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ABSTRACT. This paper is concerned with the continuous Legendre transform, derived

from the classical discrete Legendre transform by replacing the Legendre polynomial

Pk(X) by the function P%(x) with % real. Another approach to T.M. MacRobert’s

inversion formula is found; for this purpose an inverse Legendre transform, mapping

LI(+) into L2(-I,I), is defined. Its inversion in turn is naturally achieved by

the continuous Legendre transform. One application is devoted to the Shannon

sampling theorem in the Legendre frame together with a new type of error estimate.

The other deals with a new representation of Legendre functions giving information

about their behaviour near the point x -i.
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INTRODUCTION

In the early fifties C.J. Tranter (15) and R.V. Churchill (7) examined in

some detail the (discrete) Legendre transform, which is defined in terms of the

Legendre polynomials Pk(X), kEP={0,1,2,...}, and discussed its applicability

mainly to the solution of partial differential equations. The present authors

dealt with applications of this transform to a variety of problems in approxima-

tion theory in (14), (4), (5).

The first aim of this paper is to generalize this transform by replacing k

by an arbitrary real , thus to study the transform

(x)dxf^(1) := I f(x)Pl
-I

(1.1)

{Pl(x); I R} being the system of Legendre functions. It will be referred to as

the first continuous Legendre transform of f.

Of basic importance in such a study is the existence of a further transform

leading to an inversion formula, enabling one to reconstruct the original func-

tion f from the values f^(1) of f^. T.M. MacRobert found such a formula in (I0),

and gave sufficient conditions for its validity in (I I). The latter result was

recalled with another proof by L. Robin (12, pp. 131). The transform in question

is defined by

AF(x) := 4 I F(1)Pl_i/2(-x)% sin A dl
O.

(x6 (-1,1)), (1.2)

+F being defined on [0,-), and it leads under certain conditions to the inver-

sion formula

^[f^(.-/e)](x) f(x) (x6 (-I, I)). (1.3)

This inverse transform will be called the second continuous Legendre transform of

F. Our first objective will be to prove the inversion under conditions different

to those of MacRobert and Robin (Theorem I).
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Given the transform (1.2), there also arises the question as to its inversion.

One naturally expects that the transform leading to it is (I. I). It will be shown

that this is indeed so for a special class of functions, with

[F](-I12) F() (kER+). (1.4)

This result, which does not seem to have been considered previously, is dealt

with in Theorem 2.

Two applications will be considered. The first is concerned with a version of

the Shannon sampling theorem in the Legendre setting which is more constructive

than that of L.L. Campbell (6). Legendre transform methods will also enable us to

present a new type of truncation error estimate for the corresponding sampling

sum. The second application deals with a representation of the Legendre function

Pk(x) as a sum of an infinite series of Legendre polynomials and an extra term

describing the singularity of Pk(x) at the point x=-1.

2. PRELIMINARIES

The Legendre functions will be defined by means of the hypergeometric series.

Let a,b,c be real numbers, c #0,-I ,-2,..., and (a) := I, (a)k
k. The hypergeometric series

:=a(a+1)...(a+k-1),

(a)k(b) kF(a,b;c;x) := ki
k x (2.11

k=O

is absolutely and uniformly convergent on each compact subinterval of (-I, ). The

series also converges for x =-I if c-a-b >-I, and for x provided that c-a-b > O.

In the latter case

lim F(a,b;c;x) F(a,b;c;1) F c-a)r(c-b

provided the right-hand side is meaningful. (For these properties see e.g.W.N.

Bailey (I).)

The Legendre functions Pk(x) are now defined for x (-1,1], R by
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ex(x) := (-x,x+;;i) (-)k(+)k
k=O (k!

(P.3)

Since P_k(x)=Pk_1(x), it suffices to consider the case >-I/2 in the following.

The Pk are arbitrarily often differentiable on (-1,1], and they satisfy

[(xe_ (x (-1,1]; >-I/2), (2.)

(xe-)P(x) (xe (x) P_ (x)) (x (-1,1]; %>-I/2), (2.5)

Pk(1) I, Pk(1) (+I)/2 (k>-1/2). (2.6)

Since for each k >-I/2 there exists a constant Mk such "that

(-k)k(k+1)k
2(k:)

(kEN),

it follows that

()k

2+ M
1
log

1+x (xg (-1,1]; ,,1.>-1/2). (2.7)

This implies that for each k >-I/2

Pk6LP(-I’I) (1<p <),

lim (I+x)P(x) 0 (2.8)
x/(- )+

Here LP(-I,I), 1<p<, denotes the space of all real-valued functions f defined

on (-1,1) endowed with the norm

llfllp f if(x)lPdx 1/p

-1
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(x) For this purpose oneA relation of type (2.8) is needed for the derivative Pl
has by (2.5) and (2.3) for

(x2-1)P(x) k(x+1)Pk(x) -k(P1(x) +P1_1(x))

(-I)k(I)
-21

k=O (k!)2
k (1x)k -2AF(-1,1;I;)

This yields by (2.2) and (2.8) that

lim (+x)Pi(x)
x/(-1 )+ r(+)r(-)

Therefore

lim (1+x)Pi(x)
sin I

x/(-1 )+
(>-/), (e.9)

this being trivial for I P. This enables us to prove

LEMMA I. Let 1,v>-I/2, I #v, I #-v-1. Then

P1(x)Pv(-x)dx sin I sin v
r (I-9) (1+v+l) (2.10)

PROOF. First note that the integral is absolutely convergent since

PI L2 (-I’I)" One deduces by partial integration, using (2.4), (2.9), and (2.6),

that

1(1+I) / PI(x)P (-x)cl.x
-I

I--

(x2-1)P(x)P(-x)
(-

I (x2-)P(x)P(-x)
)+ -2

I-
d

x2_ d
sin wl + (x2-I)Pl (x)P’. (-x) + / PI (x) P(-x) ]dx

" v (-1)+ -1

2 2sin w sin w9 + v(+1) / P (x)P (-x)dx
-I 1 v
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This gives (2.10).

At this stage some elementary properties of the Legendre polynomials are nee-

ded (cf. (14)). In the particular case that k=nP the series in (2.3) is finite,

so that P (x) reduces to a polynomial of degree n, the classical Legendre polyno-
n

mial of ath degree in view of (2.4) and (2.6). These polynomials form an orthogo-

nal set on [-1,1], i.e., for m,nq,

12_I Pn(X)Pm(X) dx
I/(2n+I ), n =m

0 n#m
(2.11)

If fqX, X denoting one of the spaces C[-1,1] or LP(-I,I), Igp<, the (discrete)

Legendre transform is defined by

f(k) [ f(X)Pk(X)dx (k61P); (2.12)
-I

it is a bounded, linear mapping from X into the space c of all null sequences.
o

There holds the uniqueness theorem

f(k) 0 (kP) * f(x) 0 (a.e.), (2.13)

and to each fX one may associate its Legendre series

f(x) (2k+1)fA(k)Pk(X) (2.14)

This series, which can be interpreted as the discrete counterpart of the inverse

transform (1.2), does generally not represent the function f, but for fL2(-1,1)

there holds

n
lim [ (2k+1)f’(k)Pk(x) f(x)ll

2n k=O
0

Of importance is the Parseval equality

[ f(x)g(x)dx [ (2k+1)f(k)g^(k)
k=0

(2.15)
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valid for f,g6L2(-1,1), and the fact that

IIf-Snfll2 En(f)_ (2.16)

Here S f denotes the nth partial sum of the series in (2.1) and En(f) is the
n

best approximation to f by algebraic polynomials Pn of degree n in L2(-1,1)
-space, i.e.,

En(f) inf llf-pnll2 (2.17)

Pn
Let us now return to the Legendre functions. Noting that Pk(X)= (-I)kPk(-X)

for I =k6P, it follows from (2.10) and (2.11) that

P1(k)

(-I)k sin I
(1-k) (I+k+I)

I/(2k+I) 1=k

(e.8)

for kP. Since PI L2 (-1’I)’ one has ba taking f=g=P1 in (2.15) that for

-/

I sinai 1
2

(2k+l) (I-(I+k+I I CR
k=O

1/(21+1) 1 1P

(2.19)

This formula enables us to deduce

LEMMA 2. a) For eac compact interval [a,b] (-1,1) there holds

0(1-1/2 (x [a,b]; ,+-).

b PIII < PIII 2 O(X-1/2)

c) For each [c,d]=[-I/2,) there exists M>O such that

lIP I (x) P(x)ll 2
M 11- (I,v6 [c,d]). (2.20)
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PROOF. For a) see (8, formulae 3.9.1 (2) and 1.18 (5)). Concerning c), one

has for ,v for each N6 by (2.18) and (2.15)

PII2 sin l sin v
2 [ (2k+11 w(k-kl(k+k+1) (--+k+1)P

k=O

N v 2

k=O k=N+

where

k(X) w(x_k)2(x+k+1 )2
(x-k)(x+k+1)w cos wx- (2x+1)sin wx

Choosing N>max {lal,lbl}, yields

N

s < I-12 Z (e+) su lqk(x)l 1-12
k=0 x 6 [a,b]

s
2
< I-12 [ (2k+I) (N+k) (N+k+1) + (2N+I)

2

k=N+1 (k-N)2(k+1-N) 2 M I-k 12

This gives (2.20) if l,v are not integers. If one (or both) of the reals l,v be-

long to , the same proof applies with obvious modifications. Part b) follows by

similar arguments.

3. THE FIRST CONTINUOUS LEGENDRE TRANSFORM

The aim of this section is to study the continuous analogue of the discrete

Legendre transform (2.12) and its properties, including an inversion formula. We

restrict the matter to functions f 6 L2(-I ,I). For such f the function

f^(k) S f(x)Pk(x)dx
-I

(3.1)

is called the first (continuous) Legendre transform of f.

LEMMA 3. Let fL2(-1,1).
a) For all p >2 one has

f^(.-1/2) 6 C (IR+) nLP(]R+)
o
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b) Is"()l o(-le)

PROOF. One has by the Schwarz inequality

If^( )l I
-I

This gives assertion b) by La. 2 b). On the other hand, one has by La. 2 c) that

for , >-I/2

lim f^( )- f(9)I < lim llfl1211P =0

So f^is continuous on [-I/2 ) indeed f^(.-I/2) 6C (E+) That f^(.-I/2) 6LP(IR+)
0

for each p>2 follows from (3.2) and La. 2 b).

For the inversion formula two further results will be needed.

LEMMA 4. Let F be a function defined on [0,) such that VF(%)LI(R+). Then

G(x) := / F(1)Pl_i/2(-x)l sin wl dx
0

belongs to C(-1,1) NL2(-1,1).

(x6 (-,))

PROOF. The existence of the integral for all x6 (-I ,I) follows from La. 2 a).

Moreover, the generalized Minkowski inequality and La. 2 b) give

0 0

so that G6L2(-1,1). Finally, for arbitrary x (-1,1) there exists a 6 >0 such

that x+_6 (-I, I), and one has for all Yl < 6

By La. 2 a) this integrand is bounded for YJ < by

IF(k)kJ2Mk-I/2 LI(R+)

So G 6 C (- I, by Lebesgue’ s dominated convergence theorem.
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PROPOSITION I. One has for all xg (-1,1) and kgP

Pk(X) 4 I Pk(k-1/2)Pk_1/2(-x)l sin dl
o

(3.3)

PROOF. One has by (2.18) for 90, k#k+ I/2,

-1)k sin (k-I/2)
Pk (k-I/2) Pk-I/2 (k) Ik-k-I/2)(k+k/’I/2)

so that TP(k-I/2) LI(+).-- Denoting the integral in (3.3) by Gk(X), one has

that GkgC(-1,1) N L2(-1,1) by La. 4. Let us now evaluate the discrete Legendre

transform (2.12) of the Gk. One has by Fubini’s theorem for k,j fP

12_i ek (x)Pj (x)dx

(-1)k sin .(k-I /2) I i4 (k-k-I/2)(k+k+I/2) Pk_i/2(-x)Pj(x)dxl k sin k dk
o

-2 o %’2"sin_(-1/2)(k+1/2)’2 sin%2_(k-1/2)(j+1/2)2 sin d I (3.4)

where (2.10) was used to evaluate the integral in square brackets. Now an elemen-

tary calculation shows that

lim [I l g2 k )]dl
42(k++I)i R-

where

iz ei3ze +
gl (z) := (z-k-I/P)(z-j-I/2)

-iz -i3ze +e
g2 (z) := (z-k-I/2)(Z-j-I/2)

(z6C,z #k+I/2,z #j+I/2).

Now the function gl (z) g2 (z) has only removable singularities, so that the lat-

ter integral can be replaced by a contour integral C [g1(z)- g2(z)]dz, where

C denotes the lower semicircle with radius R around the origin. Denoting the
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+ and CR, respectively,corresponding upper semicircle and the whole circle by CR

it is easy to show by Jordan’s lemma that

R+ CR R+ C
%(z)az 0

so that

R
lim [g1(k)-g2(k)]dk lim g1(z)dz
R-R R+ CR

The latter integral, however, can be computed by the residue theorem, to give

I gl (z)dz
C
R

(-1)kh2i j =k

0

for R>max {k,j}+ I/2. This in turn implies by (3.5) and (2.11) that

G(j)
I/(2k+I) k=j

0 k#j
Pk(j) (j,kP).

The proof is now completed by the uniqueness theorem (2.13).

We can now prove the inversion formula for the transform defined in (3. ).

TKEOREM I. Let f 6 L2(-1,1) be such that /fA(k-I/2) 6 L (B+).

a) One has for almost all x6 (-1,1)

h I f^(k-I/2)PA_i/2(-x)k sin k dk f(x)
o

(3.6)

b) If f is additionally continuous on (-I, I), then (3.6) holds everywhere on

(-1,1).

PROOF. Denoting the left-hand side of (3.6) by J(x), it follows from La. h

that J6C(-1,1) NL2(-1,1). For the discrete Legendre transform of J one has for

kEP
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f J(X)Pk(X)dX f f^(-I/2)I /I Px-I/2(-X)Pk(X)dx I sin d
-I o

h f [[ f(y)Pl_l/2(Y)dMl [Pk(-.)]^(l-1/2)l sinrl dl
o -1

k[ ^(k-I/2)Pk_ (y)k sink dk]dy12 I f(y)(-1) hIPk I/2-I o

the interchange of the order of integration being justified by a double use of

Fubini’s theorem. Now the inner integral is equal to Pk(-y)= (-I)kPk(y) by Prop.

I. This implies that J^(k)=f^(k), kP, so that the proof of part a) follows by

(2.13). Part b) follows since in this case both sides of (3.6) are continuous.

THE SECOND CONTINUOUS LEGENDRE TRANSFORM

+In this section to a function F defined on the integral

4 F(k)Pk_I/2(-x)k sin k dk
o

(x6 (-1,1)) (.1)

will be associated. It will be shown that the first Legendre transform (3. I) of

the integral (4. reproduces F under certain assumptions upon F.

Let F6LI(R+) such that F(k) 6LI(R+). The integral (4.1) is called the

second (continuous) Legendre transform of F, denoted by ^F(x). It follows from

La. 4 that ^F(x) exists for all x6 (-1,1) and belongs to C(-1,1) OL2(-1,1). For

this transform one has the following inversion formula.

THEOREM 2. Let FLI(+) such that /F(k)LI(R+). Assume that for the

Fourier-cosine transform F [F] of F there holds
c

F [F](v) := --/ F(k)cos vk dk 0
c

o
(<v<(R)). (.2)

+
Then one has for almost all 6R

/ (x)Pk_l/2(x)dx F(,)
-1

(4.3)
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If moreover FEC(R+), then (h.3) holds for all IER+.
PROOF. One has by Fubini’s theorem and La. that

fl ^F(x)PI_I/2(x)dx 4 f F(o) [ /I PO-I/2(-x)Pk-I/2(x)dx] o sinwo do
O

4 f F(o)h (k)o sin wo do H(k)
o

where

h (l) := cos o cos I

.(t2-o2

Applying Fubini’ s theorem once more shows that H 6 LI (+) and

Fc[H](v) 4 f F(o)o sin wo Fc[ho](v)do (4.5)
o

To calculate the Fourier-cosine transform of h we proceed in a manner similar to

the proof of Prop. I. One has for v>O

R
F [ho](v) lira ]" [jl(k)-j2(k)]dkc

R- -R

/__ 2eiVZ iz(v+)
cos w e

Jl (z) - r
z
2 o2-(

j2(Z) 1/4 F eiz(v-w)
w

z
2

o
2.(

(z6; z#_+o)

+ yieldsReplacing the latter integral by a contour integral along CR

[ho](v) lim /+ [j1(z)-j2(z)]dzc
R-- C

R

lim + j2(z)dz (4.6)
R+ C

R

since I Jl (z)dz vanishes for R/. If v>w, then the last integral in (4.6) also
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vanishes for R/, so that Fc[hG](v)_ =O for wv<. On the other hand, if

0v < , then limR__ C
j2 (z)dz O, so that

F [he](v) lim j2(z)dz F sin(-v)e
c 2R CR

(O<v<; >0),

the latter equality holding again by the residue theorem. So it follows by

(4.5) that

F [H](v) 2 F()sin sin(-v) dG
c w

o

f F()(cos v-cos(2-v)G)dG
o

F [F](v) F [F](2-v) F [F](v) (Ov<).
c c c

Moreover, F [H](v) =O for <v<. Since F [F](v) =O for <v< by assumption,c c

one finally has F [H](v)=F [F](v) for all vR+. This implies (4.3) for almost
c c

all 6+ by the uniqueness theorem for the Fourier-cosine transform. If F6 C(+),
then (4.3) holds for all 6+ since the left-hand side of (4.3) defines a con-

+tinuous function on in view of La. 4 and La. 3. This completes the proof.

The results of Theorems and 2 show that the first and second Legendre trans-

form are inverse to another. Indeed, if f6L2(-1 ,I) satisfies the assumptions of

Thm. I, then

^[f(.-/)](x) f(x)

for almost all x (-1,1). On the other hand, if FL

tions of Thm. 2, then, for almost all ER+,
I(R+) satisfies the assump-

[^F]^(-I12) F(k)



CONTINUOUS LEGENDRE TRANSFORM 61

5. APPLICATIONS

5. THE SAMPLING THEOREM

L.L. Campbell (6) stated a sampling theorem for functions F which are repre-

sentable as the first Legendre transform of f E L2(-I ,I). We add a simple proof

of this result (Thm. 3) based on Parseval’s formula (2.15) (for the analogue in

the classical setting see e.g. (2), (13)). Combining this result with our Thm. 2

yields that a function F, band-limited in the sense of the Fourier-cosine trans-

form, satisfies the hypotheses of this theorem. This will be shown in Cor. I.

Some error estimates will also be given.

THEOREM 3. If F E C(R+) has the representation

F() fCx)Pw_112Cx)dx
-I

for some fqL2(-1,1) and W>O, then one has for all AqR+

(5. )

F(k) (2k+1)F (k+I/2) sin w.(Wk-
k=0

W [k2 (k+I/2121
(5.2)

+
the series being absolutely and uniformly convergent on R

PROOF. Using (5. ), Peval’ s equality (2.15) and (2.18), we obtain

F(k) (2k+1)f*(k)Pk_i/2(k)
k--O

A (2k+1)F(k+l/2) sin (’wl-(k+’l/2))
k=O

W
[2 (k+1/2121

Now Thm. 2 enables one to give more constructive conditions upon F for (5.2)

to be valid.

COROLLARY I. Let F6LI(+) DC(+) such that F(k) LI(+), and

F [F](v)=0 for vwW, some W>O. Then there holds (5 2)C

PROOF. It is easy to see that F(-/W) satisfies the conditions of Thin. 2.

This implies
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F(IW) [*F(. lW) ]*(- 112) ( B+),

F(k) ["F(.IW)]^(kW-I/2) ( 6+).

Since ^F(-/W) 6 L2(-I ), the representation (5. holds, and the assertion follows

by Thm. 3.

+Thin. 3 and Cor show that a continuous function F on satisfying certain

B+conditions can be represented by its sampling sum on Denoting the nth partial

sum of the series in (5.2) by (Sw,nF)(1)’ one may ask for the error which occurs

if one approximates F by S
W F. This leads to the following truncation error
,n

estimate.

LEMMA 5. For each F satisfying the assumptions of Thin. 3 for some fixed W > 0

there exists a constant M > 0 such that

IF(X) (Sw,nF)(1)l < M (+I)-I/2En (f) (n6N; l>O), (5.3)

where f is defined via (5. I).

PROOF Denoting the ath partial sum of the Fourier-Legendre series (2. h) of

f by Snf’ one can rewrite the Sw,nF in view of (2.15) as

(Sw,nF)(1)
k=O

(2k+1)[S f]A(k (k)
n )PwI-I/2_

(Snf) (X)Pwl- I/2 (x)dx

This yields by Schwarz’ inequality

IF(l )_ (SW F)(1)l <
,n

_
fl If(x)-(Snf)(x)IIPw_i/2(x)Idx

< f s fll 211 /211 E
n
(f)ll /211n PWI- 2 PWl- 2
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the latter equality holding by (2.16). The desired result now follows from

The error estimate given by La. 5 does not seem to be known in the classi-

cal setting (cf. (9), (3)). The factor (+I)-I/2 diminishes the error, especially

for large %. This is due to the fact that condition (5. I) implies that F(A)

0(%-I/2 by La. 3 b).

The foregoing lemma may be specialized.

LEMMA 6. Let F6C(R+) satisfy (5.1) with f6L2(-1,1). If there exists a

function F*6C(R+) satisfying (5.1) with f*6L2(-1,1) such that

F*(k+I/2)=W kaF(k’+I/2w ) (), (5.)

for some a>O, then one has for all ngN, % >0

IF(A)- (Sw,nF)(%) < M(l+1)-112n-En(f*).
PROOF. As in the proof of La. 5 one obtains by Parseval’s formula (2.15)

IF(k) (Sw,nF)(k)I < llf-Snfl}211Plw_1/2112

P
k--n+l

Using the additional fact that

(f*)^(k) kaf^(k)

in view of (5.4), th@ latter sum can be estimated by

[ (2k+I) If^(k) 12 [
k--n+1 k=n+1

(2k+ )k-2alf*^(k) 12

-c
E , }2< {n (f
n

(kg)

This implies (5.5) by La. 2 b).



64 P.L. BUTZER, R.L. STENS AND M. WEHRENS

Note that Lemmas 5 and 6 may also be formulated for functions F,F* satis-

fying the assumptions of Cor. I. Then f and f* in (5.3) and (5.5) have to be

replaced by AF(./W) and ^F*(-/W), respectively.

Let us conclude this subsection by showing that Cor. could also be deduced

from the classical smpling theorem for band-limited functions (see e.g. (3),

(13)). Indeed, the hypotheses of Cor. on F imply those for the sampling theorem,

so that the latter yields, when extending F to the whole real axis E as an even

function,

F(A) F (A-)+ [ F k+I/2 sin w(WX-k-I/2)
___(R)

w (w--/2)

( )k+1/2 sin n-l_lim F ,(w,ck-l/2)+ [ F
n k=O

W (W-k- I/2) W w(WX+k+I/2)
k=O

lira F(k+l/2) (2k+1) sin F(n+112) sin w(WX+n+I/2)
W (W+n+ I/2

lim (Sw,n

the last relation holding nce F(A)/0 for /(R) by La. 3 b).

5.2 REPRESENTATION FORMULA FOR LEGENDRE FUNCTIONS

Let us give another application of the theorems to a new representation of

the Legendre functions Pl(x) describing in particular the behaviour of Pl(x) for

x/ (-I)+. A first result of this type, basic for this paper, was the estimate

(2.7). As will be seen, the log (2/(I+x)) term there is sharp.

LEMMA 7. For hE (-1,1) let

(x;h) :--

log log log ?/ hx <

0 -1<x<h
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be the kernel of the integral means (see (14)). Then one has for x,hE (-1,1)

K(. ;h)A(k)

p I -I 1-Pk(h)
log (+I) -I/2, #0

(5.6)

e_le(h)
(x;h) f xo 1/14) log (2/(I+h))

Pk_I/2(-x)X sin k dk (5.7)

The proof of (5.6) follows by integration by parts, noting (2.4) and (2.9),

and assertion (5.7) by Thm. I.

This result enables one to deduce the desired representation formula. One

has for hE (-1,1), o>0 by Thin. 3

2
log K(-;h)^(o-I/2)

1-Pk(h) sin (o-I/2-k)sin (-I/.2) log 2 + (2k+I) k(k+1) r[o2_ 2’(o"p 1/14) 1+h
k=1 (k+1/2)

Replacing o by X+I/2 gives for k>-I/2, k#0,

PX (h)
sin ’.’X 2 Pk (h) sin (k-k)

X(X+I) ’;k(X+l) log + (2k+1) k(k+l) w(k-k)(k+k+l)1+h k=1

so that

Px(h) X(X+I) 2k+l sin (A-k)[ k(k+1) (X-k)(X+k+l)
k=1

2k+I sin (k-k) Pk(h) sin ’n’k
log

2
+ k(k+1) [ k(k+1) r(k-k)(k+k+1) r

k=1
(5.8)

Now one can compute the Legendre transform Pk(0) from the last formula, noting

that the second series on the right is uniformly convergent with respect to h,

and using (2.11),
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2k+ s in l-kP?(0)^ I(+I) [ k(k+1) (l-k)(+k+1)
k=1

Since I!I log (2/(1+h))dh=2, and

sinPk(O) .(+1)

by (2.18), it follows that

2k+ sin (k-k)I-(+I) [ k(k+l)(k-kl(k+k+1)-
k=1

sin l sin l (;-I/2, .#0). (5.9)

As an immediate consequence of (5.8) and (5.9) one therefore has

LEMMA 8. For >-I/2, #0 there holds

2k+1 (-1)ksin.k Pk(XPk(x) (+1) [ k(k+l) .(k-k)(k+k+l)
k=l

+ sin 11 + 2 1" .(.+1) log 1x (xE (-1,1//.

The equality also holds for =0 if (sin k)/wk(k+1) is interpreted to be equal

to for k =0.

This result shows in particular that Pk(x) can be written as

Pk(x) ’k(x) sin
log

2
1+x

(x6 (-1,1]),

where is continuous on the closed interval [-1,1].

For another application of Thm. see L. Robin (12, p. 131).
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