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We prove the existence of steady two-dimensional ideal vortex flows occupying the first
quadrant and containing a bounded vortex; this is done by solving a constrained variational
problem. Kinetic energy is maximized subject to the vorticity, being a rearrangement of a
prescribed function and subject to a linear constraint.
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1. Introduction. In this paper, we prove the existence of steady two-dimensional
ideal vortex flows occupying the first quadrant, IT,, containing a bounded vortex. This
is done by solving a constrained variational problem. Such a flow will be described by
a stream function ¢ : I, — R. At infinity we will have ¢y — —Ax7x> which is the stream
function for an irrotational flow with velocity field —A(x1,x2), where A is not known
a priori. The vorticity is given by —Ag, where A is the Laplacian, and —A vanishes
outside a bounded region. It will be shown that (y satisfies the following semilinear
partial differential equation:

—AY = oy, (1.1)

almost everywhere in IT, for ¢ an increasing function, unknown a priori. In our re-
sult the vorticity function £ (= —A¢) is a rearrangement of a prescribed nonnegative,
nontrivial function ¢y having bounded support, and the impulse, 3, given by

J(C) := L[ x1x2C, (1.2)
is a prescribed positive number. We prove that the variational problem, P(I) (see
Section 2), is solvable provided that I is sufficiently large. Since the domain of interest
I1, is unbounded, we first consider the problem over bounded sets, IT, (&,n), where
Burton’s theory, related to constrained variational problems, can be applied. We then
show that the maximizers are the same for all sufficiently large I1. (&, n).

Problems of this kind have been investigated by many authors; in particular we cite
Badiani [1], Burton [2], Burton and Emamizadeh [3], Elcrat and Miller [7], Emamizadeh
[8, 9, 10, 11], Nycander [14] for theoretical results and Elcrat et al. [5, 6] for numerical.

2. Notation, definitions, and statement of the results. Henceforth p denotes areal
number in (2, o). The first quadrant is denoted I1.. Generic points in R? are denoted
by x, v, and so forth. Thus, for example, x = (x1,x>). For x € R?, X, x, and X denote
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the reflections of x about the x;-axis, x»-axis, and the origin, respectively. For positive
n and & we set

I, (n) == {x €1} | x1x2 < n},

(2.1)
I, (§,n) := {x €Il | x1x2 <N, max {x1,x2} < &}.
For A C R?, |A| denotes the two-dimensional Lebesgue measure of A.
For a measurable function C, the strong support of T is defined by
supp(Z) = {x € dom(Z) | T(x) > 0}. (2.2)

To define the rearrangement class needed for our variational problem, we fix a non-
negative, nontrivial function ¢, € L? (R?) which vanishes outside a bounded set. In
addition, we assume that

| supp (Zo) | = ma?, (2.3)

for some a > 0. We say that T is a rearrangement of ¢ if and only if
[{x1C(x)=a}| = |{x1Co(x) =}, (2.4)

for every positive «. The set of rearrangements of €y which vanish outside bounded
subsets of I1, is denoted by %. The set of functions € € % that satisfy 3(C) = I, for
some I > 0, is denoted by %(I); and the set of functions in %(I) that vanish outside
I, (&,n) is denoted by % (&, n,I); to ensure that #(&,n,I) + &, we present the following
definition: let I; := 3(L), where C§ is the Schwarz-symmetrisation of gy, and assume
that I > I;; we say that IT, (&,n) satisfies the hypothesis #(I) if the following two
conditions hold:

E=n'%, (2.5)
n=4max{a? (I}, (2.6)

where I(I) := (I-1,)/||Coll,. Now it is immediate that if I, (&, n) satisfies ¥ (I), for I >
I, then F(&,n,I) = @. Indeed if we set t = [(I)V/?, then (CF)¢(x) := CF (x1 —t,x2 —t)
belongs to (&, n,I).

The Green’s function for —A on I, with homogeneous Dirichlet boundary condi-
tions is denoted by G, hence

1 Ix->|[x-y|
G, (x,y)=—log————. 2.7)
XY= 508 Ix-yl|x-¥]
Next we define the integral operator K,
K. C(x) = jn G, (x,9)C(y)dy, 2.8)

for measurable functions € on R?, whenever the integral exists. The Kinetic energy is
defined by

¥(C) = JH K. L, (2.9)

whenever the integral exists.
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In this paper, we are concerned with constrained variational problems which are
defined as follows. For I > I,

P(I): sup Y(Q); (2.10)
CeF()
and the corresponding solution set is denoted by X(I). If I > I and IT. (&, n) satisfies
J€(I), then we define the truncated variational problem

P(&n,D): sup Y(O), (2.11)
CeF(EnD)
with the solution set (&, n,I).
We are now in a position to state our main result.

THEOREM 2.1. There exists I > 0 such that if I > Iy then P(I) has a solution, that is,
3(I) = &; if C is a solution and  := K. C then the following semilinear elliptic partial
differential equation holds

AP =o(P-Axi1x2), ae. inlly, (2.12)

where ¢ is an increasing function and A > 0, both unknown a priori. Furthermore, I
can be chosen to ensure that the vortex core, the strong support of C, avoids 011, .

3. Preliminary results. We present some lemmas that are used in the proof of
Theorem 2.1. We begin by stating a lemma from Burton’s theory, see for example,
Burton and McLeod [4].

LEMMA 3.1. Let Q be a nonempty open set in R". Let 1 < p < o and p* denote the
conjugate exponent of p. For C € L¥ (u) let % (Q) denote the set of rearrangements of C
on Q. Let

L= > A (x)D™ 3.1)

1<|x|=m
be an mth-order linear partial differential operator, whose coefficients A% are finite-
valued measurable functions on Q, having no Oth-order term, and suppose that there

exists a compact, symmetric, positive linear operator K : L (Q) — LP™ (Q) such that if
Cell(Q), thenKC e LP* (Q) mI/VlZ)"C‘l (Q) and KT = C almost everywhere in Q. Define

Q)= | ere, cerr@. (3.2)
Letw € LP* (Q) n W™ (Q) be such that $w is essentially constant, and define
7= | we, el (3.3)
Let b € R. Then
() Ifb € T(F(Q)) then
sup¥ (T (D) nF(Q)) =sup V(T (D) nF(Q)W), (3.4)

and the supremum is attained by at least one element of T~ (b) N F(Q).
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(i) If b is, relatively, interior to T (F(Q)), and if C is a maximizer for ¥ relative to
T 1(b) NnF(Q), then there exist scalar A and an increasing function ¢ such that
C=¢o(KC+Aw), ae. inQ. (3.5)

REMARK 3.2. It is clear that if I > I, and II, (&, n) satisfies 7 (I) then, by Lemma
3.1G3), 2(&,n,1) = @.

Before stating the next result we give the following definition: for I > I,
o) :=inf{¥(C) | C € =(&,n,I), for some I1, (§,n) satisfying 3¢(I)}. (3.6)

We point out that o (I) = ‘P(ﬁ) for some i € 3(&o,No,I), where IT, (o, No) is the mini-
mal region that satisfies #(I).

LEMMA 3.3. Let o be as defined in (3.6), then
}imU(I) = 00, (3.7)

PROOE. Let! > andsett=L(I)!/2.If T, (§,n) satisfies 5(I), then (CF): € F(E,n,I)
and therefore, according to the last remark, we have

o) =Y((CF),). (3.8)

Now applying same method as in Burton [2, Lemma 12], we obtain Y ((Z;);) > klogt,
for all sufficiently large t, hence large I. Thus our claim is done. a

Let I > I, and IT, (&, n) satisfies #(I). We set

M, n,I) :={(C,$,A) | T € =(&,n,I) for some ¢p,A € R

such that € = ¢po (K, T —Ax1x2) a.e.inI1, (§,n)}. (3.9)

Note that under the conditions imposed on &, n, I and in view of Lemma 3.1(ii) the set
M(&,n,I) is nonempty. The following two inequalities are standard, see Burton [2]
|K:C(x)| < Nmin{xj,x2}, (3.10)
VK. C(x)| <N, (3.11)
for every x €11, and every C € %, where N is a universal constant.

LEMMA 3.4. For I > I, we define

AI) :=sup{A | (C,¢p,A) € M(&,n,I) for some T,

3.12
and some I1, (§,n) satisfying ¥#(I)}. ( )
Then, limsup;_,, A(I) <0.

PROOF. Assume that the assertion of the lemma is not true and seek a contradiction.
Hence, to this end we suppose that there exists 8 € (0, o] such that limsup;_ . A(I) =
B. Hence there exists A > 0 such that the set

S:={I|A() > A} (3.13)

is unbounded. Consider I € S, then from the definition of A(I), there exists (T, ¢$,A) €
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M(&,n,I) such that IT, (&,n) satisfies #(I) and A(I) = A > A > 0. Observe that by
taking I sufficiently large we can ensure the existence of &; such that IT.(&,n) 2
I1.(%1,a) and |1, (&;,a)| = Ta® = | supp(Z)|. Now define the set

U:={x ell.(§n) | K:T(x)—Ax1x2 = —Aa}. (3.14)

Then, IT, (&1,a) < U and |U| = |supp(C)|. Since T is essentially an increasing function
of K, T —Ax1x2 on Il (&, n) we deduce that supp(Z) < U.

Next we show that there exists a constant C > 0, independent of I € S, such that
for x € supp(Z) we have x;x, < C. From (3.10) we observe that for a sufficiently large
k>0

K.C(x) < %X]Xz, (3.15)
for all € € ¥ and all x for which min{x;,x>} > k. We next define
S1:={x €I, | min{xy, x>} >k},
Sp:i={x €Il, |min{xy,x2} <k, x1 < &, x2 < &}, (3.16)
S3:={x €Il, |min{xy,x2} <k, max {x1,x>2} > «},

where o := max{2N/A, k}. First consider x € supp(Z) N S;; then
—Aa <K,C(x)—-Ax1x2 < %Xl)(z —AX1X2 < —%xlxz, 3.17)

where the first inequality follows from supp(Z) < U and the second one from (3.15);
whence x1x, < 2a. Next, consider x € supp(Z) NnS,; then we have

2
X1Xo < 0% < (max{ZTN,k}) , (3.18)

since A > A. Finally, consider x € supp(Z) N S3; then an application of (3.10) yields
that

—Aa <K.C(x)—-Ax1x2
< Nmin {x1,x2} —Ax1x2
= —amin{x1,x2} — Ax1x2

(3.19)

_—éx X
= 2 1X2,

hence x;x, < 2a. Therefore, from above argument, it is clear that a constant C > 0,
as required, exists. This, in turn, implies that

[=9(C) = JH x1%:€ = C|1 ol (3.20)

Thus S is bounded, which is a contradiction. Hence, the proof of Lemma 3.4. O
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LEMMA 3.5. For I > I, we define

A := inf{ essinf (K,C(x)—-Axi1x2) | (C,¢,A) € M(E,n,I)
xesupp (L) (3.21)

for some I, (§,n) and some d)},

where 11, (&,n) is to satisfy % (I). Then, liminf;_. A(I) > 0.

PROOF. Fix € > 0. By definition of A(I) there exists I1, (&, n), satisfying #(I), and
(C,¢,A) € M(&,n,I) such that

A() +e= essinf)(K+C(x)—AX1xz). (3.22)

xesupp(L

Note that by increasing I, the size of I1.. (&, n) increases as well, hence there is no loss
of generality if we assume that IT,(&,n) contains the square D := [0,2a] x [0,2a],
since I will eventually tend to infinity. For x € D we have

K.T(x)—-Ax1x2 = —4a’A)", (3.23)

where A(I)* denotes the positive part of A(I), since K, C is nonnegative. From this,
we infer that

Dcixell, (§n) | K. C(x)—-Ax1x2 = —4a’A(I)*}. (3.24)
Hence
[ {x €I (&n) | Ky C(x) —Ax1x2 = —4a’A()*}| > | supp(D) |, (3.25)

since 4a? > |supp(Z)|. Since C is essentially an increasing function of K, — Ax1x>
on I, (&,n), we then deduce that

supp(C) € {x €1, (&§,n) | K. CT(x) —Ax1x2 = —4a’A()*}, (3.26)

hence, by applying (3.22), we obtain A(I) + € = —4a?A(I)*. Therefore, from Lemma 3.4
we have

lignian(I)+e = 0. (3.27)

Since € was arbitrary, we derive the desired conclusion. O

The next two results can be proved similarly to Burton [2, Lemmas 8 and 9]; they
bear some resemblance to Pohazaev-type identities proved in Friedman and Turking-
ton [12] for 3-dimensional vortex rings. We add that, contrary to Burton [2], we can
give a direct proof, using the weak divergence theorem (see, e.g., Grisvard [13]) for
Lemma 3.6 below without referring to any density theorems.

LEMMA 3.6. Let2 < p < oo, let C € L¥(I1.) have bounded support, and let ¢ := K. C.
Then

JH (x- V)T =0. (3.28)
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LEMMA 3.7. Let2 < p < o, let T € L¥(I1,) be nonnegative, nontrivial and vanish
outside the square D (&) := [0,E] X [0,&], for some & > 0. Let A € R, and let @ =
K. T —Ax1x2. Suppose that C = ¢ o @ almost everywhere in D(E) for some increasing
function ¢, and that ¢ has a nonnegative indefinite integral F. Then

ZJ Fo(prAJ xllejzj (Foy)(x-n), (3.29)
D(%) D(&) oD(§)
where i is the outward unit normal, and consequently
J FoszJ x1x2C. (3.30)
D(¥) D(¥)
If additionally F (s) = 0 for some s < f3, then
| exi=a|  xixgspich. (3.31)
D(E) D(&)
LEMMA 3.8. For I > I, we define

u) = inf{ sup (K;:T(x)—-Ax1x2) | (C,¢,A) € M(E,n,I)
x€ll (§,n) (3.32)

for some 11, (&, n) satisfying #(I), and some d>}.

Then lim; . p(I) = oo,

PROOF. It clearly suffices to show that

ligninfu(l) = 0. (3.33)

Let I > I, and consider (C,¢$,A) € M(&,n,I) for some I1, (&, n) satisfying #(I). Since
K,C(x)—Ax1x2 > A(I) for almost every x € supp(Z), we may assume that ¢(s) =0
for —co < s < A(I). Now write

S
Fo=[ o (3.34)
for all s in the domain of ¢. Now, by Lemma 3.7, we have
| ctkg-avix) ~2v@-ar

(2%(C) = 2A1— ADIIT]1) + ¥ (D) + %Amncul

N | —

) (3.35)
Z‘I’(C)+§A(I)HCII1

zU(I)+%A(I)|I§|I1-

Hence
o) 1

sup (K;C(x)—Axi1x2) = —— +—A(l). (3.36)
M4 (,n) IClh, 2
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Therefore
o) 1
I) > ——+ - A). 3.37
u) T4 (D) (3.37)
Thus by applying Lemmas 3.4 and 3.5 we obtain (3.33). a

LEMMA 3.9. There exists I> > I, such that

A()=aN, I=1D. (3.38)
PROOF. By Lemma 3.7 there exists I> > I; such that

u(l) =7aN, I=1Iy; (3.39)

moreover by taking I, sufficiently large we can ensure that if I > I», then any I, (&, n)
satisfying 7 (I), also satisfies

‘m(g,n)\m(g,g)‘ > al. (3.40)

To see it, observe that in general we have

2
IT1 (E,n) | :n(1+log%), (3.41)
for any I1, (&,n) satisfying (2.5); therefore

i (&7)| = 3 -log2ym. (3.42)

Hence, in view of (2.6), for sufficiently large I we derive (3.40). Now, fix I > I, and
consider (C,¢p,A) € M(&,n,I) for some I1, (&, n) satisfying #(I). Since K, C —Ax1x» €
C(I14(&,n)), it attains its maximum at, say, z € I1, (§,n). Now from the definition of
u(I) and (3.10) we infer that
u(I) <K C(z)—Az1zp < Nmin{zy,z2} — Az zo; (3.43)
and applying (3.39), we obtain
7aN < Nmin{zy,z,} —Az1z5. (3.44)
Clearly, if A = 0 we obtain min{z,,z,} = 7a. If A <0, then
7aN < Nmin{zy,z,} — An, (3.45)
or

Nmin{zy,z,} = 7aN +An. (3.46)

Now we consider two cases.
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CASE 1. When An > —2aN, then Nmin{z,,z,} > 5aN, hence min{z;,z»} = 5a.
Therefore, when A > 0, or when A < 0, and An > —2aN we find that min{z,,z»} = 5a.
Thus IT, (&,n) must contain at least a quadrant of By, (z), denoted by Q. For x € Q,
by the mean value inequality, we have

K T(x)—-Ax1x2 =2 K, C(x)
>K,.C(z)—4aN
=K.C(z)-Az1zo—4aN +Az1z;
= p(I) —4aN +Azz; (3.47)
> u(l)—4aN +An
> 7aN —4aN —-2aN
=aN.

This means that
Qcixell(§n) | K;C(x)—Ax1x2 = aN}. (3.48)

CASE 2. When An < —2aN, then for x € I1,. (§,n) \I1. (§,n/2) we have

K.C(x)—-Ax1x2 = —Ax1Xx2 > —%7;
(3.49)
M &ML (&7 ) € [x €L (6, | K, 5(x) - Axixz = an}.
From (3.40) and the fact that |Q| = 41a?, we infer that

[{x €+ (&,n) | K:C(x)—Ax1x2 = aN}| = | supp({)]|. (3.50)

Since C is an increasing function of K. € —Ax1x7 on I1. (&,n), we derive
supp(Z) € {x €11, (§,n) | K, T(x) —Ax1x2 = aN}, (3.51)
modulo a set of zero measure, from which we obtain (3.38). O

LEMMA 3.10. Let b > 0, let 2 < p < 0 and 0 < y < 1. Then there exist positive
constants My, M, and M3 such that

25x1X2

KoL) < My (x1x62) " S(€) + Ma (x1x2) '3 (0) log =72 .

+ M3 (x1x2) VSV ICI, Y,

for every x €11, such that min{x;x,} > b/2 and every nonnegative C € L? (I1) that
vanishes outside a set of measure Ttb?.

PROOF. Fix x €I, such that v :=min{x;x2} = b/2. For y €Il we define

o= |x-v|, B:=[x-y]|, p:=|x-yl, 6:=|x-¥]|. (3.53)
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Thus

1
K.Z(x) = ﬁfn logz—f;ay)dy

1 op
logpjsé(y)dy (3.54)

270 JB, 15 (x)

log(x—gC(y)dy,

27—( H+\Bv/2(X) p

where B, > (x) denotes the ball centered at x with radius v. From the identity

o B? = p?5° +16x1X271 2, (3.55)
we obtain
B 1 16x1X201 )2
log—-C(y)dy =5 lo <1+—> (>)d
Jﬂ+\3v/2(x) gP5Cy Y 2 H4\By 2 (x) 8 p2o° cdy
< 8x1ng yéys C(y)dy
T4 \By 2 (x) P20 (3.56)
32x1x2

< d
VElx|? JH”BV/Z(X)J/IJ’ZC(J/) y
< 32(x1x2)715(C),

where the first inequality follows from the fact that log(1 + x) < x, for x > 0. To
estimate IBW(X) log(xBp~16-1)C(y)dy, we note that for v € B,,»(x) we have

as|x—f|+|f—7|:2x2+p<;xg. (3.57)

Similarly, B < 5/2x;. Therefore

B 25x1X2
log —-C(y)dy < lo (»)d
Lv,zoo gP5Cy Y Byj2 () g4p|x| cridy
25x1X
=log =2 ZJ C(y)dy (3.58)
4lx] Iyt

1
+J log—~C(y)dy.
By 2(x) P
Observe that for v € B, ,2(x) we have y1y> = x1x2/4, hence

J E(y)dys4(xlxz)’lj Y1 L(¥)dy < 4(x1x2) " I(D). (3.59)
Byj2 () By (x)

V/Z(X
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On the other hand, if we let ﬁ denote the Schwarz-symmetrisation of C := CXByj2(x)»
where X3, ,(x) is the characteristic function of B, > (x) in I1,, about x; then by a stan-
dard inequality (see, e.g., [3]) and Holder’s inequality we obtain

1
J log=C(y)dy < J
By 2 (x) P

Bv/Z(X

(e

b

1 -
log L ()dy
. (3.60)
ay) Il

1
log —
&p

where b := Isupp(CxBV/z(X))l (<b),e:=p/(1+py—y) and T is the conjugate expo-
nent of €. It is elementary to show that

IBE<X)

where C is a constant independent of x. Next observe that € = €y + (1 —€y)p and
€y < 1, hence applying the standard interpolation inequality yields

T

dy <C, (3.61)

1
log —
&0

I1Z1le = 121111211, ", (3.62)
or
1Zlle = IZITNEI, 7" = IR 121, ™. (3.63)
Therefore, we obtain
12]]e =47 (x1x2) 3@ IS (3.64)
Finally from (3.56), (3.58), (3.60), (3.61), and (3.64) we derive (3.52). O

By a simple modification of Burton [2, Lemma 1] we get the following lemma.

LEMMA 3.11. Let T be a nonnegative measurable function on 1., let t > 0. Let C;
be the function, defined on I1., obtained by translating C along the diagonal of T1,,
diag(I1.), +/2t units, that is,

xX1—t,xo—t), x1=t, x20=>1
Ci(x1,x2) 1= cla 2=t) ! : (3.65)
0, O<x;<t,0<xy<t.
Then
J CiK.C; = J CK.,C. (3.66)
M, M.

LEMMA 3.12. Let2 < p <o and C € LY (I1;) be a nonnegative, nontrivial function
which vanishes outside I1,. (h) for some h > 0. Then

4hx;x .
KiC(x) < ——5 =2 CIl + Nmin {x7, X}, (3.67)
X7 =3 |

provided that x € I1, \ diag(I1,).
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PROOF. Fix x €11, \diag(IT,) and define
2 2 2 2 2 211/2
Ulx):= {3’ eIl | [(vi-v2)—(xi—x3) [ < |x{—x3] } (3.68)

Next we decompose C as follows: C := C; + {», where

C(y), yell.(h)nU(x),
Ci(y) = " (3.69)
0, otherwise.
Again by setting o:= |[x =¥, B:= [x-y|, p:= [x-y[, 6 := |x -, we obtain
1 O(ZBZ
KiGo(x) = o jm log %3 C2 ()
= | 1og (1+M)§Z(y)dy (3.70)
41t Jn, p262
4hX]X2 J 1
< —== — dy.
™ Jnnwue p26° C()dy
In view of the following identity:
p28% = (12 -23) - (x} -x3))* +4(x1x2 - ¥132)°, (3.71)

we infer that if v € I1, \ U(x), then p252 > |x? — x3|. This, in conjunction with (3.70),
yields

K. Golx) < — X2 ey, (3.72)
| x5 — x5 |
Finally, recalling (2.5) we obtain
K.Ci(x) < Nmin{x,x,}. (3.73)
Since K, C(x) =K. Ci1(x)+K.C2(x), (3.67) follows from (3.72) and (3.73). |

REMARK 3.13. Under the hypotheses of Lemma 3.12 with b replaced by a and an
additional assumption, namely, 3(C) > 1 we can show the existence of a positive
constant P such that

K.C(x) =P(x1x2) " 9(0), (3.74)

provided that min{x;,x2} > a/2 and C € %. Clearly, the truth of (3.74) emerges from
the elementary fact that s¥~!logs is bounded on any interval of the form [d, «), d > 0.
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4. Proof of Theorem 2.1. We first show that, for I sufficiently large, there exists a
positive constant R(I) such that if IT, (&, n) is sufficiently large (satisfying #(I)) and
€ e3(&,n,I), then

supp(Z) cI1, (R()), (4.1)

modulo a set of zero measure. From Lemma 3.3, there exists I3 > I; such thatif I > I3,
then

o) > ;aNHCOHI. 4.2)

Fix I > I3 and consider € € X(&,n,I) for some I1, (&, n) satisfying € (I). From (4.2) and
definition of o, we infer that

5 1
saN|[Clly <¥Y(C) < ICllh sup K, T(x), 4.3)
2 2 xesupp()
thus
sup K.C(x)=5aN. (4.4)
xesupp(Z)

Since K. T € C(R?), it attains its maximum relative to supp(Z) at z, say. Therefore, by
applying (4.4), we obtain

5aN < K,C(z) < Nmin{zy,z,}, (4.5)

whence min{z,,z,} > 5a. Without loss of generality, we may assume that J(Z) > 1,
hence, by (3.74) we obtain

5aN < K.C(z) < PI(z1z2) 7, (4.6)
o)
PI \Y
212y < (ﬁ) . 4.7)
Now we define
. PI ¥ 2
R() := max«{(sth) ,25a } (4.8)

Then V:= {x €Il | x1x2 < R(I),min{x1,x2} > 5a} is not empty and z € V. Note that
at least a quadrant of By, (x), for every x € V, is contained in IT, (R(I)) and, in fact,
contained in IT, (§;,R(I)) for some §12 > R(I). By I (€1,R(I)) we denote the transla-
tion of I, (&;,R(I)) along diag(I1, ), ~/2t units. Observe that the family of translations
{IT%. (&1,R(I)) Yo=t=ty, Where to := (I/[|Coll1)"/?, is uniformly contained in I, (&2, n2),
for some &, and 12 (in fact we can take &, = & +t(). From now on we assume that & > &
and n > n». Since a quadrant of B4, (z), designated by Q, is contained in IT, (R(I)) we
can apply the mean value inequality and (2.5) to deduce that

K,C(x)>K,.C(z)—4aN =aN, xeQ, (4.9)
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where the last inequality is obtained from (4.4). To seek a contradiction we assume
that E := supp(Z) \II. (R(I)) has a positive measure and write € = Cy + C;, where

C1:= CXk- (4.10)

Since |Q| = 4ma? > |supp(L)| = Tma?, there exists a measure preserving bijection,
denoted by T, from E onto a subset of Q \ supp(C), say G, see Royden [15]. Now
define

Cri=CroT Y, (4.11)

on the range of T and zero elsewhere, that is,

Co=(CioT™Y) Xim(), (4.12)

where im(T) is the range of T, and let ' := Cp + C». Clearly T’ € #(&,n). We show that
3(C') < 3(0):

x1x2C0 +L (x1x20T)C, (4.13)

On the other hand, we have
Y(C')-Y(Q) = Jn (C2-CK. C+Y(C2-C1) > Jn (C2-T1)K.C, (4.14)
since K, is strictly positive, see Emamizadeh [10]. Hence

Y(C)-Y (@) > jn LK. C— CIK, C

{xells [x1x2>R(1)}

zaNJ CZ—J CiK. C,
I+ {xell4[x1x2>R(I)}

by (4.9). Now we proceed to estimate I{xel‘h Ix1x2>R(D} 51K+ €. For this purpose we set

(4.15)

supp(Z) = J1 U Jz2, (4.16)
where

Ji:= {x € supp(Q) | x1x2 > R(I), min{x;,x»} > %}

(4.17)
Jo:= {x € supp(Z) | x1x2 > R(I), min{xy,x} < %}
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If x € J;, then by (3.74)
K. C(x) <PI(x1x2)"Y <PIR(I)7?. (4.18)

On the other hand, if x € J, then by (2.5)

K,C(x) < Nmin{x,x,} < %. (4.19)
Therefore, if x € supp(C1)
K.C(x) smaX{PIR(I)_y,%}. (4.20)
Assume that R(I) is large enough to ensure
aN—maX{PIR(I)’y,%} > 0. (4.21)
Therefore, we obtain
Y(C')-Y(C) = (aN—maX {PIR(I)’Y, %})HQHl > 0. (4.22)

This implies that ¥(Z’) > ¥(Z). Finally, we define " to be the function obtained by
translating ¢’ along diag(I1. ) so that 3(C"") = I.If we denote the amount of translation
by t, then it is clear that t is the bigger root of the following algebraic equation:

gl ¢ +2(fm (x1 +xz):')t+jn+ x1x:C' =1. (4.23)

Note that t depends on C; but we are able to find a uniform bound, independent of C,
as follows. Solving (4.23) for t yields

1/2

- (x1+x2)T + (x1+x2)T 2—||€’||1(3(§/)—I)
Ju. (.. ) )

1zl (4.24)

1/2
<(”§"'1("5‘C')))”2<(||:I'||1) ,

as desired. Note that the choices of & and n, ensure that " € %(&,n,I). Now, by
Lemma 3.11 we have

t=

Y(C")=Y(T') > Y (). (4.25)

This is a contradiction to the maximality of €. Therefore we have been able to show
that if T > I3, then there exists R(I) given by (4.8) such that if IT, (&, n) is sufficiently
large (£ = & and n = ny) and € € X(&,n,I), then, for almost every x € supp(Q), (4.1)
holds.

However, the possibility that the vortex core runs off to infinity, as I, (&, n) exhausts
I1,, still exists. We now show that this situation is ruled out once I is sufficiently large.
For this purpose, fix I > I3 and consider (C,¢$,A) € M(&,n,I). We claim that if & and
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n are large enough then A can not be too negative. For this purpose let € > &, and
n =max{h,n.}, & and n, are as above, where

. x—1 K _ aN
hi= (N[A*[TT+1)RU), A*: SR (4.26)
such that IT, (&, n) satisfies #(I). We show that
A > A*, 4.27)

To seek a contradiction suppose that A < A*. Without loss of generality we may assume
that R(I) > 1. Let x e W:={y €I1.(&,n) | y1v2 > h}. Then

K. C(x)—-Ax1x2 > —Ax1x2 = |A|x1x2 > [Alh
. (4.28)
= IA(N[A*| T +1)RU) > (N +[A])R().

Now consider x € supp(C). If max{x;,x2} > 1, then min{x;,x»} < x1Xx2, hence
min{xi,x»} < R(I). If, however, max{xj,x»>} < 1 then min{x;,x»>} <1 < R(I). There-
fore in either case we have min{x,x»} < R(I). This, in turn, implies that

K,T(x)—Ax1x2 < Nmin{xy,x2} —Ax1x2 < (N+|A|)R(I), (4.29)
whence
sup (K;C(x)—Axix2) < (N+]A)R). (4.30)
xesupp(L)

Therefore K. C(x) — Ax;x» takes greater values on a nonempty subset of 11, (&,n),
namely W, than its supremum on supp(<). This is impossible, since C is essentially
an increasing function of K, C(x) —Ax1x. onIl, (&,n). Hence we derive (4.27). For the
rest of the proof we fix I > Iy := max{I,,I>,I3}. Let E > &, n > h (as above) be such that
I1. (&,n) satisfies #(I). Consider (C,¢p,A) € M(&,n,I). Now fix x € supp(C) \ diag(Il;)
such that min{x,,x,} < a/6. Then by Lemmas 3.9 and 3.12, in conjunction with (4.27),

aN <K.C(x)—-Ax1x>

_%IICH]+Nmin{X1,xz}—7\*x1x2

1T~X17X2|

4R(I)x1x ; 3
< 2RWXXD ), s Nmin X2} - A*R(D)

T | X7 = X3 |

4R(I)x1x; aN , aN

EEE I

Hence

2_x2| < SRWDI[Zoll, (4.32)

X1 anN
To summarise, we have shown that if x € supp(¢) is such that min{x,x»} > a/6,
then x € I1,(R(I)) n{y €11, | min{y,,y2} > a/6}; otherwise x satisfies (4.32). This
clearly concludes the existence part of the theorem.
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Now consider € € 3(I). Then there exists é > 0 such that supp(Z) is a compact
subset of D(&) := (0,&) x (0,&) and, according to Lemma 3.1,

C=¢o (K. C—-Ax1x2), ae.inD(E), (4.33)
for some increasing function ¢ and A € R. Note that from Lemma 3.9
K:=esssup {K,.C(x)—Axi1x> | x € supp(L)} = aN > 0. (4.34)

Since the level sets of K, C — Axyx2, on supp(C), have zero measure, in particular we
have

| {x € supp(C) | K€ —Ax1x2 =k} | = 0. (4.35)
Therefore
K,C—-Ax1x2 > Kk, a.e.in supp(Q). (4.36)

Thus we may suppose that ¢(s) = 0 for s < k. Now if we define F(s) := [; ¢(t)dt, then
Lemma 3.7 yields

ZJ AFqu—ZAI:J (Foy)(x-1), (4.37)
D(&) oD(&)

where @ := K, C — Ax1x2. We claim that for x € aD(E) we have ¢ < k. Otherwise, by
the continuity of ¢ we can find B¢ (x) such that B (x) nsupp(Z) has positive measure,
since supp(Z) is a compact subset of D(g), and @ (s) > Kk for s € Bc(x); but this is a
contradiction to (4.33). Therefore, if x € aD(é) we have Fo (x) = 0. Hence from (4.37)
we deduce that A > 0, as required.

Now fix x € supp(Z). Since A > 0, we can employ Lemma 3.9 to obtain

aN <K, C(x)—Axi1x» < K, C(x) < Nmin {x1,x>}. (4.38)

Thus min{x,x2} > a. This proves the vortex core avoids JII.. The validity of (2.12)

is established as in Emamizadeh [11]. O
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