(Z2) < O’N(Z 1)

N N
IZll IZll<_ lal i1_zll

+ e
1_1Zll

for infinitely many N. Taking Nth roots, letting N + m, and g + 0, yields

Iz21 _< IZll

a contradiction of [z 1[ < [z2[.
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4. FOR T- {z2} (b) IS POSSIBLE.

The following example shows (b) is possible if T {z2}. Let

2 -1F(z) (1-2z)(1-z)

2
z
3

z
4

l-2z + z 2 + 2z
5 +

One has

2k+l 2k+2
2z

2k+3 +O2k(Z) Iz2k 2z + z

2k 2 3]z] ]I 2z + z 2z +

2 -1=""[z[ 2k [1- 2z[[1- z

and thus O2k(I/2) 0. So for any z I 1/2 and 0 < Izll < I, O2k(Z I) >

O2k(1/2).
Note that for an e-neighborhood of 1/2" N {zl Iz 1/21 <

0 < g < I/2 and for any z I
with ]z I] < I/2 g, O2k(Z I) converges to zero

faster than (2k(Z) at any point z in N except I/2. So we cannot extend the

result to a neighborhood of 1/2.

5. CASE OF T A NEIGHBORHOOD OF z2.

THEOREM 2. For each R, 0 < R _< m, there exist points z and z
2
with

IZll < Iz21 < R and a power series 2m n
n=0 anZ with radius of convergence R such

that for infinitely many values of N, ON(Zl)/3 ON(Z) for all z in some neigh-

borhood of z2.

PROOF. Suppose R I. Put n
k

4k and Pk(Z) (]/bk) zn2k-I (z I/2)n2k,

2 The power series 2k=l Pk (z) 2n=0 a zwhere b
k

max
O<j<n2k j

n

wili be shown to satisfy the Theorem for R with z -1/4 and z
2

1/2.

Note that
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and

n2k + n2k-1 < n2k+l (2)

n2k_l (log 4/log 3 + I) < n2k (3)

for all k. (2) implies that each a is either zero or appears exactly once as
n

a coefficient in the expansion of some Pk(Z). Let Jk be the integer for which

max0<j<n2k
v\

Then

aj+n2k_l
1/(j +n2k

1/(J+n2k
(n2. k 2-j

-1

O (0 < j < n2k)

This is less than or equal to one for all j and equal to one for j Jk’
which implies the radius of convergence is one.

For all z with z 1/21 < 1/4"

1 n2k+l n2k+2IPk+l(z)[ Izl Iz 1/21
bk+l

n2kol n2k< k Izl Iz-1/21 Iz-1/21 n2k+2 n2k

n2k+2 n2k< IPk(Z) (1/4)

< (1/4) IPk(Z)l
Next, for Iz- 1/21 < 1/4,

(4

IPk(Z)l n2k_ 1Izl Iz-1/21IPk(-1/4)
n2k 4n2k 1 (4/3) n2k
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< 4-n2k 4n2k-l(4/3)n2k ()

n2k_ 1 -n2k4 3 < 1/4

by (3). Hence, for Iz- 1/2) < 1/4,

o (z)
n2k- Z a .Z

j

J=n2k_ 1

<_ Z IPj(z)[

_< Z 4k-j ]Pk(Z)[ by (4)
j=k

(4/3) IPk(Z)l < (1/3) IPk(-I/4)I by (5)

< (1/3) Z b1 (-1/4)n2j-I (-3/4)n2j{

(1/3) o (-1/4)
n2k- 1

since all n.’s are even. This shows that the assertion holds for z I -I/4

and z
2 1/2.

For the case 0 < R < m, use the power series =0 an(z/R)n" Then the

result holds for z I -R/2, z
2 R/2, and the neighborhood Iz R/21 < R/4.

For the case R m, let

bk (n2k-I) n2k-l n2k -Jk
2

Jk

For 0 < j < n2k-
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[aj+n2k_l
1/(J+n2k_

n2k 2
-j /(J+n2k- 1)

(nak_l n2k-1 n.2k! 2
-j

k

< (n2k-
-n2k_i/(J+n2k_ 1)

< (n2k)

(n2k)

-n2k- / (n2k + n2k-

-1/5 0

as k and hence lim a
I/n

0. The rest of the proof follows the case
n

R I.

6. AVERAGE REMAINDER

z
nSuppose a has a radius of convergence R. It follows from results

n

in Plya and Szeg [4, Part III, problems 307-310] that the geometric mean"

GN(r) exp -o log oN(re10)d0 (r < R)

and the pth mean, p > O-

o(rei0)d 0 (r < R)

are both monotone increasing functions of r for each N and log GN(r)- and log

IN(r) are convex functions of log r. Thus in the geometric mean sense and pth
P
mean sense, oN(z) become larger as one approaches the circle of convergence.
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