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ABSTRACT. 1In partially ordered convergence spaces, separation axioms are introduced
and then related to the concept of complete separatedness due to Nachbin as well as

to connectedness concepts. A method to generate new separation axioms is studied.
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1. INTRODUCTION

Lately, convergence structures more general than topologies have proved to be
effective tools in posets and lattices (cf. Kent [1], Erné and Weck [2], and Ball
[3]). In this note we shall study some relations of interdependence between a con-
vergence structure and a partial order, hereby concentrating upon separation axioms
and related matters. This is done within the realms of partially ordered (po) conver-
gence spaces. In the po topological case, most of the material in Section 3 is known
from Nachbin [4] and Mc Cartan [5]. The interplay between separation axioms and
connectivity properties, as worked out in Sections 4 and 5, has not been studied in
po topological spaces. For a correspondence in topological spaces without order,
reference is made to Preuss [6, Ch. 6].

Here convergence structure is used in the sense of Kent [7]; the precise defini-
tion is stated in Section 2. A partially ordered (po) convergence space is a triplet
(X,q,<), where X 1is a set, q a convergence structure on X and =< a partial order
relation on X. Obviously, this is a generalization of the partially ordered (po)
topological spaces introduced by Nachbin. We can regard every convergence space as a
po convergence space, where the order in question is discrete. Every definition
which we propose for po convergence spaces shall be subject to the following criteria:
(i) For po topological spaces, it reduces to the classic definition in the sense of

Nachbin.
(ii) For discrete order, it coincides with a natural definition in convergence space

theory.
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Hence it is clear that every definition for po convergence spaces defines a natural
compatibility between convergence structure and partial order.

There are natural, well-known non-topological po convergence structures, for
instance order convergence on posets (cf. Kent [1], Erné and Weck [2]) and several
structures defined by R.N. Ball. Before proceeding, we wish to mention the
expository article Choe [8], which covers the main streams of research in po topo-
logical spaces up to recent date.

2. PRELIMINARIES

For later use, we gather a few definitions and notations concerning convergence
and order. For our aim, the following basic definition is the proper one.

DEFINITION 2.1. (Kent [7]). Let X be a set. A convergence structure q on
X is a map q , which assigns to every x € X a set q(x) of filters on X being
subject to the conditions below (x € X):

(1) [x] € a(x)

(2) F €q(x) and 6D F =G € q(x)

3) F €qx)=Fn [x] € q(x).

Hereby, [x] denotes the ultrafilter generated by {x}. The pair (X,q) is called a
convergence space.

Obviously, this definition provides a generalization of topological structure
and topological space. We do not require the filters in q(x) to form full inter-
section ideals, since we wish to consider order convergence on posets as a special
case of the convergence structures being treated here. For theory and application of
convergence structures, we recommend the book Gahler [9].

If q 1is a convergence structure on the set X , then tq is the finest
topology on X being coarser than q . The notion of open (closed) set in a space
(X,q) always refers to the topological space (X,tq). Let (X,q) be a convergence
space and take A C X . Then, XY denotes the set of all x € X for which q((x)
contains some F with A € F . For (X,q) and (Y,r) given convergence spaces, a
continuous map f : (X,q) > (Y,r) is amap f : X> Y for which x € X, F € q(x) =
f(F) € r(£(x)).

Occasionally, a po convergence space (X,q,<) shall be denoted by X only, and
then, instead of F € q(x) shall be written F - x . The topological modification
tX of a given po convergence space X 1s the po topological space (X,tq,<). If X
and Y are po convergence spaces, a morphism ¢ : X - Y 1is an increasing continuous
map ¢ from X to Y.

In a given poset, x £ y denotes that x <y is false, and x || y 1s equiva-
lent to x $ y and vy $ x . If F is a set, then 1i(F) (d(F)) denotes the smallest
increasing (decreasing) set containing F , and F* (Ft) denotes the set of all
upper (lower) bounds of F . Instead of {al}* ({a}*) is written a* (at). On a
given poset, the interval topology is the coarsest topology for which all rays, i.e.
the sets of the form a* or at, are closed sets.

3. SEPARATION AXIOMS
For definitions and results in the case of po topological spaces, reference is

made to Nachbin [4], Mc Cartan [5] and Ward [10]. Synonymously with T, -ordered po

1
topological space, however, the concepts of semi-closed partial order and semi-
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continuous partial order are used in Nachbin [4] and Ward [10], respectively. T,-

ordered and Tz—ordered po convergence spaces were introduced in Kent and Richardson
[11].

DEFINITION 3.1. A po convergence space X 1is lower (upper) Tl-otdeted, if for
every pair a $ b in X and for every F -~ a (F + b) there is a set F € F such
that x £b (a ¥ x) for all x € F. This separation axiom is denoted by ord T1L
(ord TlU) .

THEOREM 3.2. Let X be a po convergence space. The following conditions are
equivalent:

(i) X 1is ord TlL .

(ii) For every pair a $ b in X, for every F >~ a and for every F € F, b f F*x,

(1ii) For every pair a $ b in X, and for every F > a there is an increasing
set V € F with b § V.

(iv) For every a € X the ray at+ is a closed set.

Corresponding characterizations hold true for ord T1U (with obvious changes only).

PROOF. (i) = (ii). According to (i), the filter F > a in (ii) contains some
F with x $ b for all x € F.. Since every F € F intersects F,, we are through.

0 0 0
(ii) = (iii). Let X satisfy (ii), take a $ b in X and F - a , then write

F=10 6
k€K k

where Gk(k € K) are the ultrafilters finer than F . Now, fix k € K . According

to (ii), every set G . in Gk =

3 contains an element sj for which

(ij)jEJ

sj £b . Denote S = {sjlj € J}. Since S, 1intersects all sets in the ultrafilter
6, , it follows § ¢ 6 . Thus V, = i(5) €6, b ¢ V, » and the set
v= U V
kek K

in an increasing set in F with b § V.
(iii) = (iv). Assume (iii), take a € X and x { at, i.e. x $ a., For any F »> x
there is an increasing set V € ¥ with a V. Thus VNat=¢,and X\at is
an open set.
(iv) = (i). If X satisfies (iv), then the topological modification tX 1is ord TlL
(Mc Cartan [5]), and (i) follows.

COROLLARY 3.3. A po convergence space X 1is ord TlL (ord TIU)’ 1f and only if
the topological modification tX is.

DEFINITION 3.4. A po convergence space is Tl—ordered, if it is both T

and Tlu—ordered. This separation axiom is denoted by ord T

llrordered

1 -
THEOREM 3.5. A po convergence space (X,q,=) is ord Tl , 1f and only if the

convergence structure q 1is finer than the interval topology of the po relation = .

Hence, in po convergence spaces satisfying ord '1‘1 , all maximal chains are closed

sets.
REMARK 3.6. In the Introduction we stated two criteria, (i) and (ii), which
new definitions in the theory of po convergence spaces should meet. The definition of

ord TlL (ord TIU) fills (i). In case of discrete order, both ord T and ord T

1L 10
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coincide with the separation axiom T, for convergence spaces. Thus also (ii) is

1

satisfied. Naturally, the definition of ord T1 also satisfies both criteria.

Finally we note that if the po convergence space (X,q,<) is ord T1L or

ord TlU’ then the convergence space (X,q) 1is T,. Moreover, if (X,q,<) is

0
ord T1 , then (X,q) 1is T1 .
DEFINITION 3.7. A po convergence space X 1is T2—ordered, if for every pair
afb in X and for every F>a and 6 > b , there are sets F € F and G € €

such that x $ y for all x € F, y € G. This separation axiom is denoted by ord TZ'

THEOREM 3.8. (Kent and Richardson [11]). Let X be a po convergence space.
The following conditions are equivalent:

(i) X 1is ord T2.

(ii) For every pair a $ b in X , for every F *a and 6 + b , there is an
increasing set F € ¥ and a decreasing set G € 6 for which FN G =0 .
(iii) The graph of the partial order of X is a closed set in the product conver-
gence space X X X ,
REMARK 3.9. If the order relation of a po convergence space is a total order,

then ord T1 © ord T2 . This follows from the corresponding statement in the po

topological case (cf. Ward [10]) and from Corollary 3.3. There is a vast literature

on totally ordered topological spaces satisfying ord T for instance within the

1 ’
realms of orderability theory (cf. Eilenberg [12]). 1In this paper, the special case
of totally ordered convergence spaces is not treated.

REMARK 3.10. For po topological spaces, the definition of ord T2 coincides
with the classic definition of closed order (Nachbin [4], Mc Cartan [5]). If the
order of a po convergence space is discrete, then ord T2 coincides with the classic

separation axiom T, for convergence spaces. (Thus, Theorem 3.8 can be regarded as

2
a generalization of the usual characterization "A convergence space is T2 , if and

only if the diagonal is a closed set in the product space".)

Moreover, if (X,q,<) 1is ord T2 , then the convergence space (X,q) 1is T2 .

Every T,-ordered po convergence space is also Tl-ordered. It is possible for

2
(X,q9,<) to be ord T2 , without the topological modification (X,tq,<) having that
property.

Below, we propose two variants of regularity for po convergence spaces. For

the main part, the case of lower regularity (ord T is treated.

31)

DEFINITION 3.11. A po convergence space (X,q,<) is lower T3-ordered, if for

every closed decreasing set M , for every x f M and for every 6 € q(x) , there
is a set G € & for which M N i(G) - ® . This separation axiom is denoted by

ord T3L .

DEFINITION 3:12. A po convergence space (X,q,<) 1is strongly lower T3-
ordered, if for every x € X and every F € q(x), there is a filter & € q(x) for

which i(F) q > i(G). This separation axiom is denoted by st ord T3L .

By i(F) is meant the filter on X , which is generated by the sets i(F) ,

F € F . It is easily verified that st ord T3L = ord T3L . The reverse implication

is false, even if q 1is a topology. Then ord T3L coincides with the classic
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definition of lower regularity (Mc Cartan [5]), while st ord T3L becomes 'For
every x € X and for every increasing neighborhood V of x , there is an
increasing neighborhood W of x , for which W < V". This deviates from the
definition of Mc Cartan [5] only in the choice of the set V ; in the classic
definition V 1is taken to be an open increasing neighborhood of x .

In case of discrete order, Definition 3.11 coincides with the axiom T3_ for
convergence spaces (F € q(x) = Fd €(tq)(x)) , while Definition 3.12 coincides with
T3 for convergence spaces (F € q(x) = 7 q(x)). It follows that the topological
modification preserves neither ord T3L nor st ord T3L .

THEOREM 3.13. (cf. Mc Cartan [5, Remark 1]). In po convergence spaces, the

axioms ord TlL and ord T3L together imply the axiom ord T2 .

A convergence space (X,q) 1is called strongly locally compact, if for every
x € X every F € q(x) contains a coarser filter 6 € q(x) which has a filter

base of compact sets. In T2 topological spaces, it coincides with the usual

definition of local compactness. We call a po convergence space ord T3 , 1f it

satisfies both ord T and the dual axiom ord T In a similar way we define

3L 3u °

st ord T3 .
THEOREM 3.14. Let (X,q,<) be a po convergence space, whose topological

modification is ord T If (X,q) 1is strongly locally compact, then (X,q,=<)

5 -
is st ord T3 .

PROOF. For x € X and F € q(x) there is a coarser filter 6 € q(x) pos-
sessing a base of compact sets. The filter 1i(6) has a base of closed sets

(cf. Nachbin [4, p. 44]). It follows
®i2i®? =1@ ,
which combined with the dual reasoning gives the theorem.
COROLLARY 3.15. (Mc Cartan [5, Th. 7]). Every po topological space, which is
2 is also ord T3 .
4. SEPARATION AXIOMS AND CONNECTIVITY

locally compact and ord T

In this section, the axioms of Section 3 shall be related to connectivity, the
concept of complete separatedness also being involved. The results to follow are
new also in the theory of po topological spaces. For a corresponding study in
topological spaces without order relation, reference is made to Preuss [6, Ch. 6].
Increasing continuous maps between po convergence spaces shall be called morphisms.

Let E denote a family of po convergence spaces. The elements x,y of an
arbitrary po convergence space X are called (X,E)-related, if 4(y) < ¢(x) for
all E € E and all morphisms ¢ : X »E, or if ¢(x) < ¢(y) for all E € E and
all morphisms ¢ : X = E . Furthermore, the elements x,y € X are called
(X,E)-identic, if ¢(x) = ¢(y) for all E € E and all morphisms ¢ : X - E .

DEFINITION 4.1. Let E be a family of po convergence spaces. A po convergence
space X 1is called E-orderconnected, if for every x,y € X

x|ly=x and y are (X,E)-related
x <y=x and y are (X,E)-identic.

In the special case discrete order, topological space (in both the po conver-
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gence space X and the family E), the definition above coincides with the
definition of E-connectedness for topological spaces in Preuss [6, Ch. 6].

REMARK 4.2. A po convergence space X 1is called strongly E£-orderconnected, if
every x,y € X are (X,E)-identic. This is the natural definition of a connectedness
concept in po convergence spaces. Burgess and Mc Cartan [13] used a variant of this
definition in po topological spaces. Here Definition 4.1 shall be used, since from
our point of view it provides the best application.. However, a short comparison of
the two definitions is called for. They coincide, if the po structure of X is
directed (without restriction on the family E). In general, the two definitions do
not coincide. The stronger definition is applied in an example in Section 5.

DEFINITION 4.3. Let E be a family of po convergence spaces. A po convergence
space X 1is called completely E-separated, if for every pair x $ y in X there is
a space E € E and a morphism ¢ : X > E for which ¢(x) # o (y)

REMARK 4.4. If X 1is a po topological space and E = {[0,1]} , then Definition
4.3 coincides with Nachbin's definition of completely separated po topological space.

REMARK 4.5. The condition of Definition 4.3 can be restated in the following
way: For every pair x|y in X there are spaces E,F € E and morphisms
¢: X+E, ¢ : X>F for which ¢(x) $ $(y) and o(y) $ ¢(x), and furthermore, for
every pair x <y in X there is a space G € £ and a morphism n: X > G for
which n(x) <n{y) . Thus, the concept of completely E-separated is a natural
disconnectedness concept related to Definition 4.1.

REMARK 4.6. In the special case discrete order and topological space,
Definition 4.3 coincides with the definition of totally E-connectedless topological
space (total E -zusammenhangsloser topologischer Raum) in Preuss [6, Ch. 6].

For E a given family of po convergence spaces, the family of completely
E-separated po convergence spaces is denoted by Q(E). It will play a crucial réle
as a key, when translating the lower separation axioms of Section 3 into connectedness
concepts.

In the category of po convergence spaces and increasing continuous maps,
products and subspaces are formed in the obvious way. It is easy to prove

THEOREM 4.7. For any family E of po convergence spaces, the related family
Q(E) 1is closed under formation of products and subspaces.

Denote the family of all Ti-ordered po convergence spaces by ggg_zi . In case
of i = 1L, IU, 1 and 2, we shall determine at least one family Ei of po convergence
spaces for which EEi—Ei = Q(Ei) . In case of i = 3L, 3U and 3 , we shall later
define another disconnectedness concept through which the regularity axioms shall be
represented.

THEOREM 4.8. For i = 1L, 1U, 1 and 2, we have ord Ti = Qord T.).
L

PROOF. The theorem is proved for the case i = lL. Start by taking a po
convergence space X € Q(QSQ_ZIL) and choose a $ b in X . There is a space
E € ggg_zlL and a morphism ¢ : x - E for which ¢(a) $ ¢(b). Hence, for any
filter H » ¢(a) there is a set H € H such that h $ ¢(b) for all h € H .
Suppose there exists F -+ a such that every F € F contains some element f with

f <b. Since ¢(F) > ¢(a) , a contradiction is obtained, and hence X € ord TIL .
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Then take X € gsg_zlL . All a $ b in X are nicely separated by the
identity map X > X € QEQ—IlL , and hence X € Q(QEQ—IIL)'
COROLLARY 4.9. The separation axioms ord Ti (i = 1L, 1lU, 1, 2) are closed
under formation of products and subspaces in the category of po convergence spaces.
In any representation ggg_li = Q(Ei) it always holds Ei Cord T. , but it is
not necessary for Ei to equal the whole family 251;21 (L = 1L, 1U, 1, 2). Endow
the ordered set {1,2} with the topology whose only non-trivial open set is {2}
({1}), and denote the resulting po topological space by SlL (slU)' Furthermore,
let El denote the family of all po topological spaces carrying interval topology.
THEOREM 4.10. The following representations hold: QEQ—IIL = Q({SIL}) ,
ord T,, = Q({SIU}) and ord T, = Q(El) - Moreover, neither ord T, nor ord T,
can be interpreted using one-space families E .
REMARK 4.11. The ideas above are now applied on a new, weak separation axiom
for po convergence spaces. We say a space X is To-ordered, if for every pair a $ b
in X at least one of the following conditions holds:
(1) For every F + a there is a set F € F such that x f b for all x € F .
(2) For every & + b there is a set G € & such that a $ y for all. y € G .
We denote this separation axiom by ord TO . Obviously, ord T. = Q(EO), where

)
E = {

0 SlL’SlU}’ and hence ord T: is closed under formation of products and sub-

spaces in the category of po convergence spaces. A po convergence space is T,-ordered,

0
if and only if its topological modification is. In case of discrete order, ord T,

coincides with the usual separation axiom TO for convergence spaces. °

We proceed to the regularity axioms ord Ti(i = 3L, 3U, 3), starting with the
definition of a new disconnectedness concept for po convergence spaces. Let M be a
subset and p an element of the po convergence space X. By M << p is indicated
that there is a closed decreasing set D in X containing M but not p.

Now, for E a given family of po convergence spaces, let RL(E) be the family
of po convergence spaces defined through

X € RL(E) « For every closed decreasing set D C X and for every

P { D there is a space E € E and a morphism ¢ : X > E for which

(D) << ¢(p) .

THEOREM 4.12. The representation 5551;£3L = RL(ggg_géL) holds. There is no
po convergence space E3L for which QEQ—IBL = RL({E3L}) .

REMARK 4.13. It is obvious how to define families Ri(E), in order to have
ord Ti = Ri(ord Ti) , 1 = 3U,3 . (These regularity axioms were defined in the
remarks preceding Theorem 3.14).

REMARK 4.14. Finally, we wish to point out that the results 4.7 - 4.10 and
4.12, although stated for po convergence spaces, also hold true for po topological
spaces. For topological spaces without order, these results were presented in
Preuss [6, Ch. 6].

5. GENERATING NEW SEPARATION AXIOMS
In Theorem 4.8 it was shown that the lower separation axioms of Section 3 are

related to the connectivity concept given in Definition 4.1. In two examples, we
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shall study deviating connectivity definitions, and then generate separation axioms
matching these definitions.

EXAMPLE 5.1. Definition 4.1 is strong in the sense that the corresponding
disconnectedness concept (Definition 4.3) allows a very weak (X,E)-separation of
non-related elements (cf. Remark 4.5). Therefore, we mention the following pos-
sibility:

Definition. Let E be a family of po convergence spaces. A po convergence space
X 1is called weakly E-orderconnected, if for every ‘x,y € X, every E € E and every
morphism ¢ : X > E holds

x|l y = ¢(x),0(y) are order related
X =y =¢x)=9d(y) .
We introduce the corresponding disconnectedness concept Q'(E) by
X € Q"(E) = For every x |l y in X there is a space E € E
and a morphism ¢ : X + E such that ¢(x)||¢(y), and furthermore,
for every x <y in X there is a space F € E and a morphism
¢ :X > F such that o(x) < ¢(y) .
In the special case discrete order and topological space, these definitions
coincide with the definitions of E-connected and totally E-connectedless topological

spaces, respectively (cf. Preuss [6, Ch. 6]).

It can be proved that ord Ti Q' (ord Ti)° 1f Ei is a proper subfamily of
ord T. , then in general Q'(Ei) is a proper subfamily of Q(Ei). Thus, the family
Q'(Ei) defines a stronger separation axiom than Q(Ei) ,i=1L, 1U, 1, 2. 1If Q
is replaced by Q', Theorem 4.10 holds with the only exception that the space
SlL(Slu) must be replaced by the po topological space ElL(EIU)' Hereby, EIL(ELU)
is defined on the set {a,b,c}, where the order is a|b, a<c¢, b = ¢

(a]lb, ¢ = a, ¢ =b) and the non-trivial open sets are {c}, {a,c}, {b,c} in both
cases.

EXAMPLE 5.2. Starting with the connectivity definition of Remark 4.2 (i.e.

strong E-orderconnectedness), we write for any po convergence space X

X € Q"(E) ® For every x #y 1in X there is a space E € E

and a morphism ¢ : X + E for which ¢(x) # ¢(y) .
For E a family of po convergence spaces, in general, Q(E) is a strict subfamily of
Q"(E), and hence Q"(E) defines a weaker separation axiom than Q(E). For instance,

the family Q({SIL})’ i.e. ord T is a strict subfamily of Q"({SIL}). We consider

s
Q"({SIL}) to be a separation aiiom. A po convergence space 1is Q"({SIL})’ if and
only if the topological modification is. A po topological space X 1is Q"({SIL})’
if and only if for every x|ly in X there is an increasing open neighborhood of at
least one of the two elements which does not contain the other element, and
furthermore, for every x <y in X there is an increasing open neighborhood of vy

which does not contain x .
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