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ABSTRACT. A study is made of the problem of propagation of elastic waves in a

medium with a random distribution of cylinders of another material. Neglecting

’back scattering’, the scattered field is expanded in a series of ’orders of

scattering’. With a further assumption that the n (n > 2) point correlation

function of the positions of the cylinders could be factored into two point

correlation functions, the average field in the composite medium is found to be

resummable, yielding the average velocity of propagation and damping due to

2
scattering. The calculations are presented to the order of (ka) for the scalar

case of axial shear waves in the composite material. Several limiting cases of

interest are recovered.
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i. INTRODUCTION.

In a series of papers [i-4], Bose and Mal studied the problem of propagation

of elastic waves in a medium consisting of randomly distributed cylinders and

spheres in an elastic matrix. The focus in these papers was to extract the
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behaviour of the average or the coherent wave which propagates in the composite

medium. These authors solved the problem of elastic waves for a sparse distribution

of cylinders [4]. For dense systems [i-3], they used the methods devised by

Fikioris and Waterman [6], and Mathur and Yeh [7] where these papers deal with

the multiple scattering of acoustic and electromagnetic waves. The formalism in

these papers consisted of first solving the scattering problem by a large number

N of cylinders or spheres. The positions of the scatterers are then made random

and the configuratlonal average of the field depends on a hierarchy of equations

which was broken by invoking Lax’s quasicrystalline approximation [8]. This led

to the average wave number as a function of the properties of the phases, the

concentrations of the scatterers and the correlation in their positions.

In this formalism the existence of the average wave is apriori assumed.

However, Twersky [9] demonstrated its existence for sparse distributions by ex-

panding the ’compact form’ of solution of the fixed scatterer problem into an

’expanded form’ of ’orders of scattering’ and then taking the average of the field.

The wave number was in agreement with that obtained by Foldy [i0] heuristically.

This procedure of expansion and resummation of scattering series is also apparently

related to the diagram method of Lloyd [ii] and Lloyd and Berry [12], who considered

the acoustic and electromagnetic cases. The same procedure is adopted here to

study the problem of axial shear waves in a distribution of aligned circular

cylinders, and the present calculation is carried out to the order (ka) 2. This

approximately brings out the dispersion and attenuation characteristics due to

scattering. The method can also be adopted for vector elastic wave propagation

problems. The ’quasicrystalline approximation’ as such can then be dispensed

with. Two crucial approximations have been made. First, ’back scattering’ is

neglected in the expanded form of the solution. Second, third and higher order

correlations are taken in the form of factors of pair correlation functions.

2. SCATTERING BY ARBITRARY CONFIGURATION OF N CYLINDERS.

The formulation of this problem is similar to that of Bose and Mal [i]. In

order to avoid duplication, we summarize the formulation and refer to [i]. We
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assume that N cylinders of equal radius a are embedded in an infinite matrix

material; the shear modulus and density of the two materials are ’, p’ and

p respectively. With a suitable frame of reference normal to the cylinders, the

polar coordinate of the centers of the cyllnders 0
i (i 1,2, ,N) are (r

We take the polar coordinates of a point P(r, e) referred to 0
i
as the origin as

(El, i), and that of another cylinder Oj as (rlj ij ). If a monochromatic plane

shear wave, exp[i(kx-t)] is incident upon the cylinders, then suppressing the

time factor exp(-it), we can represent the displacement in the matrix material as

N im@i
w + +/- (R) e (.)

i--1 m=-

1

where k mlB and B (p/p) (2.2ab)

and H (z) is the Hankel function of the first kind. Apparantly, the first term in
m

(2.1) represents the incident wave and the second term in (2.1) denotes the wave

scattered by the N cylinders.

The displacement inside the ith cylinder can be similarly represented as

iresi
w
i Bim Jm(k’ Ri) e

m

(2.3)

where

1

k’ ’/’ and S’ (,/p,)2 (2.4ab)

Invoking the conditions of continuity on the displacement and shear stress on

the surfaces of the cylinders, we obtain the scattering coefficients using

calculations similar to [i] in the form

Ain iC (2.5)
n Fin

where

Bin D F (2.6)
n in

la Jn (k’ a) (}/}a)Jn(ka) l’ Jn(ka) (}/}a)Jn(k’ a)
iC
n ’ Hn(ka) (}l}a)Jn(k’a)- ’ Jn(k’a) (}l}a)Hn(ka)

(2.7)
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D 2__i a ’H (ka) a Jn(k’a)]a [VJn(kta) a Hn(ka) V n
(2.8)

C and D are apparently even in n. The constants Fin satisfy the infinite
n n

system of linear equations:

N

e + i C-FI-Hm-n(krij)ram exp [i (m-n) 8"J] (2.9)Fin i
n ikr.j cosSj

i=l m=-

The prime in the summation means i # J.

The solution of equation (2.9) is the point of difficulty in the multiple

scattering theory. Following Twersky [9] we may iterate (2.9) and obtain an

expanded form of solution. For brevity we introduce the following notations:

xj rj cosSj (2. i0)

i C H (Icrij) exp [i (m-n) ij i
(m-n)

Vljm m m-n
(2.n)

and to fix our idea we take J=l. The expanded solution can then be written as

ikxI ikx
i

ikxI Ikx
i

i m p p q

ikxj + ikx
i

ikxI

i j p q q

k
k+ --4%--%-,’ Vilmm Vjipm Vkjqp(e + ...) +

i J k m p q

(2.12)

where the summations over i,j,k.., run from 2 to N and those over m,p,q,...

from to (R). The single prime means j i, the double means k J and J # i

etc. As an approximation to (2.12) we shall retain the leading terms in the

series within the different summations and neglect the rest. We note that in this

approximation the suffixes ...,k,j,i,l appear in that order and hence do not

involve back scattering (Twersky [9]). In the sequal we shall assume this
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approximation and accordingly we take

ikxI ikx
ie Vjlpm Vilmn

i m i J m p

e Vkjqp Vjlpm Vilmn +

i J k m p q

(2.13)

The solution of the problem is thus formally and commpletely obtained.

3. RANDOM DISTRIBUTION OF A LARGE NUMBER OF CYLINDERS.

If there are a large number of N cylinders which are aligned but are other-

wise distributed at random, we can utilize the above formulation provided the

position vector ri of 0
i

is considered as a random variable. We shall however

assume that they always remain confined to a large region S. The random variable

(rl, r2, rN) shall have a probability density which we denote by

PN(rI, r2,..., rN). Then, due to indistinguishability of the cylinders the density

function is symmetric in its arguments. Furthermore, we can write

p(x, _r2, r3,..., _rN) p(r+/-) p_(r, r2 rN)

P2(ri, Ej) PN_2(rI, r2,’-’, rN)

rN) etc. (3 i)P3(ri’ rj rk) PN-3(rI’ r2’ ’’’
As in Lloyd [ii] we shall work in terms of N-body correlation function

gN(rI, r2,..., rN) rather than the density functions themselves. This function

is defined by the relation

i
p(_r, _r2,..., _rN) = gN(, 2’"" -rN) (3.2)

The functiou vanishes when any one of the arguments lies outside the region S.

As in [I] we shall assume that the cylinders are uniformly distributed in

S, so that

g(r) (3.3)

Under the same assumption, the two point correlation function is a function of

the distance between them and we can write

g2(rl, rj) l-f(rlj) g(rlj) (3.4)

Derivation of an expression for f(rij) based on probabilistic postulates is an-



398 S.K. BOSE AND L. DEBNATH

other difficult point in the scattering theory. However, we note that due to

impossibility of interpenetration and independence at large separation

f(rij) 1 rij < 2a

(3.Sab)
/0 rij /(R)

Determnation of higher order correlation functions is likewise difficult. We

shall assume, as an approximation, that these functions can be split into two

point correlation functions:

g3(Ei rj, Ek) g2(rl, Ej) g2(Ej, rk) g2(rk, ri)

gN(E1 2’"" N)ffig2(E1 2) g2(E2 E3)’"Z2(EN-1 EN)
(3.6ab)

We note that the first of these relations is the well known Kirkwood superposition

approximation.

4. AVERAGE FIELD IN THE COMPOSITE MEDIUM.

To represent the total field in the composite medium we introduce as in [I]

the symbol

a(r, ri) 0 r within the ith cylinder

I r outside the ith cylinder.
(4. lab)

We could then combine the fields in the different regions, in the form

N N

W [I i.lffi {l-a(r,ri)}]w+ {l-a(r,ri)}wi (4.2)

Inserting the expressions (2.1) and (2.3) in the above and taking the mean value

with density and correlation functions (3.1) and (3.2), we obtain

imI( Flm . ttm(kRi)e d1

g(rl2) < F2m>12 Hm(kR2)e dx2

+ no Dm < Flm >I Jm(k’Rl)e drl (4.3)
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2were no N/S ls the number of cylinders per unlt area, c a nO
ls the con-

centratlon of the cylinders and (Flm>l (F2m>12 are the condltlonal mean values

when cyllnders 01 or 01 and 0
2
both are held flxed. The determlnatlon of the

average fleld thus depends on thelr evaluatlon.

We compute these conditional means by using the forward scattering series

(2.13). Taking the conditional mean with 01 held fixed, we get

m p q

+ J dr2 (4.4)

We note that in the process of taking the mean of the summations over i,J,k,...

degenerate into identical (N-l), (N-2), (N-3) ,... terms, which contribute the

2 3factors no, nO no,.., to the different terms, when N is large. A similar

phenomenon takes place in equation (4.3). The series can be resummed into acom-

pact form, if we introduce the Fourier integral (Lloyd [ii]). (2-r_)
Umn(K)~ v21mn g2 (rl’ r2)e d(r2-rl)

V21mn g2(rl’ r2)
-iK. (E2-EI)1

Utah(K) e dK
(2) 2 (4.6)

The integrals over r3, (r3, r4), etc. may be considered as convolution integrals,

and then (4.4) assumes the form

i-n < Fln)l e (rl-r2) +’’
(2) 2 [no umn (K) +

m

3+ n pm(K) Umn(K) + no qp(K) Upm(K) Umn(K)
m p m p q
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--I eikX2[(rl-r2) -1 -K. (r~2-r~l)1

+(22 n0U(E-n0U) e

m
dKIdr2

where E is the unit matrix, and similarly the matrix U [Umn]. The above result

can be simplified into

i f ikx2 I -iK" (r2-rl)
e dK (4.7/i-n ( Fin >i (2)2

e dry2 (g-n0U)-i
m

We evaluate the integral over r2 first, noting that its range is finite over S.

The integral over K can be evaluated next by contour integration. The integral

has a pole at

det(E-n0U) 0

Denoting the pole also by K, equation (4.7) has the form

(4.8)

2
iK’l1i-n Fin >i Fn(K) e d (4.9)

0

where K Kei Equation (4.9) has the form of superposltion of plane waves

with number incident at i" The form (4.9) is sufficient for the purpose of

investigating the average wave.

If we similarly proceed to calculate < Fin >12 from the series (2.13), we

shall get the formal expression

2 2

i-n <Fin>12 Gn(K)e aa + V21mn Fn(K)e
0 m 0

2
ikx

2 f -iK. (r2-rl)
+ e Hn(K)e

0

dn

dn

(4.10)

When we insert the formsin (4.9)and(4.10) in equation (4.3) and evaluate the

integrals as [i], (W} has the form
2

(W> f W0(K)eiK"rda.
0

(4.11)
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The incident wave term cancels away with similar terms emerging from the integrals

in (4.3) (extinction theorem). Thus K emerges as the wave number of the average

waves in the composite medium.

In [i], Bose and Mal obtained the average wave number by assuming Lax’s

"quaslcrystalllne approximation" and the existence of an average plane wave

propagating in the direction of x-axls. It can be shown that this number is

identical with that given by (4.8). For, the elements of U as given by equation

(4.5) with (2.11) and (3.4) are

u (K) iC i
m-n

mn m

iK. (r2-rl) i (m-n) 821
d{l-f(rl2) }e H (krl2)e (r2-rl). (4.12)

m-n

lr2-rl >2a

For the uncorrelated term, we write

iK-(r2-rl) i(m-n)821 i [,2 iK" (r2-rl) i(m-n)21
e H (krl2)e iv e

}H (krl2)em-n k2_K2 m-n

iK(r2-rl) 2
i (m-n) e2]e V {H (krl2)em-n

and use Green’s theorem to convert the surface integral to a contour integral

around the circle lr2-rll 2a. The latter can be easily evaluated by using the

plane wave expansion

is021iK (r2-rI)
is(-l)s e-iSn j (Krl)ee

s 2
S--_o

The above expansion can also be used to simplify the integral containing the

correlation term f(rl2) and we finally obtain

S S (2Ka)u (K) 2iC
a {’Jm-n (2Ka) a Hm-n(2ka) Hm_n (2ka) Jm-nm

I 2] i (m-n)n
f (r12) Jm_n (Krl2)Hm_n (krl2) rl2drI e

2a

(4.3)

The solution of (4.8) then leads to the equation for the mve number obtained in

[I]. The equation for K is a complicated transcendental equation which was solved

for thin cylinders ka <<i, IKal <<i.
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5. THE AVERAGE WAVE FOR UNCORRELATED THIN CYLINDERS.

The value of K obtained in [i] depends on f(r12) as is apparent from (4.13).

In order to obtain expllclt results, we also assumed that f(r12) has an exponentlal

form

-rl2/L
f(rl2) e r12 > 2a (5.1)

It was found that due to correlation the average wave showed both dispersion and

attenuation, which to the lowest order of small quantltltes were approximately

proportional to (kL) 2. In as much as the correlation length L can be a few mul-

tlples of a, it is imperative to look into the average wave number correct to the

order (ka) 2. In view of this we drop the correlation term in (4.13) and expand

the Bessel and Hankel functions in (2.7) to obtain

2 a0CO (ka) d[1 + --(ka)2] (5.2)

a
1C

1 (ka)2 rail + -(ka)2] (5.3)

C2 3(ka) 4
m (5.4)

where we have written d p’/p-i m (p’ p)/(’ + B) and

2

o +- + p, p

., 4( _.),..I)2,[ ka ] 4p’Ip
=i 5 3--- i + u’lu T + + I + u’lu (5.5b)

Similarly for (4.13) we obtain

2i .K.Jn (2Ka) Hn(2ka) Hn(2ka) Jn(2Ka) -..,) [i-(ka) 2(2 )] (5.6)

where

- n +/-i, +_2, _+3,

(5.Tab)

7 is the Euler’s constant The final result from (4.8), corrected to the order

(ka) 2, is found in the form

KL (l-cm) (l+cd) SO (l-cm)

k
2 l-’cm + -(ka)2 cd l+cm -(ka)2 cm(l+c.d) +

(l+cm) 2
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2

cd(1-4cm+3c2m2) 2cm(1-cm) / cm(2+c2md)(l--c-m)(l/cd)
1-c2m2 l+em

cm 2.
1-c2m2 8

2 2+ (l+cd)(l-cm) + cd(l-cm) cm(2-cm)

{2cd(15- 17cm + c2m2) + cm(l+2cm)} ,(1-cm)l+cd)
l+cm

+ 3cm (l-cm)(l+cd)}l+cm
2

(l-cm) (l+cd)
cd( l’/cm---13J (5.8)

2
If (ka) is ignored the expression agrees wlth that obtained in [I]. For sparse

distribution correct to 0(c), it also agrees with the result obtained in [4] and

the result of Twersky [13]. The waves show both dispersion and attenuation which

are roughly proportional to (ka) 2. This is so, to the order of calculation

undertaken here.

1.6

I-5

1.4

1"3

I.I

CONCN. C
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In Figures 1,2, we present the result of computation for alumlnlum reinforced by

boron fibers. For this combination we have 0’/0 2.53/2.72 and ’/U 25/3.87.

If K
1
and K2 are the real and imaginary parts of K, the average wave velocity is

given by B/8 k/KI, and the specific damping capacity is $ 4 K2/KI. These have

been plotted in the figures against the concentration c for different values of

ka.

FIGURE 2.

CONC. C
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