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ABSTRACT. We present a new non-linear integral inequality of the Gronwall-Bellman-
Bihari type in n-independent variables with application to pointwise estimates of
solutions of a certain class of non-linear hyperbolic partial differential equation.
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1. INTRODUCTION.

There have been various linear and non-linear generalizations of the celebrated
Gronwall-Bellman inequality [see 1-10]. These generalizations have been largely mo-
tivated by specific applications of the inequality to ordinary differential and inte-
gral equations in proving uniqueness, boundedness, comparison, continuous dependence,
perturbations, and stability results. The two independent variable generalization of
this inequality due to Wendroff [1, p. 154] has generated a considerable amount of
interest, judging by the papers of Bondge and Pachpatte [11, 12, 13], Bondge et all
{14]), Pachpatte [15-18], Rasmussen [19], Snow [20] and many others. Most recently,
the n-independent variable generalization of the Gronwall-Bellman inequality has at-
tracted the interest of Mathematicians. Chandra and Davis [4], Conlan and Diaz [21],
Headley [22], Pachpatte [17, 23], Singare and Pachpatte ([24], Shih and Yeh [25], Yeh
[26], Young [27], Zahariev and Bainov [28], and many others have established several
versions of integral inequalities in n-independent variables and exhibited their use-

fulness in the analysis of various problems in the theory of partial differential and

integral equations. In this paper, we present a new non-linear integral inequality

of the Bihari type in n-independent variables which generalizes a recent result in
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n-independent variables of an inequality due to Pachpatte [23]. The inequality of
Pachpatte contains only two non-linear terms on the right hand side, while our result
is obtained for any finite number of non-linear terms. We illustrate the usefulness
of our result.
2. MAIN RESULT.

Let (. be an open bounded set in the n-dimensional Euclidean space R". For ar-
bitrary points x,y ¢ Rn, with x = (xl,...,xn) and y = (yl,...yn), we write x <y (or
x <y) if and only if x; < vy (or X < yi) for 1 < i <n. Let x0 and x be twe arbi-

0 X
trary points in §! such that x < x and denote by J 0...dn the n-fold integral
X X

X
1 n
Jlx(lJ.. Lg ..dnpdn,...dn .

Define Di = Sﬁf- for i = 1,2,...,n and assume that the following hypotheses hold:
i
(H,) f:0 >R = (-»,©) is a positive function, continuous and non-decreasing in
X € S
(HZ) h:sl > R, gjzu ~R j=1,2,...,m are functions which are non-negative and
continuous on ic.
(H,) The function q:$% > R 1is continuous on §! and q(x) > 1 for all x.
(H,) The function W:{ XR > R is continuous, non-negative, and non-decreasing in the
last variable.
(HS) The function K:(X(XR > R is continuous, non-negative and ncn-decreasing in the
last variable. In addition, it is uniformly Lipschitz in the last variable.
(Hb) ThefunctionsHj:R+ - R+ = [O,m), j=1,2,...,m are all positive, non-decreasing,
continuous, and satisfy
@ Suo cu @) veo w.

(ii) Hj(v) is submultiplicative for v > 0 j=1,2,...,m.

5
REMARK: TIf H (v) = VB with 0 < 8 <1 or H (v) = ¥ vBR

p) 0<Bg<l.thenH
9=1

satisfies hypothesis (H6).
In a very recent paper Pachpatte [23] established the following integral inequal-

ity among other results.
THEOREM A. Suppose (Hl) and (H3) - (HS) are true and let gj and ¢ be as defined in

(H2) with j = 1. If (H6) is true for j = 1 and
X

X
d(x) < £(x) + q(x) (j 0 81 (y)Hl(¢>(y))dy) + w(x,J 0 K(x,y,d(y))dy) (2.1)
X

X
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is satisfied for all x € {i, then, for x € Ql C Q,

0(x) < B GfEG) + W, r G} (2.2)
where

-1 8 ] 2.3
E (0 = 406 [6(1) + o 810 @Oy 2.3

in which

v
ds 0
[d = e > > 0; 2.4)
) Jvo i, (s) Vo (
rxX

G—l is the inverse of G such that G(1) + J 0 gl(y)Hl(q(y))dy F Dom(G-l). for all
X

X & ul and r(x), is a solution of the equation
X
r(x) = Jf o KGy B e + Wiyary | Hdy (2.5)
existing on ‘. *

We now establish an interesting and useful n-independent variable generalizaticn
of Tneorem A. We observe that while Pachpatte's result contains two non-linear terms
in (2.1) we shall present a result which extends the non-linear terms to any finite
number.

THEOREM 1. Let (Hl) and (H3) - (HS) hold and suppose ¢ and gJ, ji=1,2,...,m, are

as defined in (H2). Assume that Hj’ j=1,2,...,m, satisfy (H6); if

x x
m
d(x) < f(x) + q(x)gi (J 0 gg(y)H9(¢'(y))dy) + W(x,J( o K(x,y,0(y))dy) (2.6)
=1 X ’ ’ X
is satisfied for all x € {, then, for x € ul<: S,
m
o (x) < {f(x) + W(X,R(X))} 1l EQ(X), (2.7)
2=1
where the functions GQ are defined as
u
d 0
Gy (u) = J 0 ﬁ‘?§7 , 0<u <u, £=1,2,...,m (2.8)
u 2
with
-1 (X
E (0 = a6 o) + EARINCIONS 2.9)
and
-1 X I-1
E, 00 = a()6, [GQ(I) * ,'xo 39,(8);"1Ei(s)"o,(q“))ds] s F= 2,00, m (2.10)
C-l

2 1is the inverse of Gi such that
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x 9-1 _
Gg(l) + f 0 gg(s) 1 Ei(s)Hl(q(s))ds € Dom(Gzl) and R(x) is a solution of the integral
’ X i=1

equation
X m
V(x) = f 0 KCoy, T E, D {EQ) + WG,V Dy, (2.11)
X =1

PROOF. 1If m = 1, then (2.6) becomes (2.1) and Theorem A implies that inequality (2.7)
is true if (2.6) holds. We now proceed by induction and assume that inequality (2.6)

implies (2.7) is true for k where 1 < k < m-1. Then this means

k X
d(x) < f(x) + q(X)lZ (J 0 gg(y)l-lzw(y))dy))
=1\’ x

X
+ W<x,[ 0 K(6y,0(3))dy) (2.12)
X
implies

k
O(x) < I E (x) {£(x) + WG, R(x))} (2.13)
2=1
-1 rx
where El(x) = q(x)Gl [Gl(l) + Jxo 81(Y)Hl(q(y))dy],

and
-1 rx 2~1
E, (0 = 9006, [5,(1) + J o gg(y>j§laj(y)nQ<q<y>)dy]
for £ = 2,3,...,k. G;] is the inverse of CQ such that

X 2-1
G, (1) + j 0 8O T E (Hy(ay))dy ¢ Dom(C;l) for £ =1.,2,...,k, and R(x) is a solu-
, L 8 .

tion of the integral equation

X

r k
RGO = | o KOy, TE OE@) + W RG)Ddy. (2.14)
x =1 "

Now assume that (2.6) holds for m = k+1; then

k+1/rx x
o(x) < £(x) + q(X)lZ fo g, (Y)H, (¢(y))dy) | + W(x,J o K(*,y,6(y))dy)
=1\’ x

x
k

X rx
£(x) + . |
< Ex) q(x)Q;l(fxo g,,y(y)HK(¢(y))dy)+ q(X))IXO 81 I (0(y))dy

X
+ W(x,f 0 K(x,y,0(y))dy) , (2.15)
X

Define

X

u(x) = f(x) + q(X)f 0 gk+l(y)Hk+l(¢(y))dY-
X
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Then (2.15) becomes

X

k X
o(x) < u(x) +q(x) Z <I 0 gg(y)H£(¢(y))dy> + w(x,f o K(x,¥,8(y))dy) (2.16)
I\'"x

2= X
where u(x) is a positive function, continuous and non-decreasing in x. Hence, by

assumption, (2.16) implies

k
0(x) < 1 E,fu(x) + W(x,R(x))} (2.17)
g=1

where EQ(x) is as defined earlier and R(x) is a solution of the integral equation
k

(2.14) with f(x) replaced by u(x). Set P(x) = I Eg(x); then P(x) is a positive func-
i=1

tion and so (2.17) becomes

X

¢(x) < P(x){f(x) + W(x,R(x)} + P(x)q(x)j 0 gk+1(y)Hk+l(¢(y))dY.
x

By assumptions on q, P, f, W, and H_, , we have

20 <1+ q(x)foo Bes (y)lik+l( e ) P(y)dy

P(x) [£(x) + W(x,R(x)] x P(y) [E(y) + W(y,R(y))]
< Q(x)[l + !zo P(Y)gk+1(Y)Hk+l<P(y)[f(y)¢iy;(y’R(y))]>d%] . (2.18)

Define J : i > R such that

J(x) = 1+ Jr:(, gk+1(s)P(s)Hk+1(P(s)(f(s)cbiszl(s’k(s))))ds
and J) =1 onx = xg, 1<j<n.
Then D,D,...D J(x) = gk+1(x)P(x)Hk+l<;(x){f(x)¢ix;(x’R(x))>

and, using (2.18) and the submultiplicative property of Hk+l’

D)Dyee oD J(x) < g (IPGOH, L (@EH L (J(x)).

Hence

Heyy (J(0)*D D, ...D (%)

[Hyy GG0)?

< gk+1(x)P(x)Hk+l(q(x))

+ e .
D;D,...D__ J(x)*DH

102 J(x)) ,

k+1
[Heq G00] 2

that is,
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1Dpe D300

<
gkll(X)P(X)l'lkll(q(X)) . (2.19)
Hk 1LJ(xﬂ

n

Keeping XpseeesX

0
to from x to x_, we have
Yn n n

fixed in (2.19), setting S A and integrating with respect

D...D _;J(x)
Hk+l(J(x))
x
n
< Jxo gk+l(xl"'Xn-l’yn)P(xl'°'xn—l’yn)Hk+l(q(xl'"xn-l’yn))dyn . (2.20)
n

Set & = (xl""’xn-l’yn) in (2.20), and use the same type of arguments to arrive at

D.,...D J(x) X

1 n-1 n
Do-1l PRSI E | 0 Bt OB, @E@)ay, . (2.21)
Hk+l X *n
. . . _ . . 0
Keeping XpeeeX and Yo fixed, setting X 1 = Y,_p» integrating (2.21) from X1 to
X1 with respect to Yo-1° and setting n = (xl’x2""’xn—2)’ we have

He, (GG))

I A

1 @Yoy )y, dy

X
n-1 n

[ 0 fxo Bt (MY 1Y) PNy sy )M .
n-

J
*n-1

Proceeding in this manner, we arrive at the inequality

D_J(x)
P S <
H.kﬂ(J(x))
)(2 Xn
f-b- f o gk+l(xl,y2,-.-,yn)P(xl,yz.---.yn)Hk+l<q(xl,y2,--.,yn))dyz.--dyn- (2.22)
)(2 Xn

Using (2.8) and (2.22),

Dy Gy 0D
(x2 rxn

;_J.é. J o Bl X oYpo oo oY )Py sy DR (a(x 5y 55000y ))dy, .l udy .
X 9 Xn

Finally, keeping Ypseees¥y fixed, setting x, = Yi» and integrating with respect to

1

0 .
y., from x; to x we obtain

1 1 1’
X

f

1) + J
0

X

S ) < 6, Bpy D POIH L (@())dy,
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X
so that J(x) < G;il[Gkﬂ(l) + f o 8+ VPR (@(y))dy].
X

Consequently, by (2.18),

$(x)
P(x)[f(x) + W(x,R(x))]

< q(x)Jx)

X k

p
(1) + J . gk+1(Y)RElEk(Y)Hk+1(q(Y))dYI

X

-1

2 a6 6y

= By (s

that is,

k
o(x) < M E, (x)°E
g=1 ~

k+1
I E, (x){£(x) + W(x,R(x)))
g=1 *

e OLEGO + WO R0}

where R(x) is a solution of
x k
R(x) = ! KGy, T E (5{uly) + W(y,RG)) dy.

xO =1

X
r

Now u(x) = f(x) + q(x)J o gk+l(y)Hk+l(¢(y))dY’

X

so that X

u(x) + W(x,R(x)) = £(x) +W(x,R(x)) + q(X)J ngﬂ(y)ﬂkﬂ((b()’))dy.
X
Using inequality (2.17) and a property of Hk+1’

X k

u(x) + W(x,R(x) < f(x) + W(x,R(x)) + q(X)[ gk+l(y)Hk+l< T E (5 {uly) + W(V,R(y))1>dy
0 2=1
k X

(x it Eg(y) Kk
L EG) +HGGRE) + 00| gy O el T E e + e ey
=1

x T E (y)
2=1 ¢
i k
LEGO FWGGRGO) + a0 | gy () T E (DH L, (0 + V(LR dy.
0 =1
X

Set m(x) = u(x) + W(x,R(x)), n(x) = f(x) + W(x,R(x)), and apply Theorem A to the

above inequality; then we obtain
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X

k
m(x) < n(x)q(x)[G;il G (1) + f g1 ) T EMH (a(y))dy}]
0 2=1
X
L E g ) + WEGRMOY
Hence, u(x) + WeGR(00) < E L GO{E() + Wik, R(x))}
k k+1
so that Il E,(y){uly) + W(y,R(} < 1 E, () {£(y) + W(y, R}
=1 * = e F
X k+1
and R(x) < J( KGx,y, T E D {E@) + W(y. R} )dy
0 2=1
by the assumption on K.
Define VO(x) = R(x) and, for j = 1,2,...,
rx k+1
V.G = | Ky, TOE ({E(y) + WV, (y)]dy.
3 i o 2=1 i1
X
X k+1 ,
Tnen VI(X) = ( K(x,y, I E_(y){f(y) + w(y.R(y))})dy > R(x).
Jxo =1 * -

Hence, by the assumptions on K and W, we have

R(x) SV (x) < Vy(x) < .us < Vix) <.l
and, by the uniform Lipschitz continuity of K in the last variable and the Arzela's
theorem, the sequence {Vj(x)} converges to a unique solution V(x) of the integral

equation
X k+l

V(x) = ;{ K(x,y, I E (y) {E£() + W(y,V(y)})dy (2.23)
L=1

0
X

and R(x) < V(x) existing on .
Thus, since W is nondecreasing in the last variable,
k+1 k+1
o(x) ~ {f(x) + W(x,R(x)} | EQ(X) < {f(x) + W(x,V(x)' i Eq(x)
=1 =1
where V(x) is a solution of (2.23). We have shown that, if (2.6) implies (2.7) for
m = k, then (2.6) implies (2.7) for m = k+l, so that the proof is complete by the
induction hypothesis.
REMARK: If q(x) =1, n =1, W(x,u) - 0 for all x,u, then our result reduces to

Theorem 1 of [8]. When m = 1, we have Theorem 3 of [23], so that our result general-

izes the result of Pachpatte.
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3. APPLICATION.

In this section we shall demonstrate the usefulness of the inequality established
in section 2 by obtaining pointwise bounds on the solutions of a certain class of
non-linear equations in n-independent variables. We consider the non-linear hyper-
bolic partial integrodifferential equation

X

= F(x,¢(x), J o K(x,y,0(y))dy) + G(x,¢(x)) (3.1)

veedX X
n

I (x)

JIX.J
)Xl< X2

where F ¢ C(.XRXR,R) and G € C({XR,R). With suitable boundary conditions the
solution of (3.1) is of the form

X X X
f f r
(x) = h(x) + J F(s,9(s), J K(s,y,¢(y))dy)ds + J Gly,¢(y))dy 3.2)
0 0 0

X X X

We shall assume the following conditions:

. + + .
(H There exists a continuous function B : iXR - R with B nondecreasing in the

7)
second variable such that

[y, 0y < By, o). (3.3)

(H,) There exists a function f : (i > R satisfying (Hl) such that |h(x)| < f{x), for

all x » (.
(H,) There exists o function g : uw > R+ satisfying the assumption (H2) such that for
S v i,
[F(s,u,v)| < gs)[ul + |v]] (3.4)

+

+
(H,,.) There exist functions u : X > Rand H : R - R such that

10
(i) w(s,y) 1is defined and continuous for s >y > ox

(ii) w(s,s) < h](S), Djm(s'sl’SZ""’sj-l’yj""‘yn) =0,

j=2,3,...,n, DJDZ-.-Diw(s,yl.yz,---.yi.si+l,yi+2,-.-.yn) =0,

i=1,2,...,0~-1 and DlDz,,,an(s,y) :'p(s)hz(y) where

hl‘ p, and h, are continuous functions and non-negative on  with

2

D, = === 1 <2 <n,

(iii) H satisfies assumption (H6) with H(1) =1

(iv)  |K(s,y,o())]| < w(s,y)H(o(]) (3.5)

REMARK: 1t is easy to see that the function
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n
w(s,y) = I (SQ - yl)p(s)hz(y) + C, where C is constant, satisfies (i), (ii), and
2=1

(iii) if C :-hl(s) for all s € .

The following Lemma, which is a standard result in calculus of several variables,

shall be used in obtaining pointwise bounds on the solution of (3.1).

s 0 0 0
LEMMA 1. Let G(s) = J 0 w(s,y)H(d(y))dy with x = (xl,....xn),
X 0 E)

y = (yl,yz,...,yn) and s = (Sl’SZ""’sn) € Q with x < y < s, and Di = 5

i=1,2,...,n. Assume, also, that

ey =0 f j = 2,3,...,n and
Djw(s,sl,sz,...,sj_l,yj, yn) or j

i .. =0, =1,2,...,n-1.
DlD2’°'Dkw(s’y1’y2""’yk’sk+1’yk+2” ,yn) 0 k 2, n

S
Then, D;D,...D G(s) = w(s,s)H(d(s)) + fxo D;D,...D w(s,y)H(¢(y))dy.

We now compute the pointwise bounds of the integral equation (3.2) taking into

account the assumptions (H7) - (HIO)'

Taking the bounds in (3.2) and using (3.3), (3.4), and (3.5), we obtain

X

X f S
[¢x)] < [h(x)| + J olC(y,0(y)) [dy + | olf(s,¢<s),f o K(s,y,6(y))dy|ds
X / X

X

rX

X X s
i“”*[oBWJMWD@+JOg&HM9Ms+jOuwﬂoxwamw»wws
X X X X

X X
<)+ J 0 BOL o Day + f o 8(s)[6(s) |ds
X X

X

s
*+] o8 f 0 @(Y)H([o(y) ) dy)ds.
X X

s
In view of hypothesis (Hlo) and Lemma 1, if R(s) = J 0 w(s,y)H(l¢(y)|)dy,
x

then

s
Dy...D R(s) = w(s,s)H(|¢(s)|) + J 0 DlDZ...Dnm(s,y)H(|¢(y)])dy

X
)

h OH(e(s)]) + J 0 P, ME(ey) dy
X

I A

S
= h (OH(os)]) + p<s>J 0 Py MHUeG) dy.
X

. . 0
Upon integrating from x to s, we obtain

s S u
R(s) < fxo hy (WH(o(u) [)du + fxo p<u>(yxo h2(Y)H(|®(Y)|)d?)du.
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X X s
oG] < £(x) + [ 0 8(s)o(s) [ds + [ o g(s)(f 0 hl(U)H(|¢(u)|)du>ds
X X X

X s ru
+ [XO g(s)(fxo p(u) JXO hz(y)H(|¢(y)l)d%)df)ds

X
+ [ 0 B lo () Day.
X

We now use Theorem 1 with g =8 =123, q=1, Hl(|¢(s)|) = |o(s)],

s s u
Hy(Jo(s)]) = [ o M WH(o@ Ddu, Hy (o)) = LO p(u)(fxo h2<y)H<I¢<y)l)dy)du,

X

K(x,y,u) = B(y,u), W(s,z) = z; then m = 3 and we have

3
[o(x)] < {£(x) + r(x)} 0 E; (%) (3.6)
2=1

{f(x) + r(x)}El(x)'Ez(x)°E3(X)

where r(x) 1is a solution of the equation

rx

V) = | BOEDEOEWM W) + v Dy

and

[
Q

El(x) =

_ -1
EZ(X) = 02 [GZ(I) +

Ey(x) = G

x
0 g(s)ds], Gl(l) + [xo g(s)ds ¢ Dom(GIl)

g(s)E; (s)H, (1)ds]

-1 X X
= c2 [02(1) + J 0 g(s)El(s) fxo hl(u)du)ds]

X s u
0 B(E, ‘S’Ez‘”(fxo P(w (fxo h2<y)dy>du)ds1.

It is clear that we can compute the pointwise bounds of the solution ¢(x) of the

integral equation (3.2) as in (3.6).
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