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The concept of a tracially AF (TAF) C∗-algebra was introduced recently to aid in the classifi-
cation of nuclear C∗-algebras. Here, we construct and study a broad class of inductive-limit
C∗-algebras. We give a numerical condition which, when satisfied, ensures that the corre-
sponding algebra in our construction has the TAF property. We further give a necessary
and sufficient condition under which certain of these C∗-algebras are TAF.
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1. Introduction. Much of recent C∗-algebra theory has been concentrated on the

development of a noncommutative topology for C∗-algebras. The notions of real rank

and topological stable rank, for example, have been successful in relating topological

dimension to C∗-algebras. The AF algebras form a class of C∗-algebras, which may be

viewed as an analogue to the dimension zero topological spaces. These C∗-algebras

have a nice finite-dimensional approximation property but also have trivial K1 groups.

A broader class of C∗-algebras are the TAF algebras, which were introduced in [10]

and provide a richer topological structure than that of the AF algebras (see Section 3

for the formal definition of TAF).

These TAF algebras have a large part approximable by finite-dimensional C∗-

subalgebras, while the remaining part has arbitrarily small measure. They can have

nontrivial K1 groups and their K0 groups may have torsion. Noncommutative ana-

logues of both dimension and measure have influenced the development of the TAF

C∗-algebra. The class of nuclear TAF C∗-algebras is broad but can in fact be classified.

For example, all simple nuclear C∗-algebras classified in [5] are TAF, and every simple

TAF C∗-algebra is quasidiagonal, has real rank zero, topological stable rank one, and

weakly unperforated K0 group. A classification theorem for TAF C∗-algebras can be

found in [9].

In this paper, suggested by the work in [10, Section 4], we construct the induc-

tive limit of matrix algebras over a separable, unital, residually finite-dimensional

C∗-algebra (the source) using identity maps and finite-dimensional irreducible rep-

resentations as the connecting monomorphisms. We investigate various properties

of the inductive limit such as simplicity, real rank, topological stable rank, and TAF.

We give a sufficient condition under which a large subclass of the constructed C∗-

algebras are TAF, and show that this condition becomes necessary when the source

has a bounded rank. This condition is numerically described by a single quantity.

In [7], Goodearl studied a similar construction using C(X) forX separable, compact,

Hausdorff, and connecting monomorphisms consisting of identity maps and point
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evaluations. There, it was shown that such an inductive limit has real rank zero exactly

when C(X) is an AF-algebra or the number of point evaluations eventually increases

much faster than the number of identity maps. Here, we prove that the inductive limit

of a separable, residually finite-dimensional, unital source with bounded rank is in fact

TAF, exactly when, the source is AF or the dimensions of irreducible representations

used in the connecting morphisms eventually increase more rapidly than the number

of identity maps.

We begin by giving the details describing our construction and then proceed to in-

vestigate its properties. We then introduce a numerical condition to ensure the TAF

property. Examples which help illustrating the breadth of these C∗-algebras are given.

Finally, we prove the main characterization theorem of the paper: the numerical condi-

tion is a TAF-determinant when the source algebra has a bounded rank and is not AF.

2. The construction. We first establish notation and then proceed by induction to

construct a direct sequence of C∗-algebras, which we use to form a C∗-inductive limit,

the C∗-algebra of interest.

We begin with a unital, separable, residually finite-dimensional C∗-algebra B. A sep-

arable C∗-algebra is residually finite-dimensional if it has a countable separating fam-

ily of finite-dimensional irreducible representations. Examples of such C∗-algebras

include C(X) andMn⊗C(X). Of course, these have only finite-dimensional irreducible

representations. More examples include C∗(Fn) (n > 1), the group C∗-algebra of the

free group on n generators. In [2], this algebra was shown to be unital, separable,

residually finite-dimensional, and primitive with an infinite-dimensional, faithful, ir-

reducible representation.

Choose two sequences of positive integers, {mi}∞i=1 and {ni}∞i=1, with supi ni =∞.

Let � be a sequence of finite-dimensional irreducible representations of B, (πn,Hn),
such that for any nonzero b ∈ B, there is πn for which πn(b) ≠ 0 and such that

each representation appears infinitely many times in �. For each n, let d(n) be the

dimension of Hn. Choose an identification of B(Hn) with Md(n). Define ψn : B → B⊗
Md(n) by ψn(b)= 1B⊗πn(b).

Let φ1 : B → Mm1(B) be the inflation map defined by φ1(b) = diag(b, . . . ,b). Let

J(1) = 1 and set J(2) =m1+
∑n1
i=1d(i). Define the monomorphism h1 : B →MJ(2)(B)

by

h1(b)= diag
(
φ1(b),ψ1(b),ψ2(b), . . . ,ψn1(b)

)
. (2.1)

Let φ2 :MJ(2)(B)→MJ(2)·m2(B) be the inflation map defined by φ2(b)= diag(b, . . . ,
b). Set J(3) = J(2)(m2+

∑n2
i=1d(i)) and define the monomorphism h2 : MJ(2)(B) →

MJ(3)(B) by

h2(b)= diag
(
φ2(b),ψ1⊗IMJ(2) (b), . . . ,ψn2⊗IMJ(2) (b)

)
. (2.2)

Continue inductively to form the direct sequence (MJ(s)(B),hs) of C∗-algebras. No-

tice that each member of the sequence of representations appears at some stage in

the construction because supi ni =∞. Sincemi,ni > 0 for each i, at least one identity

map and at least one representation appears at each stage of the construction.
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For s < t, let hs,t : MJ(s)(B) → MJ(t)(B) be the composition of monomorphisms

ht−1 ◦ht−2 ◦ ··· ◦hs . Let A be the C∗-inductive limit of the sequence (MJ(s)(B),hs)
and let hs,∞ :MJ(s)(B)→A be the monomorphism induced by the inductive limit con-

struction. We then have the following theorem.

Theorem 2.1. The algebra A is always unital and simple.

Proof. SinceMJ(s)(B) andhs are unital for each s,A is unital. Leta∈A be nonzero.

Let I be any (closed) ideal of A with the property that
⋃
s hs,∞(MJ(s)(B))∩I = 0, and let

π :A→A/I be the quotient map. Since
⋃
s hs,∞(MJ(s)(B)) is dense in A, for every ε > 0,

there is b in hs,∞(MJ(s)(B)) for some s with ‖a−b‖ < ε. Then ‖π(b)‖=‖b‖ because

hs,∞(MJ(s)(B))∩I=0 and hs,∞(MJ(s)(B))/(hs,∞(MJ(s)(B))∩I)	 (hs,∞(MJ(s)(B))+I)/I.
So,

∣∣‖a‖−∥∥π(a)∥∥∣∣≤ ∣∣‖a‖−‖b‖∣∣+∣∣∥∥π(b)∥∥−∥∥π(a)∥∥∣∣< 2ε. (2.3)

Thus, π is isometric and hence I = 0. Therefore, we may, without loss of generality,

assume that there is b ∈MJ(s)(B) for some s such that hs,∞(b)= a.

By definition of �, there is πr belonging to � such that (πr ⊗ IMJ(s) )(b) ≠ 0. Since

πr repeats infinitely many times, there is t ≥ s such that ht−1 = diag(φt−1,ψ1 ⊗
IMJ(t−1) , . . . ,ψr ⊗IMJ(t−1) , . . .). Since πr ⊗IMJ(s) (b) is nonzero in Md(r)·J(s), the ideal gen-

erated by ψr ⊗ IMJ(t−1) (b) in MJ(t)⊗1B is MJ(t)⊗1B . Since hs,t−1(b) has at least one

diagonal block equal to b, then hs,t(b) has at least one nonzero scalar block matrix

on its diagonal. So the ideal generated by hs,t(b) isMJ(t)(B). Thus, the ideal generated

by a is A.

We will show in the next section that the construction always produces a C∗-algebra

which has topological stable rank one.

Remark 2.2. This construction can be put in a much more general setting without

affecting any of the results in this paper. For example, we could modify the construc-

tion in the following manner. Let � = {Kn}n∈N be a dense sequence in Prim(B) con-

sisting of kernels of finite-dimensional irreducible representations. We note that such

a sequence exists. If {πn}n∈N is a separating family of finite-dimensional irreducible

representations of B, then �= {ker(πn)}n∈N is dense in Prim(B). Under the bijective

correspondence, J → hull(J), of the set of closed ideals of B onto the closed subsets

of Prim(B), we have � = hull(I) for some (closed) ideal I of B. Then I ⊂ ker(πn) for

every n, and so I = 0. Thus, � is dense in Prim(B).
Let � be a sequence of finite-dimensional irreducible representations of B, {πn}n∈N,

so that ker(πn) = Kn for each n. An arbitrary sequence of positive integers {ni}∞i=1

could then be chosen, from which a subsequence of � of size ni, say {(πj1 ,Hj1), . . . ,
(πjni ,Hjni )}, should be chosen for each i. If the sequence {mi} and the maps φi
are as before, then the matrix sizes J(i) should be defined as J(i) = J(i−1)(mi−1+∑ni−1
k=1 d(jk)); and the maps hi :MJ(i)(B)→MJ(i+1)(B) should be defined as

hi(b)= diag
(
φi(b),ψj1⊗IMJ(i) (b), . . . ,ψjni ⊗IMJ(i) (b)

)
. (2.4)
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All of the results in this paper still hold provided that
⋃
i≥n(

⋃ni
k=1 ker(πjk)) is still

dense in Prim(B) for every positive integer n. We have chosen to use the less general

setting only for ease of notation.

3. The TAF property. We define the property TAF and give sufficient conditions

for A (see Section 2 for the definition) to have this property. As a consequence, we

show that A has always topological stable rank one. We also produce examples of C∗-

algebras born from our construction, including many simple, unital, real rank zero,

topological stable rank one, quasidiagonal (TAF) C∗-algebras.

Definition 3.1. A unital C∗-algebra C is TAF if for any ε > 0, any positive integer

n, any finite subset � of C containing x1 ≠ 0 and any full a ∈ C+, there is a finite-

dimensional C∗-subalgebra F ⊂ C with p = 1F such that

(1) ‖px−xp‖< ε for all x ∈�;

(2) (i) for each x ∈�, there exists y ∈ F with ‖pxp−y‖< ε, and

(ii) ‖px1p‖ ≥ ‖x1‖−ε;
(3) n[1−p]≤ [p] in D(C) and 1−p 
 a.

Here, D(C) denotes the set of Murray-von Neumann equivalence classes of pro-

jections in C and Her(a) denotes the hereditary C∗-subalgebra of C generated by a.

The condition that pCp contains nmutually orthogonal projections, each Murray-von

Neumann equivalent to 1−p is denoted byn[1−p]≤ [p], and the condition that 1−p
is Murray-von Neumann equivalent to a projection in Her(a) is denoted by 1−p 
 a.

From this definition, it is easy to see that any unital AF C∗-algebra is TAF. When

working with simple separable C∗-algebras, the definition can be somewhat simpli-

fied. In [10, Proposition 3.8], it is shown that a simple, unital, TAF C∗-algebra has

cancellation of projections; and so a unital, simple C∗-algebra is TAF if and only if

conditions (1) and (2)(i) in Definition 3.1 hold and condition (3) is replaced by

(3′) 1−p is unitarily equivalent to a projection in Her(a).
In the remainder of this paper, we use this latter definition of simple TAF, that is,

we replace condition (3) in Definition 3.1 by condition (3′), because the C∗-algebra A
is simple. More is found in [9, 10]. We have the following theorem.

Theorem 3.2. If B is TAF, A is TAF.

Proof. It is shown in [10, Theorem 3.10] that when B is TAF, Mn(B) is TAF for all

n, and a unital, simple direct limit of unital TAF C∗-algebras is TAF.

Now, we give the numerical condition, which ensures that the TAF property holds

for A. From the inductive construction, we have for each s ∈N,

J(s)= J(s−1)


ms−1+

ns−1∑
j=1

d(j)


= s−1∏

i=1


mi+

ni∑
j=1

d(j)


. (3.1)

For s ∈N, set

λs = m1 ·m2 · ··· ·ms

J(s+1)
. (3.2)
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A short computation shows that we also have

λs =
s∏
i=1

(
1+

∑ni
j=1d(j)
mi

)−1

. (3.3)

Since

λs+1 = ms+1 ·J(s+1)
J(s+2)

·λs =
(

ms+1

ms+1+
∑ns+1
j=1 d(j)

)
·λs ≤ λs, (3.4)

{λs}s∈N is decreasing and bounded below by 0. So its limit exists. Let Λ = lims→∞λs .
From the theory of infinite products, we see Λ≠ 0 exactly when

∑∞
i=1(mi

−1
∑ni
j=1d(j))

converges. Indeed both nonzero and zero values of Λ are possible. For example, if

mi = i
∑ni
j=1d(j), then Λ= 0; and, if mi = 2i

∑ni
j=1d(j), then Λ> 1/3.

Now, we give a sufficient condition for A to have the TAF property in the following

theorem, which generalizes a result in [10, Section 4].

Theorem 3.3. If Λ= 0, then A is TAF.

Proof. Let ε > 0. Let � be a nonempty finite subset of A containing a nonzero

element x1. Without loss of generality, we can assume � ⊂ hs,∞(MJ(s)(B)). There is a

finite subset � ⊂MJ(s)(B) such thaths,∞(�)=� withy ∈ � andhs,∞(y)= x1. Since the

representation⊕n∈Nπn is faithful on B, the representation (⊕n∈Nπn)⊗IMJ(s) is faithful

onMJ(s)(B). So, there isπr belonging to the sequence � with ‖πr⊗IMJ(s) (y)‖ ≥ ‖y‖−ε.
Choose t > 1 such that hs+t−1 = diag(φs+t−1,ψ1⊗IMJ(s) , . . . ,ψr ⊗IMJ(s) , . . .).

For any z ∈MJ(s)(B), there are at least J(s+t)−ms ·ms+1 · ··· ·ms+t−1 ·J(s) rows

of the diagonal block matrix hs,s+t(z) with entries belonging solely to C ·1B . If p is

the diagonal projection in MJ(s+t) corresponding to these rows so that the rank of

p is J(s + t)−ms ·ms+1 · ··· ·ms+t−1 · J(s), then phs,s+t(MJ(s)(B))p may be iden-

tified with a C∗-subalgebra of 1B ⊗MJ(s+t)−ms ···ms+t−1J(s). So F = phs,s+t(MJ(s)(B))p
is a finite-dimensional C∗-subalgebra of MJ(s+t)(B) with 1F = p and ‖hs,s+t(y)‖ ≥
‖y‖−ε since hs,s+t is injective. Then hs+t,∞(F) is a finite-dimensional subalgebra of

A with identity hs+t,∞(p), and for all x ∈ �, ‖hs+t,∞(p)x −xhs+t,∞(p)‖ = 0. Also,

‖hs+t,∞(p)x1hs+t,∞(p)‖ ≥ ‖x1‖−ε since hs+t,∞ is injective.

Note that hs+t,∞(p)�hs+t,∞(p) ⊂ hs+t,∞(F). So, A satisfies conditions (1) and (2)

in Definition 3.1. By [10, Lemma 2.12], A has property (SP). It, therefore, suffices to

show by heredity, given any nonzero projection q in A, that p can be chosen so that

hs+t,∞(1−p) is unitarily equivalent to a subprojection of q. Without loss of generality,

we assume that q belongs to hn,∞(MJ(n)(B)) for some n. Then there is a projection

q̂ ∈MJ(n)(B) with hn,∞(q̂) = q. We may also assume, without loss of generality, that

s ≥ n so that hn,s(q̂) = diag(q1,q2), where q2 ∈ Mn⊗1B for some 1 ≤ n ≤ J(s) and

q2 is nonzero. We can then work in MJ(s) by identifying MJ(s)⊗1B with MJ(s) and in

MJ(s+t) similarly. Denote by tr the usual (nonnormalized) trace of a matrix in MJ(s) or

in MJ(s+t).
Since Λ= 0, there is t such that

λs+t−1 <
tr
(
q2
)

J(s)2
. (3.5)
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Then

tr(1−p)=ms ·ms+1 · ··· ·ms+t−1 ·J(s) < tr
(
q2
)·J(s+t)
J(s)

= tr
(
hs,s+t

(
q2
))
. (3.6)

So, 1 − p is unitarily equivalent to a subprojection of hs,s+t(q2). Since we have

hs,s+t(q2) ≤ hk,s+t(q̂), hs+t,∞(1−p) is unitarily equivalent to a subprojection of q.

Therefore, A is TAF.

Theorem 3.4. If A is TAF, then A has real rank zero, topological stable rank one

and is quasidiagonal.

This is proved in [10, Theorem 3.4].

Now, we prove that A always has topological stable rank one using a proof which

is fundamentally the same as in [7, Lemma 2, Theorem 3] with adjustments to accom-

modate the replacement of C(X) by B.

Theorem 3.5. A always has topological stable rank one.

Proof. If Λ= 0, Theorem 3.3 and its corollary prove that A has topological stable

rank one. So we can assume Λ> 0.

We show that Inv(A) is dense in A. Let x ∈ MJ(s)(B). We assume that x is not

invertible. Let ε > 0. We first find n ∈ N and y ∈ MJ(s)(B) such that ‖y −x‖ < ε
and πn(y) is not invertible. Then we show that y ∈ Inv(A). For convenience, de-

note (⊕n∈Nπn)⊗ IdMJ(s) by ⊕nπn. Then ⊕nπn(x) is not invertible. So ⊕nπn(x) is not

bounded below or does not have dense range (see [8] for example).

Assume first that it is not bounded below. Then, there is a unit vector ξ with

‖ ⊕n πn(x)(ξ)‖ < ε. If ξn ∈ HnJ(s) are the components of ξ, then we have∑
n‖πn(x)(ξn)‖2 < ε2. If for each n, ‖πn(x)(ξn)‖ ≥ ε · ‖ξn‖, then we would have∑
n‖πn(x)(ξn)‖2 ≥ ε2

∑
n‖ξn‖2 = ε2 · ‖ξ‖2. So, there is n for which ‖πn(x)(ξn/

‖ξn‖)‖< ε.
Set υ= ξn/‖ξn‖ and extend to an ordered orthonormal basis Υ for Hd(n)J(s). Let p

be the projection of Hd(n)J(s) on span(υ), that is, p = 〈·,υ〉υ. Set Z = πn(x)p. Note

that the matrix (Zi,j)Υ has, as its first column, the first column of (πn(x)i,j)Υ and all

other columns zero. So ‖Z‖2 = ∑d(n)J(s)
i=1 ‖(πn(x))i,1‖2 = ‖πn(x)(υ)‖2 < ε2 and 0 ∈

σ(πn(x)−Z). Lift Z to z ∈MJ(s)(B) with ‖z‖ = ‖Z‖. Set y = x−z. Then ‖y−x‖< ε
and πn(y)=πn(x)−Z so that 0∈ σ(πn(y)).

Now, assume that the range of ⊕nπn(x) is not dense. Then its range has a nonzero

orthogonal complement. So ⊕nπn(x∗) has a nontrivial kernel. Then there is a unit

vector ξ with ⊕nπn(x∗)(ξ) = 0. So we can repeat the above to find y∗ ∈ MJ(s)(B)
with ‖y∗−x∗‖< ε and 0 ∈ σ(πn(y∗)). Then ‖y−x‖< ε and 0 ∈ σ(πn(y)).

Choose t > s such that

ht−1 = diag
(
φt−1,ψ1⊗IMJ(t−1) , . . . ,ψn⊗IMJ(t−1) , . . .

)
. (3.7)

Since 0∈ σ(πn(y)), there are unitariesu1,u2 ∈MJ(t) so thatu1·hs,t(y)·u2 is a block

diagonal matrix, which differs from hs,t(y) in that the block (ψn⊗IMJ(t−1) )(hs,t−1(y))
of hs,t(y) has been replaced by the matrix diag(Y ,0), where Y is viewed as belonging

to (1B⊗Md(n)·J(t−1)−1) and 0∈ C. Now, the matrix u1 ·hs,t(y)·u2 is a block diagonal
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with at least one (1 × 1) zero block. We show that we can use the inductive limit

construction to find unitaries which will transform the image of this matrix in some

later stage into one which is upper triangular. We next show how to choose this later

stage.

Since Λ > 0,
∑∞
i=1mi

−1
∑ni
j=1d(j) converges. So {mi

−1
∑ni
j=1d(j)}i → 0 and hence

we also have {mi
−1 ·max{d(j) : j = 1, . . . ,ni}}i → 0. Then {mi(max{d(j) : j = 1, . . . ,

ni})−1}i→∞. Thus, we can choose w > t so that

w−1∏
i=s

(
mi

max
{
d(j) : j = 1, . . . ,ni

} +1

)
> J(t). (3.8)

Then ht,w(u1 ·hs,t(y) ·u2) is a block diagonal matrix with at least J(w)J(t)−1 zero

rows, and all nonzero blocks have at most J(s) ·∏w−1
i=s max{d(j) : j = 1, . . . ,ni} rows

(and columns).

There is a unitary u3 ∈ MJ(w) such that u3 · ht,w(u1 · hs,t(y) · u2) · u∗3 =
diag(0MJ(w)J(t)−1 (B),Y ′), where Y ′ is a block diagonal matrix with all blocks having row

(and column) size at most J(s)·∏w−1
i=s max{d(j) : j = 1, . . . ,ni}. There is also a unitary

u4 ∈MJ(w) so thatu4·u3·ht,w(u1·hs,t(y)·u2)·u∗3 has as its first J(w)−(J(w)/J(t))
rows the last J(w)−(J(w)/J(t)) rows of u3 ·ht,w(u1 ·hs,t(y)·u2)·u∗3 and has as its

last J(w)/J(t) rows the first J(w)/J(t) rows of u3 ·ht,w(u1 ·hs,t(y)·u2)·u∗3 .

Each entry appearing in any of the first J(w)J(t)−1 columns of the matrix u4 ·
u3 · ht,w(u1 · hs,t(y) ·u2) ·u∗3 is 0, and each (possibly) nonzero entry in column

J(w)J(t)−1+k, for 1≤ k≤ J(w)−J(w)J(t)−1 appears in row l for 1≤ l≤ k−1+J(s)·∏w−1
i=s max{d(j) : j = 1, . . . ,ni}. Then, for each k with 1 ≤ k ≤ J(w)−J(w)J(t)−1, the

entry in column J(w)J(t)−1 + k and row m + k is 0 for every m ≥ J(s) ·∏w−1
i=s max{d(j) : j = 1, . . . ,ni}.
Now J(w)J(t)−1 > J(s)·∏w−1

i=s max{d(j) : j = 1, . . . ,ni} because

J(w)


w−1∏
i=s

max
{
d(j) : j = 1, . . . ,ni

}
−1

= J(s)·
w−1∏
i=s




mi+

ni∑
j=1

d(j)


(max

{
d(j) : j = 1, . . . ,ni

})−1




= J(s)·
w−1∏
i=s

(
mi+

∑ni
j=1d(j)

max
{
d(j) : j = 1, . . . ,ni

}
)

≥ J(s)·
w−1∏
i=s

(
mi

max
{
d(j) : j = 1, . . . ,ni

} +1

)

> J(s)·J(t).

(3.9)

So, the matrix u4 ·u3 ·ht,w(u1 ·hs,t(y) ·u2) ·u∗3 is strictly upper triangular and

hence nilpotent in MJ(w)(B). Then hw,∞(u4 ·u3 ·ht,w(u1 ·hs,t(y) ·u2) ·u∗3 ) is nilpo-

tent in A. Since A is unital, if a in A is nilpotent and κ is any complex scalar that is
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nonzero, then κ−a is invertible. Consequently, a∈ Inv(A). So hs,∞(y)∈ Inv(A). Since

‖hs,∞(x)−hs,∞(y)‖ < ε, hs,∞(x) ∈ Inv(A). Thus, A has topological stable rank one.

We should note that the construction presented here may produce nonnuclear C∗-

algebras. In particular, withΛ= 0 and B = C∗(Fn) (n> 1), a similar argument as in [10,

Section 4] shows that this construction produces an example of a C∗-algebra which

is unital, simple, has real rank zero and topological stable rank one, is quasidiagonal,

nonnuclear, and which possesses a unique normalized trace. It is nonnuclear since

no nonexact C∗-algebra can be embedded in an exact one. Also, this construction can

produce non-TAF C∗-algebras (when Λ> 0). Easy examples will be apparent after the

work in the next section, which contains a necessary and sufficient condition for A to

possess the TAF property when the source has a bounded rank.

4. A TAF determinant. The notation in this section follows that of [11, Chapters

4–6]. Recall that if B is a C∗-algebra, an element x ∈ B+ has continuous trace if x̌ ∈
Cb(Irr(B)), where x̌ : Irr(B)→ [0,∞] is defined by x̌(t)= tr(π(x))whenever (π,Hπ)∈
t. A C∗-algebra B has continuous trace if the set of elements with continuous trace is

dense in B+.

Let nB̌ be the subset of Prim(B) corresponding to irreducible representations of B
with dimension less than or equal to n. Then ker(nB̌)=∩ker(π), where the intersec-

tion is taken over all irreducible representations of B with dimension at most n, so

that it is closed as in [11, Theorem 4.4.10]. Let B̌n = (nB̌\n−1B̌). Then B̌n is the set of n-

dimensional irreducible representations of B. Furthermore, Bn = ker(n−1B̌)/ker(nB̌)
has primitive spectrum homeomorphic to B̌n by [11, Theorem 4.1.11] and has all its

irreducible representations of dimension n. It, therefore, has continuous trace by [6,

Theorem 4.3] and so B̌n is locally compact Hausdorff by [11, Theorems 6.1.11 and

6.1.5].

Theorem 4.1. When A has real rank zero and Λ is nonzero, B̌n is totally discon-

nected for every n∈N.

Proof. Let Λ ≥ σ > 0. Note that σ ≤ 1 by definition of Λ. Assume that there is

an integer n for which B̌n is not totally disconnected. Then it contains a connected

component containing more than one point, �. Since B̌n is locally compact Haus-

dorff, for any compact subset � of �, � is closed. So, under the homeomorphism

Θ : Irr(Bn) → B̌n, where Θ([Hξ,ξ]) = ker(ξ), there is a closed ideal I of Bn with � =

hull(I).
The C∗-algebra Bn/I has primitive spectrum homeomorphic to hull(I) by [11, Theo-

rem 4.1.11], which is compact. Since Bn/I has each irreducible representation of rank

n, it is isomorphic to C0(�), the set of all continuous cross-sections of � which vanish

at infinity, where � is a fiber bundle with base space Irr(Bn/I) = Θ−1(hull(I)), fiber

spaceMn and group Aut(Mn) by [6, Theorem 3.2]. Therefore, Bn/I is locally trivial. So,

each point of � possesses a compact neighborhood � on which the maximal full alge-

bra of operator fields defined by hull(I), which is Bn/I, is isomorphic to the constant

field, C(�)⊗Mn.
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It follows that there is a closed ideal J of Bn with � = hull(J). Since hull(J) ⊂
hull(I), I ⊂ J and Bn/J is isomorphic to C(Irr(Bn/J))⊗Mn. For any two points π and

ρ ∈ Irr(Bn/J), there is x̆ ∈ (C(Irr(Bn/J))⊗Mn) with x̆ positive and x̆ ≤ 1, x̆(π)= 1Mn ,

and x̆(ρ) = 0. Note that π and ρ can not be separated by clopen sets in B̌n. Viewing

x̆ as an element of Bn/J, we can lift x̆ to x̂ in (Bn)+. Then π(x̂)= 1Mn and ρ(x̂)= 0.

Since Bn has continuous trace, for every ε > 0, there is b̂ε ∈ (Bn)+ with continuous

trace such that ‖b̂ε−x̂‖< ε. Next, b̂ε is lifted to bε in B+ and x̂ is lifted to x in B with

‖bε−x‖< ε so that π(x)= 1Mn and ρ(x)= 0.

Choose ε = σ/12 and set a = bε. Since A has real rank zero, every hereditary sub-

algebra has also real rank zero [1, Corollary 2.8]. In particular, if K is the hereditary

C∗-subalgebra of A generated by h1,∞(a1/2), then K has real rank zero. Then there

is y ∈ K such that y = ∑ki=1µiqi is a linear combination of projections qi ∈ K with

µi ∈ C and

∥∥y−h1,∞(a)
∥∥< σ

12
. (4.1)

So

∥∥h1,∞(x)−y
∥∥< σ

6
. (4.2)

Since qi ∈K, for each i= 1,2, . . . ,k, there is yi ∈Asa with

∥∥qi−h1,∞
(
a1/2)yih1,∞

(
a1/2)∥∥< σ

216kµ
, (4.3)

where µ =max{{|µi|}ki=1,1}.
Then there are z =∑ki=1µipi and {zi}ki=1 ∈ (MJ(s)(B))sa for large s such that z is a

linear combination of projections pi,

∥∥hs,∞(pi)−qi∥∥< σ
108kµ

,

∥∥hs,∞(z)−y∥∥< σ
108

,

∥∥h1,∞
(
a1/2)hs,∞(zi)h1,∞

(
a1/2)−h1,∞

(
a1/2)yih1,∞

(
a1/2)∥∥< σ

108kµ
.

(4.4)

Thus

∥∥z−h1,s(x)
∥∥< σ

3
,

∥∥pi−h1,s
(
a1/2)zih1,s

(
a1/2)∥∥< σ

36kµ
.

(4.5)

Since lims→∞λs ≥ σ , we have m1 ·m2 · ··· ·ms−1 ≥ σ ·J(s). So the matrix h1,s(x)
contains at least σ · J(s) diagonal entries equal to x. Then π(h1,s(x))−ρ(h1,s(x))
contains at least σ · J(s)n diagonal entries equal to 1 while all others are zero. If

tr denotes the standard trace, then using the computation above,

tr
(
π
(
h1,s(x)

)−ρ(h1,s(x)
))=n· s−1∏

i=1

mi ≥ σ ·J(s)n. (4.6)
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There are projections χi = χ[1−σ/36kµ,1+σ/36kµ](h1,s(a1/2)zih1,s(a1/2)) in the C∗-

algebra generated by h1,s(a1/2)zih1,s(a1/2) for each i = 1,2, . . . ,k, by spectral theory,

with

∥∥pi−χi∥∥< σ
12kµ

. (4.7)

Furthermore, since σ/36kµ ≤ 1, 0 ≤ χi ≤ 2 · h1,s(a1/2)zih1,s(a1/2) for each

i = 1,2, . . . ,k. Note that h1,s(a) is a diagonal block matrix with blocks of the form

a or blocks belonging to 1B⊗Md(i)·J(s−1) (for 1≤ i≤ s−1). So, if π is an n-dimensional

representation of B, tr(π(h1,s(a))) =
∑
m1···ms−1

tr(π(a)) + tr(D), where D ∈
Mn(J(s)−m1···ms−1). Since the trace function of a evaluated on the set of n-dimensional

representations of B is continuous (see the beginning of this section for an explana-

tion), the trace function of h1,s(a) evaluated on this set is also continuous.

As 0 ≤ h1,s(a1/2)zih1,s(a1/2) ≤ ‖zi‖h1,s(a), the trace function of the elements

h1,s(a1/2)zih1,s(a1/2) and ‖zi‖h1,s(a)−h1,s(a1/2)zih1,s(a1/2) evaluated on the set of

n-dimensional representations of B is lower semicontinuous and is continuous on

their sum. Thus, for each i = 1,2, . . . ,k, the trace function of h1,s(a1/2)zih1,s(a1/2)
evaluated on that set is continuous. Since for each i = 1,2, . . . ,k, 0 ≤ χi ≤ 2 ·
h1,s(a1/2)zih1,s(a1/2), a similar argument shows that the same holds for the trace

of each χi.
Since the trace of these projections evaluated on the set of n-dimensional repre-

sentations of B is Z-valued, it is constant on connected components, and so, for each

i= 1,2, . . . ,k, tr(π(χi))= tr(ρ(χi)). Then

∣∣tr
(
π(z)−ρ(z))∣∣≤

∣∣∣∣∣∣tr


π(z)− k∑

i=1

µiπ
(
χi
)
∣∣∣∣∣∣+

∣∣∣∣∣∣tr


 k∑
i=1

µiρ
(
χi
)−ρ(z)



∣∣∣∣∣∣

≤ 2·
∥∥∥∥∥∥z−

k∑
i=1

µiχi

∥∥∥∥∥∥·J(s)n

≤ J(s)n·σ
6

.

(4.8)

So∣∣tr
(
π
(
h1,s(x)

)−ρ(h1,s(x)
))∣∣≤ ∣∣tr

(
π
(
h1,s(x)

)−π(z))∣∣+∣∣tr
(
π(z)−ρ(z))∣∣

+∣∣tr
(
ρ(z)−ρ(h1,s(x)

))∣∣
≤ 2

∥∥h1,s(x)−z
∥∥·J(s)n+∣∣tr

(
π(z)−ρ(z))∣∣

<
2σ ·J(s)n

3
+ σ ·J(s)n

6

≤ 5σ ·J(s)n
6

,

(4.9)

which contradicts the previous minimal estimate of σ ·J(s)n. So B̌n is totally discon-

nected for each n.

Corollary 4.2. If A is TAF and B̌n is not totally disconnected for some n, then

Λ= 0.
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Proof. By Theorem 3.4 A has real rank zero.

Now, we give two preliminary results for certain C∗-algebras with bounded rank.

Theorem 4.3. A separable C∗-algebra C , which has each irreducible representation

of the same finite rank and with totally disconnected spectrum, is an AF-algebra.

Proof. Note that Č is second countable, locally compact, and has finite topolog-

ical dimension. Let K = K(H), where H is an infinite-dimensional, separable Hilbert

space. Then C⊗K is homogeneous of degree ℵ0 with totally disconnected spectrum.

Consequently, C⊗K 	 C0(Č,K) by [3, Corollary 10.9.6].

Since C0(Č,K) 	 C0(Č)⊗K, and the tensor product of AF-algebras is AF, we have

C⊗K is AF. Note that C⊗Mn is a hereditary subalgebra for each n. By a well-known

theorem in [4], C⊗Mn is AF as it is a hereditary subalgebra of an AF-algebra. Thus, C
is AF.

Theorem 4.4. Assume that the dimensions of the irreducible representations of B
are bounded by m < ∞ and that B̌n is totally disconnected for each n. Then B is an

AF-algebra.

Proof. Note that ker(mB̌) is AF. By Theorem 4.3, ker(m−1B̌)/ker(mB̌) is also AF.

Then we have a short exact sequence of C∗-algebras with endpoints AF,

0 �→ ker
(
mB̌

)
�→ ker

(
m−1B̌

)
�→ ker

(
m−1B̌

)
/ker

(
mB̌

)
�→ 0. (4.10)

Since the extension of an AF C∗-algebra by an AF C∗-algebra is AF, we have, by a

well-known theorem of Brown [1], ker(m−1B̌) is AF.

For each 1 ≤ j ≤m−1, we have ker(m−j−1B̌)/ker(m−jB̌) is AF due to Theorem 4.3

and the short exact sequence

0 �→ ker
(
m−jB̌

)
�→ ker

(
m−j−1B̌

)
�→ ker

(
m−j−1B̌

)
/ker

(
m−jB̌

)
�→ 0. (4.11)

A simple induction then shows that B is indeed AF.

We conclude with our main characterization theorem.

Theorem 4.5. Assume that B has each finite-dimensional irreducible representation

of dimension at most m<∞. Then A is TAF if and only if B is AF or Λ= 0.

Proof. If A is TAF, it has real rank zero. If Λ is positive, Theorems 4.1 and 4.4

prove that B is AF. If B is AF, it is TAF and Theorem 3.2 applies. If Λ= 0, Theorem 3.3

shows that A is TAF.

5. A variation of the construction. Finally, it is useful to generalize our construc-

tion using direct sums of matrix algebras over B. In keeping with our notation and as-

sumptions in Section 2, we would have A= limn→∞
(⊕sni=1MJi(n)(B),⊕sni=1h

(i,j)
n

)
, where

sn is the number of direct summands at stage n of the construction, and the homo-

morphism h(i,j)n :MJi(n)(B)→MJj(n+1)(B) usesm(n,j) identity maps in its definition.
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Let

λ(t)=max



(∏t−1

w=1

∑sw
q=1m(w,q)

)·m(t,j)
Jj(t+1)

: j = 1, . . . ,st


. (5.1)

With Λ= limt→∞λ(t), it is easy to see that this variation has the same properties as

that in Section 2. In particular, if Λ= 0, then A is TAF and hence has real rank zero.
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