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ABSTRACT. Let GF(pz) denote the finite field of pz elements. Let A, be

1
s xm of rank Ty and A2 be s x n of rank T, with elements from GF(pZ).
In this paper, formulas are given for finding the number of Xl,x2 over GF(pz)
which satisfy the matric equation A1X1 = A2X2, where X1 is m x t of rank
kl, and X2 is n x t of rank kz. These results are then used to find the num-
ber of solutions Xl’ e ’Xn’Yl’ e ,Ym,m,n > 1, of the matric equation
A1Xl v Xn = A2Yl .o Ym.
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1. INTRODUCTION. Let GF(q) denote the finite field with q = pz elements, p
odd. Matrices with elements from GF(q) will be denoted by Roman capitals A,
B, ... A(n,s) will denote a matrix of n rows and s colums, and A(n,s;r)
will denote a matrix of the same dimensions with rank r. Ir denotes the identity
matrix of order r, and I(n,s;r) denotes a matrix of n rows and s columns
having Ir in its upper left hand corner and zeros elsewhere.

In this paper we find the number of solutions Xl(m,t;kl), Xz(n,t;kz) to the
matric equation

Alxl = A2X2, (1.1)

where A1 = Al(s,m;rl) and A2 = Az(s,n;rz). Since the ranks of Xl,X2 are specified,
we call this the ranked case. If the ranks were not specified, we would call it
the unranked case. 1In section 4 we apply this result to find the number of

solutions Xl""’xn’Yl”"’Ym’ m,n 2 1, to the matric equation

Alx1 ... X =AY ... Ym’ (1.2)

both in the unranked and ranked cases.
Equation (1.1) is a special case of the matric equation

AX +... +AX =B, (1.3)

and equation (1.2) is a special case of the more general equation

A X + A X . X (1.4)

1711 °°° xlm(l) to... n"nl °°° “nm(n) =B

Porter [ 6] found the number of solutions X .,Xn to (1.3) in the unranked

100"

case. We could find the number of solutions to (1.3) in the ranked case if we

could find the number of ranked solutions to AlX1 + A B. The number of rank-

2%y =
ed solutions to A1Xl + A2X2 = B together with the formulae for the number of

solutions to Xl e Xn = B would give the number of solutions to (1.4). The

number of unranked solutions to Xl e Xn = B 1is given by Porter in [5]. The
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number of ranked solutions to Xl e Xn = B appears in [ 9], by the authors.
Presently the authors know of no published results, unranked or ranked, giv-

ing the number of solutions to (1.4) except when (1.4) reduces to (1.3). There

are partial results in the unranked case to the analogous problem

Ua . UlA + BVl e Vb = C. Hodges [1] found the number of unranked solutions

with a =b = 1. Hodges [ 2] and Porter [7 ] found partial results in the unranked

case when a,b are arbitrary and Hodges [ 3] discussed ranked solutions when

2. NOTATION AND PRELIMINARIES. A well known formula due to Landsberg [4] gives

the number g(m,t;s) of m x t matrices of rank s over GF(q).

-1)/2 8 -1+ -1
s(s-1)/2 | (L gy (it
i=1

g(m,t;s) = q - D/ - D, 2.1

for 1'< s < min(m,t), g(m,t;0) =1, and g(m,t;s) = 0 for min(m,t) < s or s < 0.
If X= X(e,t) and X = col{U,Y], where U is fixed, U = U(m,t;s) and

Y = Y(e - mt), then the number of ways that Y can be chosen such that X has

rank k is given by Porter and Riveland [11] to be
G(e,t,m;k,s) = qs(e_m)g(e - m,t - s;k -s). (2.2)

In {9, Theorem 3 ] the authors found the number of solutions X(m,f;k) to the
matric equation AX = B, where A = A(s,m;p) and B = B(s,f;B). This number is
given by

NGB = b8P P - 0,f - B3k - B) = h(B)L(m,£30,8,k), (2.3)

where h(BO) is defined as follows. If P,Q are nonsingular matrices such that

3 =0 for 1> p,

h(Bo) = 0 otherwise. The number of solutions, when there are any, is denoted

PAQ = I(s,m;p), then Bo = PB = (Bij) and h(Bo) =1 if Bi

by L(m,f;p,B,k).

Let A = A(n,s;r) and B = B(n,t;u). Then Porter [5] showed that the number
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. of solution Xl(s,sl), Xi(si—l’si) for 1 <i< a, Xa(sa_l,t) to the matric

equation AXi ‘e Xa B. when there are solutions, is given by

t(s .-r)+ss +s.s.+ ... +s s ,min(x,t)
- -27a-1
N(ays’t’sisr’u) =q a-1 112 a a z H(r,t,y;za_l).

(2.4)
- _qmin(z__ sS__ ) _
za—lsa-l anl a-i+l’"a-it+l za-isa—i,

i=2 za_l=0

8(z, 4175, 54132441

where g(m,t;s) is given by (2.1), and H(s,t,u;z) is given in [1] to be

z PR
H(s,t,u,z) = "% (—1)qu(3-2“-1)/2[3.’]3(8 - u,t-ujz - j),
§=0

where the bracket denotes the gq-binomial ceefficient defined for non-negative

intergers by

51 -
: [3]= 1, [“]= Ta-q*Ny/a-¢™* if 1< < u,[‘.’]= 0
) R J

if j > w. For the purposes of this paper we take A = IS in (2.4). By [5]
there will always be solutions to X1 e Xa = B, and this number can be repre-
sented by

N(a,s,t,si,s,u) for a 2 2,

Ma(s,sl,...,sa_l,t,u) = (2.5)
1 for a = 1.

The number of matrices D = D(a,b;c) such that D = col[Dl,Dz] where

Dl = Dl(d,b) and D2 = D2(a - d,b;c ~d), d < min(a,c) is given in [10] to be
(c-d)d

K(a,b,c,d) = q g(d,b +d - c3;d)g(a - d,bjc - d). The number

Tn(do,...,dn;kl,...,kn,B) of solutions Xl(do,dl;kl),...,xn(d dn;kn) to the

n-1"°

matric equation ...X =B, where B = B(d ,d ;B), is given in [ 9] by the
n o’ n
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following three formulae:

0 if kl z B,

T, (d,d 5k, ,8) =
1 if k=8,
T,(d ,dy,dys sk Ky, 8) = K(_,d) k) ,B)L(d ,dy, 5k ,B,k,)),  (2.6)
n Tn-1 '3
T seeesd skiseni,k ,8) = Z_ ' 2_. Z T,(d,dy,k,k,ypig)
i= i__.=i i=1i
n n-1 "n 374

n .
: H3K(doadm—1’im’im+1)L(dm-1’dm’1m’im+1’km)’
m=

where n 2 3, r, = min(k for j =3,...,n and i = g.
¥ n+

1

3. THE MAIN RESULT.

THEOREM 1. If A = A(s,m;p), then the number of solutions Xl(m,t;kl).

Xz(s,t;kz), for p,k, 2 k

1 2 ko to the matric equation

(3.1

is given by N(m,t;p,kl,kz) = g(p,t;k )L(m,t;p,kz,kl), where g(p,t;kz) is eval-

uated using (2.1) and L(m,t;p,kz,kl) is evaluated using (2.3).

PROOF: Let P,Q be nonsingular matrices such that PAQ = I(s,m;p). Then

(3.1) can be rewritten as

1(s,m;p)Q'1x1 = PX (3.2)

2"
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The left hand side of (3.2) is of the form collY,0] where Y = Y(p,t). For

a particular Xz(s,t;kz), there will be matrices Xl(m’t;kl) which satisfy

(3.2), and therefore (3.1), provided X2 is the product of P-1 and a matrix of
the form col[Y,0] where Y = Y(p,t;kz). Since P-l is nonsingular there are the
same number of matrices X2 with this property as there are p X t matrices of
rank k,. The number of p x t matrices of rank k2 is given by Landsberg's

2
formula (2.1) and denoted by g(p,t;kz). For each such X2 the number of Xl such

that X ,X

N satisfy (3.1) can by represented by L(m,t;p,k,,k,) as given by
1°72 2’71

(2.3). Therefore the number of solutions XI,X2 to (3.1) is given by
g(p,t;kz)L(m,t;p,kz,kl), and the theorem is proved.

It should be noted that Theorem 1 is a special case of a theorem of Hodges
[3]. However, our proof, and so the form of the resulting formula,is quite dif-
ferent since Hodges uses exponential sums in his proof and we do not. Our proof
of Theorem 1 is consistent with the methods of proof used in the rest of this

paper.

THEORFM 2. Let A = A(s,m;p) = col [AI,A2] where A = Al(n,m;al) and

1
A2 = A2(s - n,mjap) with n < s. Let P,Q be nonsingular matrices such that

PA,Q = I(s - n,m;ap) and AQ = [31,32 ] where B, = By(n,m - a,;8). Then

the number of solutions Xl(m,t;kl), Xz(n,t;kz) to the matric equation
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AX, = s (3.3)

for oy > k2 is given by

N(m - az,t;e,kl,kz) = g(B,t;kz)L(m - az,t;B,kz,kl),

where g(B,t;kz) is given by (2.1) and L(m - az,t;B,kz,kl) is given by (2.3).

PROQF: For A, ,A, defined as above we can write (3.3) as the system of

1°72
equations

(3.4)

]
>

AXy

2’

A2X1 = 0. (3.5)

Substituting A2 = P-lI(s - n,m;otz)Q-l into (3.5) and multiplying on the left

by P we obtain

-1, _
I(s - n,m,az)Q Xl =0. (3.6)

-1
Let Q X1 = coll Yl’ Y2], where Y, = Yl(az,t) and Y, = Y2(m -az,t). Replacing

1 2
Q—lx1 in (3.6) by col[Y1 12] , we have that necessary and sufficient conditions

for Xl to be a solution of (3.6) are that Yl =0, rank Y2 =k1 and X1 =Qcoll[0 22].

Using this formulation for X1 in (3.4) gives

3.7)

|
>

AQ
1
ol

Let -AlQ = [51 32], where Bl(n,az) and B2 Bz(n,m - az,B) in (3.7) we then

obtain
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B,Y, = X,. (3.8)
By Theorem 1 there are N(m - ays t;B,kl,kz) pairs YZ’XZ which satisfy (3.8).

Since Q 1is nonsingular there are the same number of pairs which satisfy

Xl,Xz-
(3.3).

Equations (3.4) and (3.5) represent a special system of two simultaneous

equations in the two matrices Xl,X2 Very few results seem to exist for such

systems. The authors are unable to find the number of solutions to the general

system of two simultaneous equations in Xl,Xz. Such information would allow us
to enumerate the ranked solutions to Alxl + A2X2 = B.
THEOREM 3. Let A1 = Al(s,m;rl) and A2 = Az(s,n;rz). Let Pl’Ql be non-
ingul = . =
singular matrices such that PlAlQl I(s,m,rl). Define PIAZ col[A21,A22],
where A21 1(r n;o ) and A22 22( rl,n;az). Let PZ’QZ be nonsingular

matrices such that P A22Q2 I(s - rl,n;uz). Define A Bl,BZJ, where

1% =L
B2 = Bz(rl,n - az;B). Then the number of solutions Xl(m,t;kl), Xz(n,t;kz) to

the matric equation

A X =AX , ‘ (3.9)
is given by i 22
N(m’n’t;rl9r2,k1’k2’a1’ai)3)
min(al,kl)
= 1 G(m,t, x5k ,ky )88, tiky IL(n = ay,t58,ky;,ky),
kll=0

where G(m,t,rl;kl,kll) can be evaluated using (2.2), g(B,t;kll) is given by

(2.1), and L(n - ay,t; sB,k is given by (2.3).

11° 2)
PROOF: The number of solutions to (3.9) 1is the same as the number of solutions

to

I(s,m;rl)X1 = P1A2X2. (3.10)
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1. X

= collX 1,t;ku), X12 = Xlz(m —r,t;klz) and

Letting X 11,X12 1n- Xll(r

1495 (3.10) becomes .

Ax = . (3.11)

1
A=P

Theorem 2 gives the number of pairs Xu,X2 that satisfy (3.11). For each
Xll(rl,t;kll) the number of Xlz(m —rl,t;klz) such that Xl(m,t;kl) = C°1[X11’X12]
is given by (2.2), denoted by G(m,t,rl;kl,kll). Therefore the number of solutions

X,X, to (3.9) is given by the product G(m,t,rl;kl,kll)g(ﬁ,t;kll)L(n-az,t;B,kllki

.summed over the possible values of Kll where Kll < oy by the hypothesis of

Theorem 2.

4, SOME APPLICATIONS.

We can now use Theorem 3 together with some other known results to find the

number of solutions X .,Ym to (1.2) in both the unranked and

120

unranked cases.

THEOREM 4. Let A1 = Al(m,so;rl) and A2 = Az(m,t;rz). Let Pl’Ql be non-
singular matrices such that PlAlQ1 = I(m,so;rl). Define P1A2 = col[lgl, A22],
where A21 = A21(r1,t°;al) and A22 = A22(m - rl,to;az). Let P2,Q2 be non-

singular matrices such that P2A22Q2 = I(m -rl,to;az). Define A21Q2 = [31 ,BQ],

where B2 = Bz(rl’to - aZ;Bj. Then the number of solutions Xl(so,sl),.....,

Xn(sn_l,sn), Yl(to,tl),.....,Ym(t tm),m,n > 1, s =t to (1.2) 1is given

m-1’
by
min(so,....,sn) mln(to,...,tm)
120 1-=0 N(s,st, 28,3757y 11515,0,509:8) ¢

=

2
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. Mn(so, e ,sn,il)Mm(to,. ee ’tm’iZ) s

where N(so,to,sn;rl,rz,il,iz,al,az,s) can be evaluated using (3.9),
Mn(so"""sn’il) and Mm(to,....,tm,iz) can be evaluated using (2.5).

PROOF: Consider the equations

AlU = AZV’ (4.1):

U=X...X, (4.2)
1 n

V= Yl...Ym, (4.3)

where U = U(so,sn;il), V= V(to,tm;iz), 0<1i. < min(so,...,sn) and

1

0 < izj_min(to,---,tm)- The number of solutions U,V to (4.1) is given by (3.9)

and is represented by N(so,to,sn;tl,rz,il,iz,al,az,B). The numbers Mn(so,...sn,il)
and Mm(to""’tm’iZ) represent the number of solutions to (4.2) and (4.3),
respectively, for a fixed U or V. Mn and Mm can be evaluated using (2.5).

The product NMan summed over the possible ranks of U and V gives the number

of solutions to (1.2) in the unranked case.
The next theorem is proved in the same way that Theorem 4 is proved except

that we use (2.6) to obtain the number of ranked soliutions Xl,...,Xn,Yl,...,Ym

to the matric equations (4 2) and (4.3)

THEOREM 5. Let A A Pl,Ql, 2,Q2, 21° 22, 1, 2, 11, 12,a1,a2, and B be

as in Theorem 4. Then the number of solutions

Xy (8,581337) 500 nX (8 10853057, (e st 5k )see s Y (e 0t sk ),men 2 1,
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Tn(so
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= tm to (1.2) 1is given by

min(jl,...,jn)min(kl,...,km)

) N(s -,t _,s
= = o o
il 0 12 0

n3T10 70t 015507509,8).

. Tn(so,....,§n;31,...,jn,il)Tm(to,...,tm;kl,...,km,iz),

N(so,to,sn;rl,rz,il,iz,al,az,B) is evaluated using (3.9) and

,...,sn;jl,....,jn,il) and Tm(to,...,tm;kl,....,km,iz) are evaluated using

(2.6).

NOTE:

[1]

[2]

(3]

[4]

[5]

(6]

This paper was written while the second named author was on leave at the

University of Wyoming.
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