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ABSTRACT. New developments and results in the theory of expectatiors

and variances for random variables with range in a topological group

are presented in the following order (i) Introduction (2) Basic

notions (3) The three series theorem in Banach spaces (4) Moment

Conditions (5) Expectations and variances (6) A general three series

theorem (7) The special cases of finite groups and Lie groups (8)The

strong laws of large numbers on a Lie group (9) Further studies on

moments of probability measures.
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1. INTRODUCTION

Moments of probability measures such as expectation and variance are

important tools throughout probability theory and its applications.

Moment conditions appear as helpful and crucial in almost all prob-

lems connected with the convergence in various senses of sequences

of independent random variables. We shall restrict our attention to

the almost sure convergence and the scope of the strong law of large

numbers.

The aim of this paper is to report on new developments and results

in the theory of expectations and variances for random variables

taking their values in a topological group. The groups under discus-

sion will be either the additive groups of topological vector spaces

or locally compact groups. While the framework of a topological

vector space.admits a very natural extension of the notion of moments,

some new ideas are needed in the case of an arbitrary locally compact

group. Our exposition will be twofold" it will indicate the imitation

procedures and at the same time describe the innovation available.

We start with the classical set up. Let X be a real random variable

on a probability space (,(7, P). Its expectation and variance are

defined by

E (X)" [XdP [xdPx and

V (X)" (X E(X))2dp (x E(X))2Px(dx)
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resp.

In 1939 P. Lvy [18] systematically extended the notions of expecta-

tion and variance to spherical random variables X taking values in

the torus : , instead of the real line . Lvy pro-

posed the definition

2V (X) inf ;(x-a)
a Px(dx)

for the variance of X, and every number a such that the infi-

mum in the definition of V(X) is attained he called an expectation

of X. Thus E(X) is defined as any a satisfying the ine-

quality

f(X-ao )2 Px(dx) .< (x-a) 2 Px(dx)

for all a 6 .
In the following, generalizations of Kolmogorov’s three-series the-

orem will be of central interest. For real random variables this

theorem states that for any sequence (Xj)j1 of random variables the

series Xj converges a.s. X.] < a.s. for abbreviation)

iff the following condition holds"

There exists a number c > o such that

> C] <
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(b) Z E (X. i
j.>l 3 [IXjl -< c]

< , and

(e) Z v (x. i
j>.l 3 [IXjl -< c]

In the case of spherical random variables the necessary and suffi-

cient condition for X. < a.s. turns out to be
jl

(c’) E V (X) < and
j.<l J

(b’) Z E (X) <
j>l J

where (b’) has to be read in the sense that E (X.) < =
j>.l 3

fqr ,any choice of expectations E (Xj) of Xj or for .s.om.e ,suitable

choice of E (Xj). See L6vy [18] and Bartfai [1].

It is the nonuniqueness of the expectation in this case which yields

the appropriate extension of the concept to arbitrary compact groups.

2. BASIC NOTIONS

Before entering the subject proper a review of some basic notions

from probability theory on a topological group seems to be in order.

For details in the locally compact case the reader is referred to

Heyer [14].
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Let G be a (completely regular) topological group with unit ele-

ment e. By j%tb(G) we denote the set of all bounded Radon measures

on G in the sense that is a linear functional on the space

b(G) of bounded continuous functions on G possessing the fol-

lowing property" For every e > 0 there exists a compact subset

C of G such that l(g)l for all g e b(G) with

Igl ( 1 and g(C O. Clearly, every Radon measure on G can

be considered as a bounded regular sorel measure on the Borel--

algebra (G) of G. In Ab(G) we introduce the weak topology w

In fact, the mapping (,) * from tb(G) x b(G) into

b(G) is continuous on norm bounded subsets b(G) is separable+

and metrizable iff G is separable and metrizable.

If G is a locally compact group, then there exists a left (or right)

Haar measure m- mG on G. This measure is unique up to a posi-

tive multiplicative constant, m is o-finite, and it is bounded iff

G is compact. On the subsemigroup ALl(G) of all probability mea-

sures on G the weak topology w coincides with the vague topolo-

gY v defined as the topology of pointwise convergence on the space

R.(G) of continuous functions on g with compact support. .i(G)

is compact or locally compact iff G is compact. For any compact

subgroup H of G, mH denotes the normed Haar measure of H de-

fined as the (both sided) H-invariant measure in CI(G) having H

as its support. The normed Haar measures of compact subgroups are

bexactly the idempotents of I(G) and also of ]b+(G).
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For every x G the symbol ex denotes the Dirac measure in x.

The set of all Dirac measures on G will be abbreviated by (G).

THE THREE-SERIES THEOREM IN BANACH SPACES

We are given a Bernoulli sequence on some probability space (n,O,P),

that is a sequence (j)j.>l of independent random variables cj
such that P [c. -I] P [c. = +i] 1

3 3
for all j >- I.

Let E be a Banach space, p [I, 2] and q [2,].

We start with the following

DEFINITION. E is said to be of (Rademacher) type p if

there exists a constant K > 0 such that

n n

j=l J J j=l J

for all n . 1 and all sequences {xI, ..., xn} in E.

Analoguously, E is said to b of (Rademacher) cot q if theme

exists a constant k > 0 such that

n n

for all n >. I" and all sequences {xI, ..., xn} in E.

Clearly, every Banach space is of type 1 and of cotype . For any

measure space (S, , ) and p [1,2] the space LP(s, , u) is
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of type 2 ^ p and of cotype 2 v p.

We are now considering sequences (Xj)j>.I of independent random var-

iables taking values in a separable Banach space E. The norm closed

unit ball of E will be denoted by B. If X is an E-valued random

variable and C a set in the Borel--algebra (E), then X.1 C is

defined to be equal to X on C and to 0 otherwise. If X is

P-integrable, E(X) will denote the expectation of X.

Given a sequence (Xj)j>.l of independent E-valued random variables

we shall study the a.s. convergence of the series , X..
jl 3

Let p 6 [i,[.

DEFINITION. A separable Banach space E is said to admit the

Kolmogor,ov prope,rt.y of order p (KPp) if for every sequence (Xj)j.>I
of independent E-valued random variables, the series , X con-

j>.l J
verges a.s. whenever there exists a constant c > o such that

($1) >l. P [1IX li < c] <
j>.l J

(S2) . E (Xj.1 is summable in E, and
j.>l cB

($3) E (fiX 1 -E (X 1 )P) <
j>.l j" cB j" cB

E is said to admit the s,,t.rgng K,o,lmogoro.v property of.. orde_r p

(SKPp) if for every sequence (Xj)j>.I of independent E-valued random

variables, the a.s. convergence of the series , X is equivalent
j>.l J
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to ($1) through ($3) for some c > O.

THEOREM 3.1. A separable Banach space E admits (KPp) for

p [I,2] iff E is of type p.

Concerning the PROOF of the theorem we note that the implication ""
is essentially known. See Woyczyski [35], p. 431 for the special

case p 2. The inverse implication follows directly from Hoffmann-

J6rgensen [15], p. i16.

THEOREM 3.2. A separable Banach space E admits (SKP

is a Hilbert space.

2 iff E

The PROOF of this result is based on a famous theorem of Kwapie’s

on the type-cotype characterization of Hilbert spaces. See Kwapie

[].

MOMENT CONDITIONS IN THE CASE OF AN ABELIAN LOCALLY COMPACT GROUP

We start by restating the classical three-series theorem in temms of

characters of the additive group of the real line .
For any k-valued random variable X on a probability space (,0, P)

and any character X of of the form x X(X) = Xy(X): = eiyx for

some y we define the A-valued random variable Y: yoZ,
where Yo

c for some c > o, and Z denotes the principal branch

Xof the -valued random variable exp(i X) exp(i X) exp(i ).Yo
Noting that with this definition of Z, [X # Z] = [-c <X .< c], we
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arrive at the following version of Kolmogorov’s result.

THEOREM 4.1. For any sequence (Xj)j>l of independent R-valued

random variables the following statements are equivalent"

(i) . X. < a,s,

(ii) There exists a neighborhood U: ]-c, c] of o

such that

(a) E P[X E U] <
j.>l J

(b) . E(Y < and
j>-I J

(c) . V(Y <
j>.l J

Using the above device the convergence conditions (a) through (c) of

(ii) can be restated as

(a’) E P [X CU] <

(b’) E (log oXj) < ==, and

(c’) V (log xoXj) <

the latter two holding for every character of .
Here the l-valued random variable of the form log oX is defined as
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iZ where Z denotes the principal branch of the -random variable

exp( ixoX).

Now, let G be an Abelian locally compact group which we write mul-

tiplicatively with unit element e. We suppose that G is second

countable. If we denote the character group of G by G we have

the following result of R.P. Pakshirajan [27].

THEOREM 4.2. For every sequence (Xj)j>,l of independent G-valued

random variables the following statements are equivalent"

(i) H X. < a.s.
j.>i

(ii) (a) Given any (compact) neighborhood U of e, the series. P [Xj U] converges.
j>.l

(b) . E (log oX <
j>,l J

(c) >3 V (log oX) <

the latter two conditions holding for every X G A, and the -ran-
dom variables log oXj defined as indicated above.

The PROOF of this theorem relies on a few auxiliary results.

LEMMA I. For every X 6 G" the following statements are equi-

valent:
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(i) xoXj < a.s.

(ii) E (xoX) <
j J

LEMMA 2. For every X GA the following two sets of condi-

tions ape equivalent

(i) E(oX_.) <
j.

and . V(oX <
j.>l J

(ii) F. E(Z <
j>.l J and V(Z <

j>.l J

LEMMA 3. The following statements are equivalent"

(i) X. <
j>.l ]

a,s,

(ii) () There exists a (compact) neighborhood U of e such

that
j>.l J

(8) xoXj < a.s. for all X 6 G ^.
j.<

A more condensed version of Kolmogorov’s theorem reads as follows.

THEOREM 4.3. Let G be a second countable Abelian locally

compact group. Then for any sequence (Xj)j>.I of independent G-valued

random variables the following conditions are equivalent:
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(i) H X. < a.s.

(ii) oX. < a.s. for every G

For the PROOF as given in Pakshirajan [27] one notes this"

The implication (i) (ii) follows directly from the continuity of

the characters X G.

The implication (ii) (i) has to be shown for compact and for dis-

crete Abelian groups first, before the structure theorem for locally

compact Abelian groups can be applied.

5. AN AXIOMATIC APPROACH TO EXPECTATIONS AND VARIANCES

Let G be a compact group and let " be a subsemigroup of J%L 1

such that (G) c .
DEFINITION. J" is said to .admit .an e.xpectation E if E is a

continuous semigroup homomorphismC G satisfying the following

conditions

(E i) E (cx) x for all x G.

(E 2) E () e for all symmetric measures

REMARK. If admits an expectation, then " does not contain

any nontrivial idempotent of LI(G). _In fact, let u be an idempo-

tent of ALl (G) of the form mH for some compact subgroup H
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of G such that u . Then mH ex*mH for all x E H whence

*H E( E(H) xE(HE(H) E(x x ), and consequently

E(e x) x e, which shows H {e}.

From this remark it becomes clear that for the subsequent discussion

we shall assume that the subsemigroups J with (G) = are neigh-

borhoods of ee in I(G).

REMARK. Under this additional assumption G is necessarily a

Lie group (of dimension p o).

For this one has to show that there exists a neighborhood of e

without any nontrivial subgroup of G. Suppose that for every neigh-

borhood of e there exists a nontrivial and hence a nontrivial com-

pact subgroup K. Then mK is a neighborhood of

thus mK and consequently K {e}. But this contradicts the

assumption.

DEFINITION. A compact group G admits an expectation if there

exists a subsemigroup of I(G) with (G) = which is a neigh-.

borhood of e in ALl(G) such that ." admits an expectation.

The following result is due to V.M. Maksimov [22], [24].

THEOREM 5.1. For any compact group G the following statements

are equivalent

(i) G admits an expectation.

p qlq x 2,(ii) There exist integers p, q, r >. o such that G = SU(2) x r



14 H. HEYER

where SU(2) denotes the special linear rouD of dimension 2,

the 1-dimensional torus and 2 the 2-element roup.

Concerning the PROOF of this existence theorem we shall sketch the

ideas of both implications.

(1) Compact groups admitting expectations are necessarily of the

form G SU(2, p) x’’(q) x 2(r) with SU (2,p): SU(2) p,
(q)" q and 2(r)- 2"

Let : F.(G) denote the system of irreducible (unitary contin-

uous) representations of G. For every u bl(G) and each

the Fourier transform of u corresponding to the class with rep-

()
resentative D is defined by

Dg)t (p): -i’D (()(x)p(dx) E M (d(g), ()
G

where d(o)" d(D()) is the dimension of the representing (Hilbert)

space ()" ’],(D ()) of or D ().

For any subset #C of ALl(G) we consider the subset D

M(d(o), {). By the Peter-Weyl theorem the set

() (]) of

ol(G)" {u tl(G)" D()(u) ’ o for finitely many

is dense in [LI(G). It is therefore quite reasonable to deal with

representations of the form
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N
DN D(Oi

i=l

We note that DN(f) is a subsemigroup of M(d(DN), ) whenever

is a subsemigroup of LI(G).

STEP I. Every semigroup homomorphism from oN" into some group

G1 induces a semigroup homomorphism from DN(F) into G1.

DN

nN

For every and D() let r(D ( )) be the matrix algebra

generated by the set {D(e)(x): x G}. Then ..(D (e)) is simple and

thus isomorphic to one of the algebras GL(d(o), <), GL(d(o), ) o
GL(d(o), 4). Analoguously one defines (DN).

STEP II. Every semigroup homomorphism from DN(J) into a

group G 1 can be extended to a group homomorphism from the

group (generated by) (DN) into G i"
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DN()

Inclusion

(DN

STEP III. It turns out that the compact group G is a direct

product of homomOrphic images of the groups GL(d,), GL(d,) or

GL(d,) into G. But such homomorphisms are known from the general

theory of determinants over fields.

(2) Determination of expectations on the groups SU(2), and 2"
(2a) We first consider the group

SU(2) " I’1 2 2
+ I1 }

and define the semigroup

" { I(su(2))" det d
S (2

0 }.

For every u " we introduce

E(U). I--- (s 8 >.(p) S(2) "
where k(u) is determined by the condition det E(U) 1. Then E

is the unique expectation of SU(2).
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(2b) For every i {1, N} let DI()" exp i j(1) with

j(1) 6 be a character of . Given a measure tl() we obtain,

again for every i {1, ..., N} the l-th Fourier coefficient of

u in the form

DI() rI exp i I)
with rI 6 +,(I) [0,2[

Let " {u I(). nl(u), ..., nl(u # 0}. Then for every

u 6 " we define an expectation E of by

E()" < (,(I), ..., (N)), (YI’ ..., yN)> (mod 2),

where (1 YN denotes any vector of N satisfying

< (j(1), ..., j(N)), (Yl’ ’’’’YN )> I.

(2c) The group 2 {e, x}

defined by

EU):

admits a unique expectation E

if u({e}) > U({x})

otherwise

whenever 1(72).

Now we proceed to second moments.

DEFINITION. " is said to admit a variance V if V is a non-



18 H. HEYER

constant continuous semigroup homomorphism + satisfying the

following conditions-

(v) v(F)

(v2) v()

[O,1]

1 iff v (G).

Any nonconstant continuous semigroup homomorphism + is called

a weak variance on J. Variances and weak variances on " I(G)
are called variances and weak variances for G. In the first case

we also say that G admits a variance if there exists a variance

on JLl (G)

REMARK. A weak variance V on F is a variance iff V(v) 0

for all nontrivial idempotents u of jLI(G) in J

Variances have been first defined by V.M. Maksimov in [19] and [20].

For a detailed presentation of the theory we recommend Heyer [14],

2.4.

THEOREM 5.2. Let G be a compact group, o 1, ..., oN with

representatives D(1) D(
,..., N and k1, ..., kN 6 +.

Then the mapping

N k.(o i) m

i=l

from fCI(G) into + is a weak variance for G. Moreover, the

following statements are equivalent"

(i) V is a variance for G.

(ii) The smallest set [Ol, "’’’ ON closed under products and
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conjugates and containing {1’ ..., N} equals ..
N( (.)

(iii) DN . D 1 is faithful.
i=1

THEOREM ,5.3. For any compact group G the following statements

are equivalent"

admits a variance.

(ii) G is a Lie group (finite or infinite).

The PROOF of this result involves the general form of weak variances

on Lb(G).

STEP I. Let A be a simple algebra over with unit element

and a nonconstant continuous homomorphism from the multiplicative

semigroup A into JR+. Then there exist a representation D of A

*and a k + such that

o(a) det D(a)l k

for all a A.

STEP II. Let A: ) A. be the Hilbert sum of a family
iI I

(A.). of simple algebras over with unit and let be a non-
1 lI

constant continuous semigroup homomorphism form A into +. Then

of I and for every iI’ a repre-there exist a finite subset I o

sentation DI. of A.I as well as a k.l E +* such that
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for all a" (ai)iEl

(a) H Idet Di(ai)
iEI o

A.

Application of this fact to the algebra A" (G,) for our com-

pact group G (and its Haar measure ) which by the Peter-Weyl

theorem admits the decomposition

(G, ) . L

where for every o ., L is the simple ideal

L {X *f- f (G,)}

()
with X tr D" for D" E , yields

STEP III. Any nonconstant continuous semigroup homomorphism
b

form L (G) into + is of the form

N ( k() Idet D i ()I i
i-1

for all b(G), where k1, ..., kN +.
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6. A GENERAL THREE-SERIES THEOREM

Let G be a compact group. For any sequence (uj)j>.l in L1 (G) we

consider the corresponding sequences (k n n>k
of partial convolu-

tion products k,n k+l* * Un"

DEFINITION. The sequence (j)j>.l is said to be co.mposition c.o,n.-.

vergent if for every ko the sequence (k,n)n>k converges. In the

(k)
case of composition convergence one has lim k for every,nn-=
ko, and lim k)" )" for some compact subgroup H of G.

k H

H is called the basis of (uj)j1. In fact, H is the maximal com-

(k) (k)
for allpact subgroup of G with the property * ex

(k) ()
x E H or * H whenever k o.

THEOREM 6.1. Let G be a compact group admitinz =n exreca-

tion E and a variance V on some subsemigroup

every sequence (j)j>.l in " the following statements are equiva-

lent"

(i) (uj)j>.l is composition convergent with basis {e}.

(ii) (a) H E () <
j.>] 3

(b) E (i- V ()) <

For the PROOF of the theorem see Maksimov [24].
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DISCUSSION. The preceding result generalizes the classical

three-series theorem to compact (Lie)groups, since in the well-

known equivalence theorem states that for any sequence (Xj)j>.I of

independent random variables, a.s. convergence and convergence in
n

distribution of . X i e of the sequence ( . Xj)n)l of n-th par-
jl J’

tial sums, are equivalent.

This equivalence holds for random variables taking values in a io-

cally compact group G iff G has no nontrivial compact subgroups.

(See [14 ], 2.2) Therefore, in the case of a compact group G one is

motivated to replace the a.s. convergence of X by the -conver-
j)l j W

gence of the sequence () >-i of n-th partial productsn n n o,n

In the case of a separable Banach space the equivalence theorem

holds without any restriction. One recalls the It’Nisio theorem as

quoted in Woyczyski [35], p. 274.

7. THE SPECIAL CASES OF FINITE GROUPS AND LIE GROUPS

Here we shall discuss versions of the three-series theorem for gener-

al Lie groups including finite groups.

First of all we take up the case of a finite group G of order p of

the form G {Xl, ..., Xp}, where xI denotes the neutral element

e of G.

Let (Xj)j>.l be a sequence of independent G-valued mandom variables

on a probability space (,O, P). As befome we form
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the corresponding sequence (Yn)n>l
Y X1 Xn n

of G-valued random variables

Clearly (Yn)n.>l converges a.s. if for P_ a.a. m there exists

an j(m) >. 1 such that X.(m) e for all j >- j(m). Thus, for the
]

set

C" U N [X. e]
l.>1 j.>l ]

of points of convergence of (Yn)n>-1
we get P(C) 0 or 1. It fol-

lows that the a.s. convergence of (Yn)n->l is equivalent to the ine-

quality

P( [Xj e]) > 0 for some Jo "> 1.

J’>Jo
is of theSince for every j.>l the distribution pj PX. of X

3
(j) (j) 3

+ + the a.s. convergence ofform Pj 1 xI p Xp
(Yn)n.>l is in fact equivalent to the inequality

J>’Jo
(j)

> 0 for some J o > 1.

(j)With the notation max (

V.M. Maksimov in [19] proves the

1 "’’’ p for all j >. 1,

THEOREM 7.1. For any sequence (Xj)j>I of G-valued random

variables X. with distribution . of the form
]
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+ + c,j 1 xI x
P

the following statements are equivalent"

(i) E ($ V(u )) < in the sense that

v(.) > 0

o

(ii) e(J) > O.
j.>

>- 1for some J o

As a direct consequence of this result one oDtains the three-series

THEOREM 7.2. For any sequence (Xj)j>I of independent G-valued

random variables Xj with distribution uj the following state-

ments are equivalent.

(i) (Yn)n>i converges a.s.

(ii) (a) .. (I- V( )) <
j. J

(b) (Uj)j>1 converges to e"

DISCUSSION (Comparison with the classical situation).

Condition (ii) (a) corresponds to the classical condition

(A) j->l’ V(Xj IU : E [Xjlu -E (Xjlu)]2 <
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for the variances V (Xj 1U) of truncated variables Xjlu, U denoting

a neighborhood of 0.

Condition (ii) (b) corresponds to the classical condition

(B) E (X iU) <
j>-I J

since from (A) and (B) follows that the variables XjlU are

concentrated at 0.

It turns out that the third classical condition

(C) , P [Xj [U] <

is redundant in the case of a finite group G. The corresponding

condition (in terms of a nemghborhood U of e) can be deduced from

conditions (ii) (a) and (b). In fact, these conditions together with

the above THEOREM yield

(j)

J>’Jo
But P [Xj [U]

> O.

1 P [X. e] implies

E Ix
j>.l J (1 P [X el) (1 ssJ)6

j>. j>.

whence condition (C).
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We proceed to the case_of_a..Lie group G.

Let G be a Lie group of dimension p >. 1 and let (Xj)j>.I be a

sequence of independent G-valued random variables X. on (,0%, P)
]

with distribution j. We consider the sequence (Yn)n>.l of n-th

partial products Y X1 X If for some neighborhood U ofn n

e the series

. P Ix [U] . U ([U) (1 (U))

diverges, then (Yn)n>-I diverges a.s. Since we are interested in

studying the a.s. convergence of (Yn)n>,l we may assume without loss

of generality that

X.(n) c U
3

for all j -> 1,

where U can be chosen as a (local) coordinate neighborhood defin-

ing a local coordinate system of G. Such a coordinate neighborhood

generates a connected component of G, whence we may also assume that

G is connected.

Let {Xl, ..., Xp} denote a fixed local coordinate system with coor

dinate neighborhood U of e. For every x U the symbol

x will denote the coordinate vector (x
I (x), ..., Xp(X)) of x with

respect to the system {Xl, ..., Xp}. The correspondence x x is a

continuous bijection from U onto its image in P. For every jl

the G-valued random variable Xj induces an P-valued random varia-
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ble . (on(,(, P)).
3

The following significant result of V.M. Maksimov [23] is basic for

his further studies (also in [21]) in establishing a three-series

theorem for Lie group-valued random variables.

THEOREM 7.3. Let G be a connected Lie group of dimension

p >- 1 and {Xl, ..., Xp} a local coordinate system with coordinate

neighborhood U of e. Let (Xj)j.>I be a sequence of independent

G-valued random variables on (fl,O, P) and (Yn)n>.l the corresponding

sequence of n-th partial products. Then

(i) (Yn)n>-I converges a.s. if

(a) E (j) 0 for all j>.l, and

j>:l.

(ii) (Yn)n.>l diverges a.s. if

(a) E(Xj) 0 for all j.>l, and

r. IIv x
j.>i J

Here, V(j) denotes the vector of the variances of the components

of j, and ii. Ii stands for the Euclidean norm in P.

DISCUSSION. Let (Xn)n.>l be a sequence in U and let (Xn)n>l
denote the correspollding sequence of canonical coordinates. Then,

for Abelian groups G, the product H x. and the sum . s imul-
j->i 3 j.>i ]

taneously converge or diverge. Moreover, it has been shown that in
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the case of a non-Abelian group G this conclusion does not hold

for any local coordinate system. Therefore we cannot expect the si-

multaneous convergence of [ X. and .. There is, however,
j>’l 3 j>’l 3

a probabilistic version of this fact-

If E(j) -- 0 for all j>’l and . II v( )II < then the sum
j>.l J, . converges a.s. On the other hand, by the THEOREM above, the

jl 3

product X. must also converge a.s. An analoguous statement
j>’l 3

holds true for simultaneous divergence a.s.

THEOREM 7.4. (One sided three-series theorem). Let G De a

connected Lie group of dimension p >, 1 and x1, ..., x a local
P

coordinate system with coordinate neighborhood U of e. Let (Xj)j>.I
be a sequence of independent G-valued random variables on (,OL, P)

and (Yn)n>.l the corresponding sequence of n-th partial products. The

sequence (Yn)n>’l converges a.s. if

(a) Xj(n) = U for all j >.1.

j.> J

j>-i J

MAKSIMOV’S CONJECTURE. Let G be a connected Li,_ grcup and U

a coordinate neighborhood of e. For every sequence )j>’l of inde-

pendent G-valued random variables and the correspondil.- sequence

(Y) of n-th partial products the following statei nus are equiv-n n>’l

alent"
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(i) (Yn)n>. I converges a.s,

(ii) (a) . II E( )II <
j>.a J

j>.i J

(c) x. converges for any sequence
j>.

(xj)j>.l in G satisfying x. E(X.) for all j>.l.
] 3

REMARK. For Abelian Lie groups Maksimov’s conjecture can be

established with little effort.

8. HIGHER MOMENTS AND THE STRONG LAW OF LARGE NUMBERS ON A LIE GROUP

Moments of higher order of probability measures on a group have been

studied for the first time by Y. Guivarc’h in [11]. They came up in

the study of harmonic functions on locally compact groups and were

applied to versions of the strong law of large numbers for group-

valued random variables.

Let G be a locally compact group with a countable basis of its to-

pology. We further assume that G is (compactly) generated by a com-

pact neighborhood V of e in the sense that G coincides with the

closed subgroup [V] generated by V. For the moment let V be fixed.
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We introduce a mapping V: G-, + by

(x)" inf {n 6 *" x 6 Vn}V

for all x G. Clearly, V is subadditive, i.e.

v(xY) .< v(X) + v(y)

whenever x, y G.

DEFINITION. A measure u I(G) is said to admit a moment of

orde..___r + if there exists a neighborhood V of e with [V] G

such that

It can be shown that this definition is independent of the particular

choice of the neighborhood V.

If JLI(G) admits a moment of order I and if Hom(G,),

then the integral

(x) (dx)

exists. This observation motivates the following

DEFINITION. u 6LI(G) is called centered if

(d) U admits a moment of order 1,

(b) Jkdu o for all k 6 Hom (G,)
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The subsequent DISCUSSION shows that the notion of centering defined

above generalizes the classical one.

.
Let G Hom (G,{) and G’ the closed commutator subgroup of

G. Then

* (G/G’) *G (G/G’) * ( /
K

where K denotes the maximal compact subgroup of G/G’. Consequent-

ly G* is finite-dimensional and so is its dual [" CG*) ^. Let

x denote the canonical mapping from G into which maps G

onto a closed subgroup of of the form P x q with p, q >. o,

such that [P x q]- .
It is easy to see that for any u I(G) admitting a moment of or-

der 1, is centered iff its image under the canonical mapping

x x is centered (in the classical sense).

As an application we cite the following profound

THEOREM 8.1. (Strong law of large numbers). Let G be an ame-

nable, connected Lie group, a measure in $1(G) admitting moments

of all orders, centered and satisfying [supp(z)]- G. Then for any

compact neighborhood V of e and for any sequence (Xj)j.>I of inde-

pendent G-valued random variables (on a probability space (,0, P))

with common distribution B, the sequence (Yn)n>.l of n-th partial

X "X satisfies the strong law of large num-products Yn 1 n

bers in the sense that
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1
lim Y o [P].n V nn-

9. FURTHER STUDIES ON MOMENTS OF PROBABILITY MEASURES

Measures of dispersion such as variances for probabilities on the

one-dimensional torus Z have been first introduced by P. L6vy [18],

and they have been applied to the study of limiting distributions

also by P. Bartfai [1].

Expectations and variances for probabilities on linear spaces are

naturally defined as in the Euclidean space. First versions of the

three-series theorem for Hilbert spaces or for the more general

G-spaces are due to E. Mourier [25], [26]. For an expository presen-

tation of the subject until 1970 see P. Ressel [28]. A discussion of

the case of Hilbert space is also contained in the book [10] of

I.I. Gihman and A.V. Skorohod.

Dispersions of probabilities on a sphere appear at an early stage in

the work [7] of R.A. Fisher. Applications to problems of statistical

estimation have been discussed by W. Uhlmann [32] and H. Vogt [34].

In the framework of the hyperbolic plane and space., expectations and

variances can be introduced via derivatives of Fourier transforms of

measures. A starting point was set by F.I. Karpelevich, V.N. Tutuba-

lin and M.G. Shur in [16]. A different but similar approach is due
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to V.N. Tutubalin [31]. Applications to the central limit theorem

indicated already in [16] have been made precise 5y J. Faraut [6].

They rely on the general theory of spherical functions (S. Helgason

[12], N.J. Vilenkin [33]), especially for the Gelfand pair (SL (2,),

SO (2, )), as discussed particularly in [29] by M. Sugiura, and

their impact to probability theory on certain symmetric spaces

(R. Gangolli [8], [9]).

The central limit theorem envisaged can be extended to all hyperSolic

spaces. Its generalization to arbitrary Gelfand pairs seems to be a

realistic goal.

There are various other approaches to dispersion measures of proDaDi-

lities in a general setting.

The axiomatics of Section 5 extends to semigroups (see T. Byczkowski

et al. in [2] and [3]). The semigroup + is the Dasic structure of

an approach to the notion of variance via generalized quadratic

forms within the framework of hypergroups and generalized transla-

tion spaces (H. Chbli [4], [5], K. Trimche 30]). Finally, we only

mention the generalization of the Khintchine functional as a measure

of dispersion and its importance to delphic theory.

References and a few details are contained in the author’s note [13]

and in his monograph [14].
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