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1. INTRODUCTION

Moments of probability measures such as expectation and variance are
important tools throughout probability theory and its applications.
Moment conditions appear as helpful and crucial in almost all prob-
lems connected with the convergence in various senses of sequences
of independent random variables. We shall restrict our attention to
the almost sure convergence and the scope of the strong law of large

numbers.

The aim of this paper is to report on new developments and results

in the theory of expectations and variances for random variables
taking their values in a topological group. The groups under discus-
sion will be either the additive groups of topological vector spaces
or locally compact groups. While the framework of a topological
vector space.admits a very natural extension of the notion of moments,
some new ideas are needed in the case of an arbitrary locally compact
group. Our exposition will be twofold: it will indicate the imitation

procedures and at the same time describe the innovation available.

We start with the classical set up. Let X be a real random variable

on a probability space (q,0V, P). Its expectation and variance are

defined by
E (X): = [XdP = jdeX and
VOO: = fX - EGOYRAP = f(x - E(x))2Py(ax)
Q R
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resp.

In 1939 P. Lévy [18] systematically extended the notions of expecta-
tion and variance to spherical random variables X taking values in
the torus 1: = ] - m, m ] instead of the real line IR. Lévy pro-

posed the definition

V (X): = inf I(x-a)2Px(dx)
a€e1T 1
for the variance of X, and every number a € T such that the infi-
mum in the definition of V(X) is attained he called an expectation
of X. Thus E(X) is defined as any a, € T satisfying the ine-

quality

'{(x-ao)2 Py(dx) < r{(x--a)2 Py (dx)

for all a € 1T.

In the following, generalizations of Kolmogorov's three-series the-

orem will be of central interest. For real random variables this

theorem states that for any sequence (Xj)j>1 of random variables the

series Y X. converges a.s. (2L X. < o a,s, for abbreviation)
jz1 j21
iff the following condition holds:

There exists a number ¢ > o such that

(a) T P I[IX

J> el < o,
jz1 J
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(b) . E (X. 1 ) ¢ e, and
jz1 ] [1x51 < el

(¢ T VX 1 ) <o
jz1 ] X501 < el

In the case of spherical random variables the necessary and suffi-

cient condition for > X, <= a.s. turns out to be
jz1

(c") r VvV (X

j) < o and
js1

(') ¥ E (X:) < e,
jz1 J

where (b') has to be read in the sense that v E (Xj) <
jz1

for any choice of expectations E (Xj) of Xj or for some suitable

choice of E (Xj). See Lévy [18] and Bartfai [1].

It is the nonuniqueness of the expectation in this case which yields

the appropriate extension of the concept to arbitrary compact groups.

2, BASIC NOTIONS

Before entering the subject proper a review of some basic notions
from probability theory on a topological group seems to be in order.
For details in the locally compact case the reader is referred to

Heyer [1u4].
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Let G be a (completely regular) topological group with unit ele-
ment e. By ﬂLb(G) we denote the set of all bounded Radon measures

p on G in the sense that p 1is a linear functional on the space
‘eb(G) of bounded continuous functions on G possessing the fol-
lowing property: For every € > 0 there exists a compact subset

Ce of G such that Iu(g)l <€ e for all g ¢ Q,b(G) with

lgl €1 and g(Ce) = 0. Clearly, every Radon measure on G can
be considered as a bounded regular sorel measure on the Borel-o-
algebra ) of 6. In J\Lb(G) we introduce the weak topology ‘Ew.
In fact, the mapping (u,v) » u * v  from WP x MP(e) into

&Lb(G) is eontinuous on norm bounded subsets.Jﬂ.E(G) is separable

and metrizable iff G 1is separable and metrizable.

If G 1is a locally compact group, then there exists a left (or right)
Haar measure w: = wg on G. This measure is unique up to a posi-
tive multiplicative constant. w is o-finite, and it is bounded iff

G 1s compact. On the subsemigroup M) of a11 probability mea-
sures on G the weak topology"zw coincides with the vague topolo-
gy C v defined as the topology of pointwise convergence on the space
¥ (G) of continuous functions on G with compact support. ﬁLl(G)

is compact or locally compact iff G is compact. For any compact
subgroup H of G, Wy denotes the normed Haar measure of H de-
fined as the (both sided) H-invariant measure in ﬁLl(G) having H

as its support. The normed Haar measures of compact subgroups are

exactly the idempotents of N1(e) and also of ﬂLE(G).
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For every x € G the symbol e, denotes the Dirac measure in x.

The set of all Dirac measures on G will be abbreviated by ® (G).

3. THE THREE-SERIES THEOREM IN BANACH SPACES

We are given a Bernoulli sequence on some probability space (Q,0L,P),

that is a sequence (ej)j21

such that P [ej = -1]1 = P [ej = +1] = % for all j = 1,

of independent random variables €5

Let E be a Banach space, p €[1, 2] and q €[2,«].

We start with the following

DEFINITION. E 1is said to be of (Rademacher) type p if

there exists a constant K > 0 such that

E |

Jb1b
(RN

n
tj xj"p < K ,Z ”xj"p
] J=1

for all n 2 1 and all sequences {xl, ey xn} in E.

Analoguously, E is said to be of (Rademacher) cotype q if there

exists a constant k > 0 such that

n n
ENZ e5xl® 2 x & g0
j=1 J j=1 J
for all n » 1° and all sequences {xi, oo xn} in E.

Clearly, every Banach space is of type 1 and of cotype . For any

measure space (S, ¥, u) and p € [1,2] the space LP(S, ¥, u) is
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of type 2 A p and of cotype 2 v p.

We are now considering sequences (Xj) of independent random var-

j21
iables taking values in a separable Banach space E. The norm closed
unit ball of E will be denoted by B. If X is an E-valued random
variable and C a set in the Borel-o-algebra & (E), then X.14 is
defined to be equal to X on C and to 0O otherwise. If X 1is
P-integrable, E(X) will denote the expectation of X.

Given a sequence (X.) of independent E-valued random variables

37321

we shall study the a.s. convergence of the series I Xj.
j21

Let p € [1,=[.

DEFINITION. A separable Banach space E 1is said to admit the

Kolmogorov property of order p (KPP) if for every sequence (xj)j>1

of independent E-valued random variables, the series . Xj con-
jz1
verges a.s. whenever there exists a constant ¢ > o such that

(s1) v P Ix.| <ecl < =,
jz1 J
(S2) Y E (X..1 ) 1is summable in E, and
i1 J77cB
- P
(s3) j§1 E ("Xj'ch E (xj.1cB)n ) < e,

E is said to admit the strong Kolmogorov property of order p

(SKPP) if for every sequence (Xj) of independent E-valued random

j21

variables, the a.s. convergence of the series > Xj is equivalent
j21
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to (S1) through (S3) for some c¢ > O.

THEOREM 3.1. A separable Banach space E admits (KPP) for

p €[1,2] iff E 1is of type p.

Concerning the PROOF of the theorem we note that the implication "e"
is essentially known. See Woyczyhski [35], p. 431 for the special
case p = 2. The inverse implication follows directly from Hoffmann-

Jérgensen [15], p. 116.
THEOREM 3.2. A separable Banach space E admits (SKP2) iff E
is a Hilbert space.

The PROOF of this result is based on a famous theorem of Kwapief's
on the type-cotype characterization of Hilbert spaces. See Kwapieh

[17].

L. MOMENT CONDITIONS IN THE CASE OF AN ABELIAN LOCALLY COMPACT GROUP

We start by restating the classical three-series theorem in terms of
characters of the additive group of the real line IR.

For any R-valued random variable X on a probability space (q,Q, P)
iyx

and any character y of R of the form x = x(x) = xy(x): = e for
some y € R we define the 1T-valued random variable Y: = yOZ,
where Yoi = % for some ¢ > o, and Z denotes the principal branch

of the T-valued random variable exp(% X) = exp(i% X) = exp(in %).
o

Noting that with this definition of Z, [X 4 2] = [-c <X < c], we
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arrive at the following version of Kolmogorov's result.

THEOREM 4.1. For any sequence (Xj) of independent R-valued

jz1
random variables the following statements are equivalent:

(i) L Xy < = a.s.
jz1 3

(ii) There exists a neighborhood U: = J]-c, c¢]l of o
such that

(a) Y PIX. € CU] < o ,
jz1 J

(b) L E(Y.) < e, and
j21 J

(c) % V(Y.) < oo,
j21 J

Using the above device the convergence conditions (a) through (c) of

(ii) can be restated as

(a") PIX. eful < =
? j§1 ] Lo ’

(b") 2 E (log xoX.) < e, and
321 J

(c") L V (log xoX.) < oo,
j21 J

the latter two holding for every character x of [R.

Here the T-valued random variable of the form log xoX is defined as
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iZ where 7Z denotes the principal branch of the T-random variable

exp(ixoX).

Now, let G be an Abelian locally compact group which we write mul-
tiplicatively with unit element e. We suppose that G is second
countable. If we denote the character group of G by G* we have

the following result of R.P. Pakshirajan [27].

THEOREM 4.2. For every sequence (Xj)j>1 of independent G-valued

random variables the following statements are equivalent:

(1) IX. < o a.s.
SEFEE
(ii) (a) Given any (compact) neighborhood U of e, the series

L P [X. € tU] converges.
j21 ]

(b) Y. E (log xoX.) < o,
j21 J

< o™

() Z V (log onj) s

jz1

the latter two conditions holding for every x € G~, and the T-ran-

dom variables log onj defined as indicated above.

The PROOF of this theorem relies on a few auxiliary results.

LEMMA 1. For every x € G the following statements are equi-

valent:
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(1)

(ii)

(1)

(ii)

A more

compac
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I E (XOXj) < o,

LEMMA 2. For every x € G” the following two sets of condi-

are equivalent:

I E(xoX.) < o and Y V(xoX.) < oo,
i1 J iz 3

Y E(Z.) < = and Y V(Z.) < e,
jz1 J iz1 ]

LEMMA 3. The following statements are equivalent:

(a) There exists a (compact) neighborhood U of e such
that T P [X; €[U] < =.
i1 J

(g) = onj < = a.s. for all x € G™.
condensed version of Kolmogorov's theorem reads as follows.

THEOREM 4.3. Let G be a second countable Abelian locally

t group. Then for any sequence (X.) of independent G-valued

37321

random variables the following conditions are equivalent:
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(1) I X. < o a.s.
jz1 3

(ii) I yoX. < o a.s. for every x € G7
j21 J

For the PROOF as given in Pakshirajan [27] one notes this:

The implication (i) = (ii) follows directly from the continuity of
the characters x € G%

The implication (ii) = (i) has to be shown for compact and for dis-
crete Abelian groups first, before the structure theorem for locally

compact Abelian groups can be applied.

5. AN AXTIOMATIC APPROACH TO EXPECTATIONS AND VARIANCES

Let G be a compact group and let )X be a subsemigroup of ﬁbl(G)
such that B (6) < N,

DEFINITION. N is said to admit an expectation E if E is a

continuous semigroup homomorphism NN -+ G satisfying the following

conditions:

(E 1) E (ex) x for all x € G.

(E2) E (w

e for all symmetric measures u €N.

REMARK., If X admits an expectation, then X' does not contain
any nontrivial idempotent of ﬁkl(G)..In fact, let u Dbe an idempo-

tent of ﬂLl(G) of the form w = wy for some compact subgroup H
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of G such that u € N'. Then for all x € H, whence

WH T Ex*ey
E(wH) = B(ex*wH) = E(ex) E(wy) = xE(wy), and consequently

E(ex)

"

X = e, which shows H = {e}.

From this remark it becomes clear that for the subsequent discussion
we shall assume that the subsemigroups N with V (6) < N are neigh-

borhoods of ¢, in M.

REMARK. Under this additional assumption G 1is necessarily a
Lie group (of dimension p 2 o).
For this one has to show that there exists a neighborhood of e
without any nontrivial subgroup of G. Suppose that for every neigh-
borhood of e there exists a nontrivial and hence a nontrivial com-

pact subgroup K. Then is a neighborhood of €e in ﬁLl(G),

“K
thus - wg € N and consequently K = {e}. But this contradicts the

assumption.

DEFINITION. A compact group G admits an expectation if there

exists a subsemigroup N of N,l(G) with ® (G) ¢ ¥ which is a neigh-.

borhood of ¢, in Mm1(e) such that N admits an expectation.

The following result is due to V.M. Maksimov [22], [24].

THEOREM 5.1. For any compact group G the following statements

are equivalent:

(i) G admits an expectation.

r

(ii) There exist integers p, q, r > o such that G ¥ su(2)? x 7% x z,
9
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where SU(2) denotes the special linear group of dimension 2,

T the 1l-dimensional torus and %, the 2-element group.

Concerning the PROOF of this existence theorem we shall sketch the

ideas of both implications.

(1) Compact groups admitting expectations are necessarily of the

form G = SU(2, p) x¥(a) x Z,(r) with SU (2,p): = SU()P,

T(q): = 1% and Zz(r): = Zg.
Let Y: = Y(G) denote the system of irreducible (unitary contin-

uous) representations of G. For every u E&Ll(G) and each ¢ € [

the Fourier transform of u corresponding to the class ¢ with rep-

resentative D(c) is defined by
¢y = D oulax) € M o), ©
G
where d(o): = d(DCO)) is the dimension of the representing (Hilbert)

space K(o): = q@(D(U)) of ¢ or D(c).

For any subset N of M(G) we consider the subset D 91U of

M(d(o), C). By the Peter-Weyl theorem the set

ﬂLé(G): = {u € wleer: D(c)(u) 4 o for finitely many o € Y}

is dense in ﬁLl(G). It is therefore quite reasonable to deal with

representations of the form
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D': =

N
N Z®D(°i)
i=1
We note that DN(N3 is a subsemigroup of M(d(DN), €) whenever N

is a subsemigroup of ate.

STEP I. Every semigroup homomorphism ¢ from N into some group

G induces a semigroup homomorphism @ from DN(N) into Gy

1

For every ¢ € ¥ and D( °)€ g let Q—(D(c)) be the matrix algebra

(0)(x): x € G}. Then A'(D(o)) is simple and

generated by the set {D
thus isomorphic to one of the algebras GL(d(o), R), GL(d(g), C) or

GL(d(o), H). Analoguously one defines ﬁ’(DN).

STEP II. Every semigroup homomorphism @ from DNCN) into a
group Gl can be extended to a group homomorphism $ from the

group (generated by) K (DN) into Gy.
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N ) ®

Inclusion -

\
\
A}
Sn

A oYy

STEP III. It turns out that the compact group G 1is a direct
product of homomorphic images of the groups GL(d,R), GL(d,€) or
GL(dH) into G. But such homomorphisms are known from the general

theory of determinants over fields.

(2) Determination of expectations on the groups SU(2), T and 22.

(2a) We first consider the group

e B 2 2
su(2) - {(_E &-): ol + [8]2 = 13

and define the semigroup

a B
X: = {uEJ\Ll(SU(Z)): det ({J (_-— —)du 0 3.
stz 8 @
For every u € N we introduce
E(y) E (a B) d
wi o = - re Hos
Alw) sécz) B a

where A(u) 1is determined by the condition det E(u) = 1, Then E

is the unique expectation of SU(2).
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(2b) For every 1 € {1, ..., N} let A - D;(¥): = exp i J(1)A with
j(l) € Z be a character of T. Given a measure G.N}(T) we obtain,
again for every 1 € {1, ..., N} the 1-th Fourier coefficient of

v in the form

Dl(u) = r; exp iﬁ#l) with ry € mw, 3(1) € [0,2n[

Let N: = {(u € ﬁL;(l): Dl(u), cens Dl(u) $ 0}. Then for every

v € N we define an expectation E of T by
E(u): = <(43(1), ...,SJN)), (Yl’ e YN)> (mod 2m),
where (yl ey YN) denotes any vector of ZN satisfying

<3y, wuey JAND, Cyys ...,YN)> = 1.

(2¢) The group 72 {e, x} admits a unique expectation E

defined by

e if u({e}) > u({x})
ECu):

X otherwise
whenever u € ﬁLl(Zz).
Now we proceed to second moments.

DEFINITION, N is said to admit a variance V if V is a non-
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constant continuous semigroup homomorphism N - R, satisfying the

following conditions:

(V1) v c lo,1].
(Vv2) v(u) = 1 iff u € B (G).

Any nonconstant continuous semigroup homomorphism N - R, is called

. . . 1
a weak variance on NN . Variances and weak variances on N : = JWL~(G)

are called variances and weak variances for G. In the first case

we also say that G admits a variance if there exists a variance

on M1ca).

REMARK. A weak variance V on N is a variance iff V(u) = 0
for all nontrivial idempotents u of ﬁk1(G) in X .
Variances have been first defined by V.M. Maksimov in [19] and [20].
For a detailed presentation of the theory we recommend Heyer [1ul],

2.4,

THEOREM 5.2. Let G be a compact group, o ;, ..., Oy € L with

(o) and k

representatives D(cl), «..s D cees Ky € R} .

1’
Then the mapping

k.
i

o V(u): = | det D(°i)(u)|

n ==

i=1

from ﬂkl(G) into R+ is a weak variance for G. Moreover, the

following statements are equivalent:

(i) V 1is a variance for G.

(ii) The smallest set [01, ooy oN] closed under products and
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conjugates and containing {ol, ceey °N} equals L.
N Y@ (o)
(iii) D = r YD1 is faithful.
i=1

THEOREM 5.3. For any compact group G the following statements

are equivalent:

(i) G admits a variance.

(ii) G 1is a Lie group (finite or infinite).

The PROOF of this result involves the general form of weak variances

on &Lb(G).

STEP I. Let A be a simple algebra over [R with unit element
and ¢ a nonconstant continuous homomorphism from the multiplicative
semigroup A into IR, . Then there exist a representation D of A

and a k € R: such that
k
w(a) = |det D(a)|

for all a € A.

STEP II. Let A: = Iy C’A. be the Hilbert sum of a family
ieI
(A.) of simple algebras over R with unit and let ¢ be a non-

i“iel
constant continuous semigroup homomorphism form A into R, . Then
there exist a finite subset I of I and for every iGIb a repre-

sentation Di of Ai as well as a ki EIR: such that
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@la) = @I |det Di(ai)lki
i€I
o
for all a: = (ai)ieI € A,
Application of this fact to the algebra A: = Hé (G,w) for our com-

pact group G (and its Haar measure w) which by the Peter-Weyl

theorem admits the decomposition

2w = 9L,

o€y o

where for every o¢ € 3., Lc is the simple ideal

(o)

Lo o= xP%f: £ e G,

(o) (o)

with ¥ i = tr D<°) for D € 0 € 1, yields

STEP III. Any nonconstant continuous semigroup homomorphism

@ form &Lb(G) into m+ is of the form

N
o) = 1 Jaet p°id(|M

i=1

b *
for all u € M7(G), where Ogs wees Oy € Y and Ky wees kg €R,.
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6. A GENERAL THREE-SERIES THEOREM

Let G be a compact group. For any sequence (uj)j>1 in m_l(G) we
consider the corresponding sequences (vk n)n>k of partial convolu-
9

tion products Vk,n: = “k+1*"""* Mo

DEFINITION. The sequence (uj)j>1 is said to be composition con-

vergent if for every k2o the sequence (vk,n)n>k converges. In the
v(k)

case of composition convergence one has lim Vieon for every
9
—00

(k) () n

k2o, and lim v = v = wy for some compact subgroup H of G.
H is cal?g: the basis of (“j)jzl‘ In fact, H 1is the maximal com-
pact subgroup of G with the property v(k) = v(k)* €y for all

X € H or v(k) = u(k)* whenever k 2 o.

WH

THEOREM 6.1. Let G be a compact group admitting an c«pecca-
tion E and a variance V on some subsemigroup N of ﬁLi(G? For
every sequence <“j)j>1 in ¥ the following statements are equiva-
lent:
is composition convergent with basis {e}.

(i) (@) 1 E (u) < w
j21 J

) T (1 -V () ) < e
izl ]

For the PROOF of the theorem see Maksimov [24].
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DISCUSSION. The preceding result generalizes the classical
three-series theorem to compact (Lie)groups, since in IR the well-

known equivalence theorem states that for any sequence (Xj) of

jz1
independent random variables, a.s. convergence and convergence in
n
distribution of ¥ Xj, i.e. of the sequence ( ¥ X of n-th par-
j=1 j=1
tial sums, are equivalent.

j)n>1

This equivalence holds for random variables taking values in a lo-
cally compact group G 1iff G has no nontrivial compact subgroups.
(See [141]1, 2.2) Therefore, in the case of a compact group G one is
motivated to replace the a.s. convergence of I X. by the‘zvfconver-

j21

gence of the sequence (vn)nzi of n-th partial products voioE vo,n.

In the case of a separable Banach space the equivalence theorem
holds without any restriction. One recalls the It&Wisio theorem as

quoted in Woyczyhski [35], p. 27u.

7. THE SPECIAL CASES OF FINITE GROUPS AND LIE GROUPS

Here we shall discuss versions of the three-series theorem for gener-
al Lie groups including finite groups.

First of all we take up the case of a finite group G of order p of

the form G = {xl, ey xp}, where Xq denotes the neutral element

e of G.

Let (xj)j21 be a sequence of independent G-valued random variables

on a probability space (2,0l, P). As before we form
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the corresponding sequence (Yn)n>1 of G-valued random variables

n' RRRR Xn‘

Clearly (Yn) converges a.s. if for P- a.a. w € Q@ there exists

nz1

an Jj(w) 2 1 such that Xj(w) = e for all j 2 j(w). Thus, for the

set

C: = L_J [‘) [X. = el

121 j21

of points of convergence of (Yn) we get P(C) = O or 1. It fol-

nz1

lows that the a.s. convergence of (Yn)n>1 is equivalent to the ine-
quality
P( [X. = e]l) > 0 for some j_ 2 1.
323, °
“-o
Since for every jz1 the distribution p.: = Py of X. 1s of the
. . 3
form u. = a (3 € + ...+t (3 € , the a.s. convergence of
Jj 1 Xq P xp
(Yn>n>1 is in fact equivalent to the inequality
il alcj) > 0 for some jo > 1.
izig
With the notation u(]): = max (al(J), P apcj)) for all j 2z 1,

V.M. Maksimov in [19] proves the

THEOREM 7.1. For any sequence (xj)j>1 of G-valued random

variables Xj with distribution uj of the form
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3 (3
N = € + .0t g €
J 1 X4 P xp
the following statements are equivalent:
(1) L0 - V(u.)) < e in the sense that
321 J
T V(u.) > O for some j_ 2 1.
%y, °
o
Giy 1 &9 5 o,
jz21

As a direct consequence of this result one obtains the three-series

THEOREM 7.2. For any sequence (Xj)j>1 of independent G-valued
random variables Xj with distribution My the following state-

ments are equivalent:

(i) (Yn)nzi converges a.s.,
(ii) (a) L (1= vius)) o< ©,
321 ]
(b) (.uj)j;1 converges to .

DISCUSSION (Comparison with the classical situation).

Condition (ii) (a) corresponds to the classical condition

A . = .
(A) L v<xJ 19 E [xj1

-E(X.lU)]2 < =
j21 J

U
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for the variances V (Xj 1U) of truncated variables leU’ U denoting

a neighborhood of 0.
Condition (ii) (b) corresponds to the classical condition

(B) E(X;: 1) < o,
j§1 13U

are

since from (A) and (B) follows that the variables leU

concentrated at O.

It turns out that the third classical condition

(c) Y P [X. etu] < w
321 J
is redundant in the case of a finite group G. The corresponding
condition (in terms of a neighborhood U of e) can be deduced from
conditions (ii) (a) and (b). In fact, these conditions together with

the above THEOREM yield

.H' aij) > 0.

izig
But P [X; e[u1 < 1-pP [xj = el implies
ropox. eful < T (1-PlXszeD = £U-a3)e a,
izl ] izl ] 331

whence condition (C).
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We proceed to the case of a Lie group G.

Let G be a Lie group of dimension p 2 1 and let (Xj) be a

j21
sequence of independent Gevalued random variables Xj on (q,0L, P)

with distribution My - We consider the sequence (Yn)n>1 of n-th
partial products Yn: = Xy ... Xn’ If for some neighborhood U of
e the series

T oplx. €ful = T owdu = £A@- @

331 i j21 3 jz1 J

diverges, then (Yn)n?1 diverges a.s. Since we are interested in
studying the a.s. convergence of (Yn)n>1 we may assume without loss
z

of generality that
Xj(ﬂ) c U for all j = 1,

where U can be chosen as a (local) coordinate neighborhood defin-
ing a local coordinate system of G. Such a coordinate neighborhood
generates a connected component of G, whence we may also assume that

G is connected.

Let {xl, ey xp} denote a fixed local coordinate system with coors
dinate neighborhood U of e. For every x € U the symbol

% will denote the coordinate vector (x1 (X)y vuey xp(x)) of x with
respect to the system {xl, ey xp}. The correspondence x - % is a
continuous bijection from U onto its image in RP. For every j21

the G-valued random variable Xj induces an RP-valued random varia-
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-~

ble Xj (On(ﬂ,O‘L, P)).
The following significant result of V.M. Maksimov [23] is basic for
his further studies (also in [21]) in establishing a three-series

theorem for Lie group-valued random variables.

THEOREM 7.3. Let G be a connected Lie group of dimension
P 2 1 and {xl, ey xp} a local coordinate system with coordinate
neighborhood U of e. Let (Xj)jzl be a sequence of independent
G-valued random variables on (Q,0L, P) and (Yn)nzl the corresponding

sequence of n-th partial products. Then

(1) (Y ),»q converges a.s. if

(a) E <ij) = 0 for all 321, and

(b) T Vx| < =,
j21 ]
(ii) (Yn)n?1 diverges a.s. if

(a) E(Xj) = 0 for all j21, and

(@) TV = .
i1 ]

Here, V(ij) denotes the vector of the variances of the components

of ij’ and || . || stands for the Euclidean norm in [RP.

be a sequence in U and let (; )

DISCUSSION. Let (xn) n’nz1

nz1

denote the corresponding sequence of canonical coordinates. Then,

for Abelian groups G, the product I xj and the sum @ X. simul-
j21 jz1
taneously converge or diverge. Moreover, it has been shown that in
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the case of a non-Abelian group G this conclusion does not hold
for any local coordinate system. Therefore we cannot expect the si-

multaneous convergence of I X. and r X.. There is, however,
jz1 j21
a probabilistic version of this fact:

If E(ij) = 0 for all j21 and ¢ "V(ij)" < o, then the sum

.

j21

z ij converges a.s. On the other hand, by the THEOREM above, the
j=1
product I X. must also converge a.s. An analoguous statement

j21
holds true for simultaneous divergence a.s.

THEOREM 7.4. (One sided three-series theorem). Let G be a
connected Lie group of dimension p 2 1 and Xqs oo xp a local

coordinate system with coordinate neighborhood U of e. Let (Xj)j>1

be a sequence of independent G-valued random variables on (g,0L, P)

and (Yn) the corresponding sequence of n-th partial products. The

n>1

sequence (Y_) converges a.s. if

n'n21

(a) Xj(Q) c U for all Jj21.

() T nzc>2j>|| < .

e

() LIVl < e
jz1 ]
MAKSIMOV'S CONJECTURE. Let G be a connected Lit grcup and U
a coordinate neighborhood of e. For every sequence ( ’)j>1 of inde-
pendent G-valued random variables and the correspondii - sequence

(Yn>n?1 of n-th partial products the following statei 2nis are equiv-

alent:
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(1) (Yn)n>1 converges a.s,
(ii) (&) ¥ JEXD| < =
iz1 ]
() T VXD < .
iz1 ]
(c) I x. converges for any sequence
i1
(xj)jal in G satisfying ;j = E(ij) for all j»1.

REMARK. For Abelian Lie groups Maksimov's conjecture can be

<

established with little effort.

8. HIGHER MOMENTS AND THE STRONG LAW OF LARGE NUMBERS ON A LIE GROUP

Moments of higher order of probability measures on a group have been
studied for the first time by Y. Guivarc'h in [11]. They came up in
the study of harmonic functions on locally compact groups and were
applied to versions of the strong law of large numbers for group-

valued random variables.

Let G be a locally compact group with a countable basis of its to-
pology. We further assume that G is (compactly) generated by a com-
pact neighborhood V of e in the sense that G coincides with the

closed subgroup [V] generated by V. For the moment let V be fixed.
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We introduce a mapping G »IR, by

Sy? +
sv(x): = inf {n € N*: x¢€ Vn}
for all x € G. Clearly, 8y is subadditive, i.e.

Gv(xy) < Gv(x) + Gv(y)

whenever x, y € G.

DEFINITION. A measure y € nLl(G) is said to admit a moment of

order o € R: if there exists a neighborhood V of e with [V] = G
such that

C{;ngu < o .

It can be shown that this definition is independent of the particular
choice of the neighborhood V.
If 4 € ﬁLl(G) admits a moment of order 1 and if A € Hom(G,R),

then the integral
[ A(x) plax)
G

exists. This observation motivates the following
DEFINITION. eﬂLl(G) is called centered if

(a) u admits a moment of order 1,

(b) JAadp = o for all X € Hom (G,R)
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The subsequent DISCUSSION shows that the notion of centering defined

above generalizes the classical one.

Let G*: = Hom (G,R) and G' the closed commutator subgroup of
G. Then

*

¢* = (e/en’* ({8761 oy

s
where K denotes the maximal compact subgroup of G/G'. Consequent-
ly 6* is finite-dimensional and so is its dual G: = (G™)". Let

X - X denote the canonical mapping from G into G which maps G
onto a closed subgroup of G of the form RP x 29 with P, Q@ 2 O,
such that [RP x 29]” = G.

It is easy to see that for any u € “Li(G) admitting a moment of or-
der 1, u is centered iff its image 3 under the canonical mapping

x - x is centered (in the classical sense).
As an application we cite the following profound

THEOREM 8.1. (Strong law of large numbers). Let G be an ame-
nable, connected Lie group, u a measure in slee admitting moments
of all orders, centered and satisfying [supp(u)]~ = G. Then for any

compact neighborhood V of e and for any sequence (Xj) of inde-

j21
pendent G-valued random variables (on a probability space (2,0L, P))
with common distribution p, the sequence (Yn)n?1 of n-th partial

products Yn: = Xl'...-Xn satisfies the strong law of large num-

bers in the sense that
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lim % Y = o [P].

9. FURTHER STUDIES ON MOMENTS OF PROBABILITY MEASURES

Measures of dispersion such as variances for probabilities on the

one-dimensional torus T have been first introduced by P. Lévy [18],

and they have been applied to the study of limiting distributions

also by P. Bartfai [1].

Expectations and variances for probabilities on linear spaces are

naturally defined as in the Euclidean space. First versions of the
three-series theorem for Hilbert spaces or for the more general
G-spaces are due to E. Mourier [25], [26]. For an expository presen-
tation of the subject until 1970 see P. Ressel [28]. A discussion of
the case of Hilbert space is also contained in the book [10] of

I.I. Gihman and A.V. Skorohod.
Dispersions of probabilities on a sphere appear at an early stage in
the work [7] of R.A. Fisher. Applications to problems of statistical

estimation have been discussed by W. Uhlmann [32] and H. Vogt [34].

In the framework of the hyperbolic plane and space, expectations and

variances can be introduced via derivatives of Fourier transforms of
measures. A starting point was set by F.I. Karpelevich, V.N. Tutuba-

lin and M.G. Shur in [16]. A different but similar approach is due
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to V.N. Tutubalin [31]. Applications to the central limit theorem
indicated already in [16] have been made precise by J. Faraut [6].
They rely on the general theory of spherical functions (S. Helgason
[12], N.J. Vilenkin [33]), especially for the Gelfand pair (SL (2,R),
SO (2, R)), as discussed particularly in [29] by M. Sugiura, and
their impact to probability theory on certain symmetric spaces

(R. Gangolli [81, [9]).

The central limit theorem envisaged can be extended to all hyperbolic

spaces. Its generalization to arbitrary Gelfand pairs seems to be a

realistic goal.

There are various other approaches to dispersion measures of probabi-
lities in a general setting.

The axiomatics of Section 5 extends to semigroups (see T. Byczkowski
et al. in [2] and [3]). The semigroup R, is the basic structure of
an approach to the notion of variance via generalized quadratic

forms within the framework of hypergroups and generalized transla-
tion spaces (H. Chébli [4], [5], K. Triméche [301). Finally, we only
mention the generalization of the Khintchine functional as a measure
of dispersion and its importance to delphic theory.

References and a few details are contained in the author's note [13]

and in his monograph [1u4].
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