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ABSTRACT. An initial (final) value Abelian theorem concerning transforms of func-

tions is a result in which known behavior of the function as its domain variable

approaches zero (approaches =) is used to infer the behavior of the transform as

its domain variable approaches zero (approaches ). We obtain such theorems in

this paper concern%ng the StieltJes transform. In our results all parameters are

complex; the variable s of the transform is complex in the right half plane; and

the initial (final) value Abelian theorems are obtained as sl / 0 (Isl / =) with-

in an arbitrary wedge in the right half plane.
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i. INTRODUCTION.

The analysis of [i] extended the Abelian theorems of Widder [2, pp. 183-185]

and Misra [3, Theorems 3.1.1 and 4.1.1] for the generalized Stieltjes transform

F(s) I f(t) (s+t) -p-I dt (i.i)

of a function f(t) with p being real to the case that s is a complex variable. Re-

cently Tiwari [4, pp. 52-57] obtained a further extension by considering the gener-

allzed Stieltes transform as studied By Byrne and Love [5] in which case the pard-

meter p is complex as well. In this paper we obtain initial and final value Abelian

theorems for the generalized Stieltjes transform of functions which have as special
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cases all of the corresponding results of [i] [4]; in addition to both s and p

being complex here, a generalizing assumption is placed on the function f(t) in

(i.i) in our present results. Further, we obtain completely new Abellan theorems

by putting a new limit assumption on the function f(t) in (i.i) as t / O+ and as

Throughout this paper t will denote a real variable, s + 0,

P=Pl + iP2 and i + iN2 will be complex numbers. The set of all complex

numbers will be denoted by C, and n(t) will denote the natural logarithm of

t > 0. In this paper all powers will be principal value powers. Log(s) and Arg(s)

will denote the usual principal value of the logarithm and argument of the complex

variable s, - < Arg(s) < , respectively. Following Carlson [6, p. 291] we put

C> {s g C s O, IArg(s) < /2} and CO
{s C s # 0, IArg(s) < }. Thus

C> is the open right half plane and CO is the complex plane cut along the non-

positive real axis. The gamma and beta functions will be denoted by F(x) and

B(x,y), respectively, for suitable variables x and y.

In this paper the generalized Stieltjes transform F(s) of a complex valued

function f(t) of the real variable t > 0 refers to the transform defined in (i.i)

with the stated values of the complex number p being given in the various results.

Notice that we have taken the power on the (s+t) term in (i.i) to be -p-l; whereas

Byrne and Love [5] and Tiwarl [4], for example, take this power to be -p. We prefer

to use the power -p-I in (i.i) in this paper for typographic convenience with

respect to our analysis in sections 3 and 4. If one preferred to take the power

in (i.i) to be-p, which is usually done, the results of sections 3 and 4 remain

valid by simply replacing p by p-i in the hypotheses and conclusions of the results

of these sections; for example the hypothesis in Theorem 3.1 that (p ) C>
would be changed to (p i) C> and p would be replaced by p-i in the

conclusion (3.2) of Theorem 3.1 with similar changes in Theorems 3.2, 4.1, and

4.2. The corresponding results are equivalent whether -p-I or -p is chosen as the

power on (s+t) in (i. i).
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2. PRELIMINARIES.

In this section we obtain results which we shall use in the proofs of our

Abelian theorems. The following result extends [i, Lemma] and [4, p. 40, Lemma

1.5]. The proof which we give here is based on properties of Carlson’s R function

[6, p. 97, Definition 5.9-1; p. 137, Corollary 6.3-4; and p. 153, Theorem 6.8-1].

LEMMA 2.1. Let p and N be complex numbers such that p N e C> and N + i e

C>. Let s CO We have

s
p-N

tN (s+t) -p-I dt B(p-N N+I) F(p-N) F(N+I)
r’ (p+l)o

(2.1)

PROOF. In [6, p. 154, (6)] let a p N and a’ N + i; let k 2 and z

(Zl,Z2) where zI s and z
2

i. Further, let b (bl,b2) where b I a + a’

p + i and b
2

0. For t >_ 0 and zI s e CO we have IArg(t+s) < ; and obviously

IArg(t+z2) < z since z
2

i. Thus by [6, p. 154, (6)] we have

R (p+l 0;s I)
i r tN (t+s) -p-I dt (2 2)

N-P B(p-N,N+I) J0

But because of [6, p. 136, (3)] and the definition of Rt(b;z) for k i [6, p. 97,

Definition 5.9-1] we have

(p+l 0;s,l) R_p(p+l;s) s
N-p (2.3)

The first equality in (2.1) is now obtained by combining (2.2) and (2.3). The

second equality in (2.1) follows by [6, p. 60, Definition 4.2-1]. The proof is

complete.

We correct an error and misprints in the proof of [i, Lemma]. In [i, Lemma]

we assumed that 0 and N are real numbers such that -i < N < 0. Thus because of

the possible values for O and N a more complicated contour should have been chosen

with which to apply the Cauchy theorem in the proof. Under the assumption that

m Im(s) > 0, s CO, in the proof of [I, Lemma], we obtain the first equality

iO’
of [i, (3)] as before. Now let a re and A Re@’, @’ Arg(i/s), 0 < r < R.

Let FI denote the straight line segment from a to A; let F
2
be the arc of circum-

ference z Reio, 0’ _< 0 _< O, from z A to z R; let F
3
be the straight line

segment along the real axis from z R to z r; and let F
4
be the arc of circum-
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ference z re 8’< 8 < 0, from z r to z a. Finally let F be the union of

FI, F2, F3, and F4. Cauchy’s theorem can now be applied with respect to F and the

Integrand (zn(l+z)-P-l), and we obtain

x (l+x)-0-1 dx I + I + f z (I+z)-P-I dz z x+iy"

FI F
2

F4

Straightforward estimates show that

lim I z (l+z) -0-I dz 0 lim I zN (l+z) -0-I dz
r+0+ F R F

4 2

(2.4)

Hence upon letting r / O+ and R / in (2.4), the proof is completed for the case-- Im(s) > 0, s e C
0

as in [i, Lemma] using the first equality of [i, (3)]. The

proof for the case Im(s) < 0 in [i, Lemma] proceeds analogously.

The following two lemmas contain some inequalities which we shall use later.

P Pl + iP2 i + i2
and s + i are complex numbers in these lemmas

and throughout the remainder of the paper.

LEMMA 2.2. Let t > 0 be a real number. Let p, , and s be complex numbers

such that p e C> + I e C> and s e C> We have

nI (2.5)

l(s+t)-P-ll < Is+tl
-pI-I

exp(Ip21/2

<_ (+t)
-pI-I

exp(nlp21/2)
(2.6)

(s+t)-P-i < Is+tl
-pI-I

exp(zlp21/2)

-Pl-i
! I,I exp(IP21/2)

(2.7)

exp( IP2-n2 J/2) (2.8)

Further, if t > y > 0 for fixed y > 0 then

ls+l
-p-

< =-P- (2.9)

PROOF. All of the proofs follow easily by using the properties of the prln-
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clpal value power. As an example we prove (2.8) and leave the proofs for (2.5)

(2.7) and (2.9) to the interested reader. We have

sP-nl exp((p-n) Log(s))l

exp((pl-nl n[s I) exp(-(p2-n2) Arg(s))

exp(l p2-N21 IArg(s)

< IslPX-X exp(nlp2_n21/2)
for s e C> and (2.8) is obtained.

LEMMA 2.3.

I. Let s e C> and let n be any complex number. We have

-NII nl < exp(Jn2J/2) (2.10)

II. Let n be a fixed complex number such that -I < N I Re(n) < 0 and let

s e C> such that o Re(s) > i and n(o) > In ctn(n)l. We have

ILog(s) ctn(n)l -I <_ (n(O) In ctn(nn) l) -I (2.11)

III. Let n be a fixed complex number such that -I < nI Re(n) < 0 and let

that 0 < < and l nl l >C> ctn(N) We have

- ctn(N)I -I <_ nlsll -I ctn(n)l) -I (2.12) Log( )

IV. Let N and s satisfy the assumptions of III and in addition assume that

for a given fixed K > 0, s e PK {s s + i, o > 0, II < K},

(o(i + K2) I/2) < I, and len(o( + K2)I/2) > I ctn(nn)I. Then (2.12) can be

continued as

(2.13)

< (ln((l + K2)I/2) In ctn()l) -I

PROOF. r > 0 we know that ln(r) / as r -* O+ or as r / . ThusFor real

the assumptions n()> Jn ctn(n)l in II, lnlsll > In ctn(n)[ in III, and

ln(o(l + K2)I/2) > In ctn(Nn) in IV are meaningful assumptions on Re(s) and

s for fixed N. Now the proof of (2.10) is like those used to prove Lemma 2.2 and is
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left to the reader. To prove (2.11) we note that under the stated hypotheses in

II we have

ILog(s) ctn(N) > ILog(s) ctn(N)l

> enlsl I ctn(n)l > %n(o) l ctn(N)l
(2.14)

and all differences are positive. (2.11) follows by taking reciprocals in (2.14).

To prove (2.12) we note that under the assumptions in III we have

ILog(s)- ctn(N) > ILog(s) l- I ctn(N)l > lnlsll- ctn(N) (2.15)

with both differences being positive. (2.12) follows by taking reciprocals in

(2.15). We now prove (2.13). Under the assumptions in IV, s is in the wedge PK
Thus Isl < (i + K2) I/2 Since 0 < Isl < i and ((i + K2) I/2) < i then nls <

n((l + K2) I/2) and hence

nlsll > ln((l + K2) i/2) (2.16)

The second inequality of (2.13) now follows by subtracting I ctn(N)l from both

sides of (2.16) and then taking reciprocals. The proof of Lemma 2.3 is complete.

We shall need the Stieltjes transform formula contained in [7, p. 218, (28)

in section 4 of this paper, and we state this formula in the following lemma.

LEMMA 2.4. Let N be a complex number such that -i < Re(N) < 0. Let s be a

complex number such that IArg(s) < . Then

t n(t) (s+t) -I dt s -ctn())csc (T) (Log(s)

The next lemma contains representations of two improper Riemann integrals

which we shall need in our analysis in section 4.

LEMMA 2.5. For 0 < < i and -I < 8 < 0 we have

1
-1

t %n(t) (+t) dt n() (-i) k (8+k+l)-I

0 k=O

(-i)
k

(B+k+l)
-2 (-I)k ok (B-k)

k=0 k-0

-2 (2.17)

%n() . (-i)k (-k) -I + o (-i)k (-k)-2

k=0 k-0
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For i < o < and-i < 8 < 0 we have

t8 n(t) (O+t) -I dt o8 n(o) I (-l)k (8+k+l)-I
k=O

+ 08 [ (-i) k+l (8+k+l) -2 + [ (-i) k o-k-I (8+k+l) -2

k--O k=O
(2.18)

+ 08 7. (-i) k (8-k)
-2 + 08 n(o) [ (-i) k+l (8-k) -I

k=O k=O

PROOF. First note that all series on the right of (2.17) and (2.18) are

convergent. We prove (2.17) now. The improper integral n(t) (O+t) dt
0

0 < o < i, is defined to be the value of

|O t8 n(t) (O+t) -I dt
llm

Furthermore, since the integral of a Riemann integrable function is a continuous

function of its upper limit of integration [8, Theorem 7.32, pp. 161- 162], we

have
0

dt
t8 n(t)
o+t jO- t8 n(t)

dt 0 < 6 < o < i
llm
/0+

6 o+t
(2.19)

Hence consider the integral over the interval 6 < t < o- in (2.19). For such

t we note that t/ol <_ (0- )/o < i; hence the series

[ (-i)k t8+k O
-k n(t)

k--O

converges uniformly for < t < o - by the Welerstrass M-test [8, Theorem 9.6,

p. 223]. The interchange of integration and summation in the second llne of the

following computation is therefore justified [8, Theorem 9.9, p. 226].

- t8 n(t)
dt 0

-1 o- t8 n(t)
i+ (t.,) at

o n(t) I (-t/o)k dt I (-ilk -k-i
k=O k=O

t8+k n(t) dt
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[ (-i)k O
-k-I ((8+k+l) -I In(t) (S+k+l) -2) tS+k+l]

(c-) 8 ([ (-I)k ((c-)lo)k+l (8+k+l) -I nCc-) (2.20)

[ (_l)k (_ )/)k+l (8+k+I)-2)
k--O

-i 88+1 k. (-11 (/o)k (8+k+l)-i n()

[ (-i)k (61o)k (8+k+l) -2)
k--O

The last step above is justified since all four series are convergent by the

alternating series test [8, Theorem 8.16, p. 188]. By Abel’s theorem [8, Theorem

9.31, p. 245] we know that we can evaluate the limit as / 0+ in (2.20) by

merely setting 0 in the last equality. Also since the last two series in

(2.20) converge uniformly in 8, say for 0 < < o/2, and since 8 + 1 > 0, then

the product involving the last two series in (2.20) converges to zero as 6 / 0+.

Thus first letting / O+ and then letting + O+ in (2.20) we obtain

o
t8 nCt) dt o8 nCo) [ (-i)k (8+k+l) -I o8

0 o+t k=0 k=0
(-I)k (8+k+i)-2 (2 .21)

Using the same type of argument as in obtaining (2.21), the following computation

is also valid.

i
t8 n(t) dt llm I’I t8 n(t)

dt
o+t +0+ o+to c+

t8-1 n(t) [ (-olt)k dt

llm k ok II+0+ [ (-i) t8-k-I n(t) dt
k=0 o+

(2.22)

llm . (-l)k ok (-(S-k)
k--O

-2 (o+)8-k ((8_k)-i n(c+) (8-k) -2))
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lim
_+ (-Y. (-z)

k=O

k k (8_k)-2 (q+)8 n(g+) . (-l)k (o/(o+))k (-k)
k--O

-1

+ ((+)8 . (_l)k ((/((+g))k (8_k)-2)
k=O

(-i)k ok (8_k)-2 8 n(o) (-I)k (8-k) -I + q8 (-i) k (8-k) -2

k;O k--O

The desired equality (2.17) is now obtained by combining (2.21) and (2.22).

The proof of (2.18) is completely analogous to that of (2.17). We split the

integral in (2.18) at o, i < o < m, and proceed similarly as in the proof of

(2.17). We leave the now straightforward details to the interested reader. The

proof of Lemma 2.5 is complete.

3. ABELIAN THEOREMS GENERALIZING THOSE OF [i] [4].

In the Abelian theorems for functions of [i] [4], hypotheses are placed

on the quotient f(t)/t for certain specified real and then limit properties

are obtained for the generalized Stieltjes transform of f(t). In this section we

allow to be complex in the assumptions on the quotient f(t)/t; the Abelian

theorems for functions of [i] [4] become special cases of the results presented

in this section. We note that there exist complex valued functions f(t) of the

real variable t > 0 which satisfy the hypotheses stated in both Theorem 3.1 and

Theorem 3.2 below.

Let K > 0 be an arbitrary but fixed real number. We recall the wedge PK
{s s q + i, o > O, II < Ko} in C> as defined in Lemma 2.3 (IV). Our initial

value Abelian theorem is as follows.

THEOREM 3.1. Let p and be complex numbers such that p e C> and

D + i e C> Let f(t) be a complex valued function of the real variable t > 0

such that the generalized StleltJes transform F(s) of f(t) exists for s e C> and

such that (f(t)/t) is bounded on y < t < for all y > 0. Let e be a complex

number such that

lim f(t) . (3.)
t+0+

tn
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Then for each fixed K > 0,

iim
s
p-D F (s)]s]+O B (p-If,If+l)sePK

c,,. (3.2)

PROOF. Using (i.I) and Lemma 2.1 we have for any y > 0 that

(s+t) p+l

(3.3)

We first estimate II. Let > 0 be arbitrary. Applying the hypothesis (3.1),

there exists a 6 > 0 such that

f(t)

t
< E if 0 < t <

We now fix y in (3.3) such that 0 < y < 6 and obtain

II < sP-nl Iy Itql l(s+t)-P-ll dt
0

(3.4)

Using (2.5), the second inequality of (2.6), (2.8), and Lemma 2.1, we obtain from

(3.4) that

I
1 <_ (exp(]p21/2) exp([p2-n2]/2) PI-I Iy -Pl-I

t
I (+t)

0

_
Pl-nl<_ exp(IP2]/2) exp(]p2-n21/2) B(Pl-nl,nl+l)

dt

(3.5)

Now restrict s e C> to PK; for s + i e PK

Pl-nl (2+K22)<_ 1/2Pl-r}l K2 (pl-r]l)/2
(i + (3.6)

(3.5) and (3.6) yield

I
1
< exp(]p21/2) exp([p2-n2]/2) B(Pl-nl,nl+l) (i + K2) (Pz-r)l)/2

(3.7)

for arbitrary > 0 where s e PK
For 12 we have
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[sup12 <
y<_t<

f(t) IsP-nl tnl l(s+t)-P-ll dt

Y
(3.8)

and the supremum is finite since by hypothesis (f(t)/tr]) is bounded on y < t < m.

Now use (2.5), the first inequality of (2.6), and (2.8) in (3.8) to obtain

12 < sup
y<_t<=

f(t)

t
n exp( Ip21/2)

exp(Trlp2-r]21 /2)

(3.9)

Recall that p - C> so that Pl
ing the integration we have

I > 0. Using (2.9) in (3.9) and then perform-

sup
12 <

"y<t<
f(t)

tn
exp(Ip2]/2)

(3.10)

exp OT P2-r]21 /2) Y i
p
1
-r]

(3.i0) is valid for all s g C> and shows that 12 / 0 as sl / 0 in any manner in

C>. We now combine (3.3), (3.7), and (3.10) to obtain

lira sup

sl+0 Isp- F(s) B(p-q,r+l)

< exp(lp2i/2) exp(Ip2-r]21/2 B(Pl-nl,r]l+l) (i + K2) (pl-r]l)/2

sgP
K

where > 0 is arbitrary. The desired result (3.2) follows immediately, and the

proof is complete.

The initial value Abelian theorems [i, Theorem i], [2, pp. 183- 185],

[3, Theorem 3.1.i], and [4, Theorem 4.1] are all special cases of Theorem 3.1.

The approach of s to zero inside the wedge PK for arbitrary but fixed

K > 0 in Theorem 3.1 is a sufficient condition for the desired conclusion (3.2)

to hold but is not a necessary condition. The example of [I, p. 51] shows this.

We now prove our final value Abelian theorem.

THEOREM 3.2. Let p and q be complex numbers such that p q E C> and

C> Let f(t) be a complex valued function of the real variable t > 0
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such that the generalized Stieltjes transform F(s) of f(t) exists for s e C> and

such that (f(t)/t) is bounded on 0 < t < y for all y > 0. Let be a complex

number such that

llm f(t) e. (3.11)
t- t

Then for each fixed K > 0

llm

seP
K

sp-n F(s)
B (p-n,Q+l)

e. (3.12)

PROOF. We begin with (3.3) exactly as in the proof of Theorem 3.1 where II

and 12 are exactly as in (3.3). For arbitrary > 0 we apply the hypothesis

(3.11) and choose a fixed y > 0 large enough to obtain

(3.13)

Using (2.5), the second inequality of (2.6), and (2.8) in (3.13) we get

12 < exp(IP21/2) exp(IP2-n21/2) Isl PI-I y tl (o+t)-Pl-I dt

< exp(IP21/2) exp(IP2-21/2) Pl-nl 0 tnl (o+t)
-pI-I

(3.14)

By the change of variable u (.t/o) and Lemma 2.1 we have

nl
t

-PI-I 0-PI-I
dt o t

nl
(i + (t/o))

-pI-I

B (Pl-nl,nl+l)

dt

(3.15)

Putting (3.15) into (3..14) and restricting s e C> to PK K > 0 being arbitrary

but fixed, we have

PI-I
12 < exp(Ip21/2) exp(Ip2-21/2) (i + K) B (pl-rI rl+l) (3.16)

and > 0 is arbitrary here.

Using the boundedness hypothesis of (f(t)/tN), (2.5), the second inequality

of (2.7), and (2.8) in II we obtain
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sup
Ii < 0<t<_y

f(t)

t
exp(n[p21/2)

(3.17)

exp(z[p2-N21/2) Is[ pI-I [sl
-pI-I ]Y tl dt

0

with the supremum being finite. The integral in (3.17) is a Riemann integral if

and an improper integral if -i < i < 0. In either case the value is

i+IY nl
0

t dt
i+i

for our fixed y > 0 since + I e C> A combination of (3.17) and (3.18) yields

sup
Ii <

<0< t<_y
f(t)

tn
exp(Ip21/2)

l+I
exp(JP2-n21/2) -nl-i

(3.19) shows that II
/ 0 as sJ / in any manner in C> The desired result

(3.12) now follows by combining (3.3), (3.16), and (3.19) and using the same

(3.19)

limit superior argument as in the proof of Theorem 3.1. The proof is complete.

The final value Abelian theorems [i, Theorem 2], [2, pp. 183 185],

[3, Theorem 4.1.i], and [4, Theorem 4.2] are special cases of Theorem 3.2. Notice

that the conclusion of [i, Theorem 2] was obtained for Isl / oo, s e SK

{s s G + i, > 0, lwl < K}, where K> 0 is arbitrary but fixed; that is s

was allowed to get big in absolute value within a strip centered about the real

axis in C> The conclusion of our present Theorem 3.2 allows Is] to get big

within a wedge PK in C> which is a more general situation than [i, Theorem 2].

For the special case of Theorem 3.2 considered [4, Theorem 4.2], Tiwari also

recognized that S
K could be replaced by PK in his result.

4. FURTHER ABELIAN THEOREMS.

In a private communication to one of us, R.D.C., Lavoine [9] suggested that

an attempt be made to replace the assumption of the type (f(t)/t) / a as t + 0+

or as t / in Abelian theorems for the Stieltjes transform by the more general
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assumption that

lim f(t)
t/0+

(or t-o) t
N (n(t))J

e (4.1)

where j is a positive integer and n(t) is the natural logarithm. In a recent

paper Lavoine and Misra [i0] have obtained Abelian theorems for the distributional

Stieltjes transform in which an assumption of the type (4.1) is made on the distri-

butions under consideration. The Stieltjes transform of the distributions is con-

sidered for the case that the variable s of the transform is real, and the Abelian

theorems are then obtained as s / 0+ or s / . In this section we shall obtain

Abelian theorems for functions under an assumption like (4.1) in which the variable

s of the Stieltjes transform is in C> and the results are obtained as sl + 0+

or sl / in a wedge PK We note that there exist functions f(t) which satisfy

the hypotheses of Theorems 4.1 and 4.2.

Our initial value result is as follows.

THEOREM 4.1. Let N be a complex number such that -i < ql Re(H) < O. Let

f(t) be a complex valued function of the real variable t > 0 such that the

Stieltjes transform

F(s) 0 f(t) (s+t) -I dt

exists for s g C> and such that (f(t)/tq n(t)) is bounded on y < t < for all

y > 0. Let e be a complex number such that

lim f(t)
t+0+

t
q n(t)

(4.2)

Then

lim

sl+0 F(s) - csc(N)
sq(Log(s) ctn(n))

sgP
K

PROOF. Using Lemma 2.4 we have for any y > 0 that

(4.3)

F(s)

sn(Log(s) w ctn(nw))
+ a csc <_ II + 12 (4.4)
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where

I
I IsDl ILog(s) 7 ctn(DT)

f(t)
Y tN In(t)

0

Itrl In(t)

dt

12 Isnl ILog(s) 7 ctn(D)l

f(t)

In(t)

s+t

Itrl In(t)

We first estimate II. Let > 0 be arbitrary; by (4.2) there exists a

such that

(4.5)

f(t)

t
D In(t)

< if0< t< 6 (4.6)

Now fix y > 0 such that 0 < y < min{l,}. In this result we are letting sl + 0,

s e PK for K > 0 arbitrary but fixed Hence to obtain our result it suffices to

assume that 0 < sl < i and lnlsll > IT ctn(DT) and that for K > 0 fixed,

((i + K2) I/2) < i and lln(o(l + K2)I/2)] > 17 ctn(N)l, where a Re(s) > 0. We

emphasize that we are making the assumptions on s e PK as stated in the preceding

sentence throughout the remainder of this proof. Thus for s g PK and the above

fixed y > 0 we apply (4.6), (2.5), the second inequality of (2.6) with p 0,

(2.10), and (2.13) to obtain

exp(In21/2) f’l tnl ln(t)l
dr. (4.7)II

<
r]l 1/2 0

+t
Isl (ln(o(I+K2) )I -17 ctn(7) l)

Now 0 < Is < i implies 0 < q Re(s) < i; and we know that ln(t) -In(t),

0 < t < I. Thus we use (2.17) of Lemma 2.5 in (4.7) to obtain

I I <_
exp(71n21/2)

[ 1

1/2) I- T ctn(nn) l)

k+l
n(() [ (-i)

k--O l+k+nl

I- k k k
i (-i)

2 + [ (-i) 2
k:O (l+k+r1) k=O (rl-k)
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+ n()
(-l)k k+l

k=0 i-k + . (-i)

k=0 (Dl-k)
2

(4.8)

nI

/2)

(l%n((l+K2)i/2)l- I ctn(N)l)
[Jl + J2 + J3 + J4 + J5

and the sum [Jl + J2 + J3 + J4 + J5 is positive since the integral which the sum

equals is positive. For s PK and p 0, (3.6) yields

nI
-nI _DI/2

<_ (I + K2) s PK (4.9)

where -i < NI Re(N) < 0 here. Using (4.9) we have

is i (ln(o(l + K2)I/2)I i ctn(n)l)

< (i + K2) -I/2
l%n()l

ln(O(l+K2)1/2)I IT ctn(N)l

k+l

k
(-i)

=0 l+k+rll

from which we conclude with the aid of L’Hospital’s rule (and the fact that as

Isl 0, s g PK then o Re(s) must tend to zero also) that

lim sup

sgP
K

IJll -NI/2
< I+K

2 . (-i)
k+l

l+k+rlk=O i
(4.10)

By similar analysis we have

lim sup

sgP
K

J41 -n /2
< (l+K2) I

D 1/2Isl I(I%n((I+K2) )I T ctn(D)l)
. (-l)k

k=O n1-k
(4.11)

Further, it is easy to see that the absolute value of J2 J3 and J5 when

divided by the denominator on the left of (4.10) and (4.11) all tend to zero in

the limit as Isl 0, s c PK" Using this fact together with (4.8), (4.10), and
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(4. ii) we obtaln

lira sup _i/2
sl/O II

< exp(IN21/2) (l+K2)
sEP

K

k+l

l+k+k=0 i
(4.12)

and > 0 is arbitrary on the right of (4.12).

Let us now estimate 12 in (4.5). Take y > 0 to be fixed as in the sentence

succeeding (4.6) so that 0 < y < min{l,6}. Applying the boundedness hypothesis

for (f(t)/t n(t)) on y < t < , (2.5), and (2.9) for p 0 we have

sup
y<t< tn n(t) y nl-1

12 < t ln(t) dt (4.13)
sllLog(s) ctn(z)

Since 0 < y < min{l,} and -i < NI < 0 then

nl
-I nl

2 y
DI

IZn(t) dt y n(y) + 2nl (nl)2 (n I)
(4.14)

Recall that we are assuming the conditions on s e PK under which (2.13) holds

without loss of generality in this proof. Thus using (2.13), (2.10), and (4.14)

in (4.13) we get

12 < sup
"y<_t<=

f(t)

tr n(t)

nI nI
(y %n) + 2 y _)2 2nl (n 1) (n1)

(4.15)

-N 1/2)exp(In21/2) is i (ln(o(l+K2) I- ctn(N)l )-I

from which the fact

llm

Isl-O I
2

0

seP
K

(4.16)

follows. We now combine (4.4), (4.12), and (4.16) to conclude that for any fixed

K>0
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lim sup

K

F(s)

s (Log(s) ctn())
+ csc(n)

(4.17)

< exp(]N21/2) (I+K2) (_l)k
--0 n i-k

Since > 0 is arbitrary on the right of (4.17), the conclusion (4.3) follows.

The proof is complete.

We now obtain a similar final value Abelian theorem.

THEOREM 4.2. Let N be a complex number such that -i < Nl Re(H) < O. Let

f(t) be a complex valued function of the real variable t >_ 0 such that the

Stieltj es transform

F(s) 0 f(t) (s+t) -I dt

exists for s e C> and such that (f(t)/tN n(t)) is bounded on 0 < t < y for all

y > 0. Let e be a complex number such that

lim f(t) . (4.18)
t

tn n(t)

Then

lim

sgP
K

F(s)

sn(Log(s) ctn(n))
-{x csc(qz[) (4.19)

PROOF. Let K > 0 be arbitrary but fixed. In this result we are letting

Isl / s e PK to obtain (4.19). As Isl / oo, s g PK @ Re(s) must tend to

also. Thus without loss of generality we assume throughout this proof that

o Re(s) > i and n(o) > In ctn(nn) l. Now proceeding as in the proof of Theorem

4.1 we obtain (4.4) where II and 12 are defined in (4.5). To estimate 12 we first

take an arbitrary > 0 and apply hypothesis (4.18) to obtain a fixed y > I such

that

f(t)

In(t)
< if t > y > i. (4.20)
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For y > i so fixed we apply (4.20), (2.5), the second inequality of (2.6) for

p 0, (2.10), and (2.11) to obtain

exp(JN2J/2) t gn(t)
dt12 <

nl d+t

sl (gn(G) I?r ctn(rlr) I)

Using (2.18) of Lemma 2.5 in (4.21) we get

(4.21)

12 <
( expOrln2]/2) n

[ i n(O) . (-l)k
l+k+nl k=0 iI, 1 (n(O)- ctn(n )l)

n I (_i)
k+l (_l)k

+o . 2 + - k+l 2
k=0 (l+k+

i
k=0 (l+k+

i

nl (-i)k nl (_l)k+1
+ 2 + n() .

k=0 (Dl-k) k=0 NI-k

(4.22)

xp(ln21/2)
nIIl (gn(o) I

[KI;,+ K
2
+ K

3
+ K4 + K5]

and [KI + K
2 + K

3 + K4 + K5] is positive. For s E PK we use (4.9) and L’Hospital’s

rule to obtain (recall (4.10))

lim sup IKI[
Isl
seeK Isl (gn(o)- n ctn() I)

< (I+K2) -nl/2 (-i)
k

l+k+q
k=O 1

(4.23)

Similarly we get

lim sup

n1
< (I+K2) -rI/2

k+l

Z
k=O nl-k

(4.24)

Using (4.9) it is easy to see that the absolute value of K
2

and K
4
when divided

by the denominator on the left of (4.23) and (4.24) both tend to zero as Isl - ,
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s e PK To analyze the K
3

term we note that

-nl -nl12s (I+K2)< s O+i e PKl+nl

and hence

IK31
nII,, I’n ctn(n)I) o(gm() I’n" ctn(n)I)

-i/2
< (I+K2} [ I

l+nlo (n(o) I’n" =tn(r)I) k=O (l+k+rI)

(4.25)

(4.26)

since we assumed at the beginning of this proof that o > i. Recalling that

-i < nI < 0, (4.26) proves that the left side of (4.26) tends to zero as Is / ,
s e PK We thus conclude from (4.22), (4.23), (4.24), (4.26), and the facts

stated above concerning K
2 and K4 that

lim sup
-BI/2Is ’’’ 12 < exp(nlN2 I/2) (l+K2) (-l)k

l+k+NlseP k:0
K

k+l(_)
k=[0 nl-k

]. (4.27)

We now estimate II. For the y > I fixed in (4.20) and any such that

0 < 6 < y we have

nIY t In(t)[ dt <
I nI lyt n(t) dt + t

Nl n(t) dt
6 1

(4.28)

z+nI z+nI l+nI z+nl1 [6 9n(6), 8 [ n(y) y + 2
2 +

i+i (I+NI)2 2 ]"
Is l+rl (l+nI) (l+nI)

Using the boundedness hypothesis for (f(t)/t n(t)), (2.5), a proof as in obtain-

ing (2.10), (2.11), and taking the limit in (4.28) as 8 / O+ we obtain
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sup
0< t<_y

f(t)

tN n(t)
exp( IN21/2)

l+nIIsl (%n() I ctn(N)l) (4.29)

(l+nI)

l+nI l+nI
+ y n(y) y

2l+nl (1+hi)

(4.29) shows that II 0 as Isl / , s g PK since i + NI > 0. Using this fact,

the estimate (4.27), and (4.4), the desired result (4.19) follows by the same

reasoning as at the conclusion of the proof of Theorem 4.1. The proof of Theorem

4.2 is complete.

It is our goal to obtain results like Theorems 4.1 and 4.2 and like those

of Lavoine and Misra [i0] under an assumption like (4.1) for arbitrary j i, 2,

3, and for functions and distributions with the parameters p and N and the

variable s g C> all being complex. Further, it is our goal to extend the results

of Carmichael and Milton [Ii] and Tiwari [4, p. 42, Theorem 2.1; p. 49, Theorem

3.3] to the case that the variable and all parameters are complex.
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