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ON THE RELATION BETWEEN MOORE’S
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Moore (1920) defined the reciprocal of any matrix over the complex field by three con-
ditions, but the beauty of the definition was not realized until Penrose (1955) defined
the same inverse using four conditions. The reciprocal is now often called the Moore-
Penrose inverse, and has been widely used in various areas. This note comments on the
definitions of Moore-Penrose inverse, and gives a new characterization for two types of
weak Moore-Penrose inverses, which exposes an important relation between Moore’s and
Penrose’s conditions. It also attempts to emphasize the merit of Moore’s definition, which
has been overlooked mainly due to Moore’s unique notation. Two examples are given to
demonstrate some combined applications of Moore’s and Penrose’s conditions, includ-
ing a correction for an incorrect proof of Ben-Israel’s (1986) characterization for Moore’s
conditions.
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1. Introduction. Denote by �m×n the set of m×n finite matrices over the field of

complex numbers, and by A∗ the conjugate transpose of a �m×n-matrix A. Moore [4]

defined the reciprocal Λ of a �m×n-matrix K as a �n×m-matrix such that (a) the

columns of Λ are linear combinations of the conjugates of the rows of K, (b) the

rows of Λ are linear combinations of the conjugates of the columns of K, (c) the ma-

trix KΛK obtained by matricial composition of the matrices K, Λ, K is the original

matrix K. In other words, Λ satisfies the following three conditions:

(a) Λ=K∗C for some C ∈�m×m,

(b) Λ=DK∗ for some D ∈�n×n,

(c) KΛK =K.

Alternatively, if we denote by Col(K) the column space of K, Moore’s conditions (a)

and (b) can be written as (a) Col(Λ)⊂ Col(K∗) and (b) Col(Λ∗)⊂ Col(K). Furthermore,

the existence and uniqueness of Λ were announced in [4], and proven in [5, pages 8,

202] after Moore’s death, where the reciprocal was renamed as the general reciprocal.

However, the beauty of Moore’s definition was not realized until Penrose [7] defined

the generalized inverse A† of a matrix A∈�m×n as the solution of the following four

equations:

(1) AA†A=A,

(2) A†AA† =A†,
(3) AA† = (AA†)∗,

(4) A†A= (A†A)∗,

and proved the existence and uniqueness of A†. Moore’s publications were not cited
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in Penrose [7]. Since then the A† has been widely used in various areas, especially

in the study of approximate solutions (such as the least-squares solutions) of linear

equations.

The equivalence between Moore’s reciprocal and Penrose’s generalized inverse was

shown by Rado [10], and Penrose [8] noticed this too. The A† is now often called the

Moore-Penrose inverse (M-P inverse) and sometimes is also called the pseudo-inverse.

We denote by A† the M-P inverse of A.

Another equivalent definition of the M-P inverse, often used in algebraic textbooks,

is as follows: if A is of rank r , {b1, . . . ,br} is a basis of Col(A), and B := [b1, . . . ,br ],
(hence A= BH for some H ∈�r×n of rank r ), then

A† =H∗(HH∗)−1(B∗B
)−1B∗ or A† =H∗(B∗AH∗)−1B∗ (1.1)

(see Ben-Israel and Greville [2, page 23]). The existence of A† follows from this defini-

tion immediately; and if A is of full-rank, an algorithm for computing A† follows from

the definition as well (see Noble [6, page 291]). But this definition does not describe

the features of A† explicitly, while Moore’s and Penrose’s definitions do.

The weak M-P inverses (or weak generalized inverses) are also playing an important

role in applications. We denote by A{i1,...,ik} a weak M-P inverse of A satisfying Moore’s

or Penrose’s conditions (i1), . . . ,(ik) (hence A† ≡ A{a,b,c} ≡ A{1,2,3,4} and A{c} ≡ A{1}),
and by �{i1,...,ik} the set of all possible A{i1,...,ik}’s (hence �{i1,...,ik} ⊂ �n×m, �{1,2,3,4} =
�{a,b,c} = {A†}, and �{c} ≡�{1}).

In addition to the comments on the definitions of M-P inverse, this note gives a

new characterization for two types of weak M-P inverses, namely �{a,c} =�{1,2,4} and

�{b,c} =�{1,2,3}, which exposes an important relation between Moore’s and Penrose’s

conditions. It also attempts to emphasize the merit of Moore’s definition, which has

been overlooked mainly due to Moore’s unique notation. Two examples are given

to demonstrate some combined applications of Moore’s and Penrose’s conditions,

including a correction for an incorrect proof of Ben-Israel’s [1] characterization for

Moore’s conditions (a) and (b).

2. Characterization for two types of weak M-P inverses. Ben-Israel [1] examined

Penrose’s A† in relation to Moore’s A{a,b,c}, interpreted Moore’s results in a more

readable manner, and gave (as [1, Lemma 1]) a characterization of �{a,b} that

�{a,b} = {X =A∗UA∗ :U ∈�m×n
}

(2.1)

supported by an incorrect proof, which is corrected in Example 3.2. Pringle and Rayner

[9, page 26] characterized weak M-P inverses A{1,2,3} and A{1,2,4}, using a result of

Goldman and Zelen [3], and showed over the real field that for an m×n matrix A,

G is an A{1,2,3} iff G = (A′A){1}A′ for some
(
A′A

){1}, (2.2)

where A′ denotes the transpose of A; and

G is an A{1,2,4} iff G =A′(AA′){1} for some
(
AA′

){1}. (2.3)

Plainly, (2.2) and (2.3) hold over the complex field.



ON THE RELATION BETWEEN MOORE’S . . . 507

In what follows, A denotes a �m×n-matrix.

Also note that for any subsets X and Y of {a,b,c,1,2,3,4},

�X∪Y =�X∩�Y with �∅ :=�n×m (2.4)

(hence �X ⊂�n×m).

Theorem 2.1. It is true that �{a,c} =�{1,2,4} and �{b,c} =�{1,2,3}.

Proof. For G ∈�{a,c}, there exists C ∈�m×m such that

G∗ = C∗A= C∗AGA=G∗GA, (2.5)

so (GA)∗ =A∗G∗GA=GA, and hence G ∈�{1,4}. It then follows that

G∗ =G∗GA=G∗A∗G∗, (2.6)

hence �{a,c} ⊂�{1,2,4}. Conversely, for G ∈�{1,2,4},

G =GAG =A∗G∗G, (2.7)

hence �{1,2,4} ⊂�{a,c}.
Next, for G ∈�{b,c}, there exists D ∈�n×n such that

G =DA∗ =DA∗G∗A∗ =GG∗A∗, (2.8)

so AG =AGG∗A∗ = (AG)∗, hence G ∈�{1,3}. It then follows that

G =GG∗A∗ =GAG, (2.9)

hence �{b,c} ⊂�{1,2,3}. Conversely, for G ∈�{1,2,3},

G =GAG =GG∗A∗, (2.10)

hence �{1,2,3} ⊂�{b,c}.

Theorem 2.1 exposes an important relation between Moore’s and Penrose’s con-

ditions that one of Moore’s conditions (a) and (b) plus the common condition (c) is

equivalent to Penrose’s conditions (1) and (2) plus one of conditions (3) and (4). This

is also a new characterization for two types, A{1,2,3} and A{1,2,4}, of weak M-P inverses.

Combining Theorem 2.1 with the results (2.2) and (2.3) of Pringle and Rayner [9], we get

G ∈�{1,2,4} iff G ∈�{a,c} iff G =A∗(AA∗){c} for some
(
AA∗

){c},

G ∈�{1,2,3} iff G ∈�{b,c} iff G = (A∗A){c}A∗ for some
(
A∗A

){c}.
(2.11)

Rado’s [10] proof for the equivalence between Moore’sA{a,b,c} and Penrose’sA{1,2,3,4}

is somewhat tedious. Now the equivalence, �{1,2,3,4} =�{a,b,c}, can be easily shown via

Theorem 2.1 and (2.4) as follows:

�{a,b,c} =�{a,c}∩�{b,c} =�{1,2,4}∩�{1,2,3} =�{1,2,3,4}. (2.12)
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3. Comment and examples. Most research publications in the area of generalized

inversion adopt Penrose’s definition of four conditions, and overlook Moore’s defini-

tion of three conditions. If Moore’s unique notation was a reason for this phenomenon

(see Ben-Israel [1], Pringle and Rayner [9, page 3]), it seems that we should pay more

attention to Moore’s definition now.

In fact, Moore’s conditions (a) and (b) are quite intuitive and convenient to use.

In some cases, combined applications of Moore’s and Penrose’s conditions can sim-

plify approaches to a great extent.

Example 3.1. The results (2.2) and (2.3) of Pringle and Rayner [9] can be easily

proved (over the complex field) as follows: for (2.2), if G = (A∗A){1}A∗ for some

(A∗A){1}, then G ∈�{b}, and

AGA=A{1,3}∗A∗A(A∗A){1}A∗A=A, (3.1)

so G ∈�{b,c}. By Theorem 2.1, G ∈�{1,2,3}. Conversely, if G ∈�{1,2,3}, by Theorem 2.1,

G ∈�{b,c}. Choose D ∈�n×n such that G =DA∗, then

A∗ADA∗A=A∗AGA=A∗A. (3.2)

Thus, D is an (A∗A){1} and G = (A∗A){1}A∗.

The dual result (2.3) is proved in a similar manner.

Example 3.2. Equation (2.1) is given by Ben-Israel’s [1, Lemma 1], and is true, but

the proof in [1] is incorrect. To point out the incorrectness, we copy (with minor

wording modification) the main part of the proof: if X = YA∗ =A∗Z for some Y and

Z , and define Y1, Y2, Z1, Z2 by

Y =A∗Y1+Y2, AY2 = 0, Z = Z1A∗+Z2, Z2A= 0, (3.3)

then AXA=AA∗Y1A∗A=AA∗Z1A∗A, proving that Y1 = Z1, . . . .
Plainly, the consequence, Y1 = Z1, need not be true.

Indeed, (2.1) can be proved as follows: for X ∈ �{a,b}, choose Y ∈ �n×n and Z ∈
�m×m such that X = YA∗ =A∗Z . Then

X = YA∗ = YA∗A∗{c}A∗ =A∗ZA∗{c}A∗ with U = ZA∗{c}. (3.4)

The converse has nothing to prove.

Note 3.3. To prove (2.1), there are many alternative choices of U , such as U =
A∗{c}Y or A∗{c}XA∗{c}.
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