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ABSTRACT. The paper is concerned with the axi-symmetric, incompressible, steady, lam-
inar and Newtonian flow between two, stationary, conical-boundaries, which exhibit a
common apex but may include arbitrary angles. The flow pattern and pressure field are
obtained by solving the pertinent Navier-Stokes' equations in the spherical coordinate
system. The solution is presented in the form of an asymptotic series, which conver-
ges towards the creeping flow solution as a cross-sectional Reynolds-number tends to
zero. The first term in the series, namely the creeping flow solution, is given in
closed form; whereas, higher order terms contain functions which generally could only
be expressed in infinite series form, or else evaluated numerically. Some of the re-
sults obtained for converging and diverging flows are displayed and they are demon-
strated to be plausible and informative.
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1. INTRODUCTION.
1.1 Problem Statement

The problem considered is that of predicting the steady, incompressible, laminar
and Newtonian flow inside the passage formed between two, co-axial, fixed cones of
common apex, Figure 1. The apex is the source of the diverging flow and the sink of
the converging one. The flow region of interest exhibits low absolute values of a
cross-sectional RN defined by i% . The flow is assumed axi-symmetric, and both swirl

and body forces are absent.

The velocity and pressure profiles are sought at different cross-sections, for
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various apex angles of each cone.
1.2 Solution Technique

The method of solution employed here is an indirect one, in which the dependent
variables are expanded in a finite series whose coefficients are unknown functions to
be determined by substitution in the equations of motion. The first term in the
series is the creeping flow solution; as the cross-sectional RN decreases, the solu-
tion tends asymptotically towards the first term.

Some of the mathematical properties of asymptotic series solutions may be found
in, for example, Morse and Feshbach [1].
1.3 Previous Work

Historically, various authors have employed asymptotic series to solve duct flow
problems. Among these, Peube [2] was the first to obtain an asymptotic solution for
the velocity and pressure distribution inside two parallel disks. Later, Ackerberg
[3] derived an asymptotic solution for the flow inside a cone, whereas Rice and
McAlister [4] obtained the solution for the special case of the throughflow between
co-axial co-rotating cones having the same semi-vertex angle in terms of the already
existing solution for the flow between parallel disks.
2. MATHEMATICAL MODEL.
2.1 The Governing Equations

The mathematical model comprises the Navier-Stokes momentum equations and the
equation of continuity. The spherical system of co-ordinates (r,0,¢) is adopted, in
order to simplify the expression of the boundary conditions. Due to axial symmetry
and absence of swirl, all terms in both ¢ and v¢ are omitted. Thus the governing
equations are:

the r-momentum equation

2
v v, oV v 2v v
r, 6 _¢__~6__153p 2, __x_2 _6_ cotb
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the 6-momentum equation
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and the equation of continuity
3 .
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2.2 The Boundary Conditions
The non-slip conditions at the walls state that:

v, = 0 at 6 = 61 and 6 = 92

(2.5)

vy = 0 at 6 = 81 and 6 = 62 .

In addition to these conditions, continuity of the flow dictates that q is the

same at all cross-sections. q is given by

2
q=r vr sin6 .d6 (2.6)

!

where q is positive for diverging flows and negative for converging ones.
2.3 The Y-Equation and Boundary Conditions
Introducing a stream function Y(r,Z) defined by

-1
/1l - 22

]
Q1w
n €

(2.7)

=__.l_.8_w.
Ve 2 3z
r

where Z = cosf, the continuity equation is identically satisfied and the momentum equa-

tions are reduced to

, , L2 2 a2
19p _ 1 3(,99/9z) 1 | 2 ( 5%,) +—L (3, _ v 3@y (2.8a)

o ar 4 a(r,2) 3|2 ~ 2 lor 2oz
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S PR N | X R JRR B 2 or

Furthermore, by eliminating the pressure terms from Equations (2.8a) and (2.8b),

the following equation results for y:
2 2

1 3(@,Dy) Dy 2 3 13,y _ 4
7 a(r,z) T2 7 ¢ 73t Troz) SV (2.9a)
r r 1 -2
where
2 2 2
Dz' = D? D2, and D2 = = + 1-z i— . (2.9bc)
2 2 2
or r YA

In terms of the new dependent variable Y the boundary conditions reduce to:

¥(r,z)) = v, (2.10a)
¥(r,z2,) = v, (2.10b)
%%-= 0 at 6 = e1 and 6 =6, (2.10cd)
a=y, - wl . (2.10e)

2.4 The Dimensionless Forms

Introducing the dimensionless variables R, V Y and P defined by

R’ Ve)
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rv qu
R=g ™72 "%

qv
v = _?% ¥ = %., p = P (2.11)

in Equations (2.7)-(2.10), the following equations result for the dimensionless vari-

ables:
v o= - L 3
R R2 92 (2.12a)
v, = - I S %% (2.12b)
RV/1 - 22
_1_8(‘1‘,1)24‘) +2 DZ'W( L ﬂ+l§i)=Dl’u (2.13)
g2 9(R,2) R2 L - 72 R R v :

where D2 is the operator of (2.9c) with R replacing r.

o oo . 2 2 2
3P 1 o(¥,0%/3z) , 1 2, oY 1 oY 1 (DY)
== = —= += | S (=) +— (~5) |- 5 —5— (2.14a)
R R4 d(R,2) R3 R2 3Z 1 - Z2 9R R2 9z
op 1 3 (¥, 3¥/3R) z oy 2 1 3%Y)
327 2 7. I®,2) T 2 22 ()t 7 R (2.14b)
“ R°(1 - 29) ’ R°(1 - 29) 1-2
Setting wl = 0, then wz = q and dimensionless boundary conditions become
W(R,Zl) =0, W(R,ZZ) =1 (2.15ab)
( o ) = 0 at Z =12 d 2=2 (2.15cd)
Z 1 @ 2 :

Equations (2.11)-(2.15) constitute the mathematical model of the problem. The solu-
tion of Equation (2.13) for the boundary conditions specified by equations (2.15)

yields the Y distribution from which, with the help of Equations (2.14, 2.12), the

P,V_ and Ve profiles are derived.

R
3. THE CREEPING FLOW SOLUTION
3.1 Differential Equation and Boundary Conditions.

At large values of R, the flow is creeping, i.e. the inertia terms are of a
smaller magnitude than the viscous ones. If the inertia terms of Equation (2.13) are
neglected altogether, then a purely radial-flow solution, Y = fo(Z), will satisfy the
resulting equation. The flow will then be governed by the following total different-
ial-equation for fo(Z):

&

2

2 A1) "o
. [a-27) fo] +6 =0 (3.1)

coupled with the boundary conditions:

fo(z) = 0 at zZ = zl (3.2a)
£(@) =1 at z =z, (3.2b)
fé(Z) = 0 at Z = Zl and Z = 22 . (3.2cd)
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3.2 Solution of the Differential Equation.
The general solution of equation (3.1) is derived in Appendix A; it gives fO(Z),
fé(Z) in terms of Legendre-Functions (see for e.g. Abramowitz [5]) and their deriva-

tives, as follows:

2 ' ]
fo(Z) {@z® - 1)(c01>2(z) + D QZ(Z)] +AZ+ Bo} (3.3a)

It

m|°> N

£1(2) +C_ Py(2) + D Q,(2) (3.3b)

where Ao, Bo’ CO and Do are arbitrary constants, In order to satisfy the boundary
conditions expressed in Equation (3.2), these constants are determined from the fol-

lowing relations:

D_O _ P, (2)) - P, (Z)) Guim
¢, 9 @) -9, @) '
ﬁ’-=-6{D—°Q(Z)+P(Z)} (3.4b)
c, c, 21 28 :
Eg = (1-2 2) [P} (z,) + Eg Q @)1 - fg z (3.4c¢)
¢, 1 2 1 c, 2 1 c,6 1 :
€ = 5 D, : A, B_ :

{(z2 - DIP) (z) + c. Q) (z,)] + o z, + o } (3.4d)

4, THE ASYMPTOTIC SERIES SOLUTION.
4,1 The Y Series

For large values of R, it seems reasonable to postulate an asymptotic expansion
for Y such that the series converges to the creeping flow solution as R > ®, Thus,

the following asymptotic series is postulated for Y

k£ (@)
Y(R,Z) v E L — (4.1)
R

n=o

where k is the number of terms of the series chosen according to the value of R and
the required accuracy. Here, no rigourous proof is given of the asymptotic nature of
the solutions. However, for the solutions obtained, the series converges for a finite
number of terms k, the value of k increasing with R, thus depicting a typical asym-
ptotic expansion behavior.

The first term in the series is the creeping flow solution fo(Z); whereas, the
subsequent coefficients of R-n, namely fn(Z), are unknown functions of Z to be deter-

mined in the following sections.
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4.2 Differential Equation and Boundary Condition for fn(Z).

i
In order to evaluate f (Z) for 1 < n < k, the expressions for ¥(R,Z) (postulated
n

in Equation (4.1)) and its derivatives are substituted in Equation (2.13) and the
summation of the coefficients of like powers of R are equated to zero, thus yielding
the following differential-equations for fn(z):

2, cn
a -z5?% %V - uza - 2% £+ 2 +1) (@+2) Q-2
n

+n(m+ 1) (m+2) (n+ 3) £ =F, @ (4.2)

where
n-1 ) }
F@ =D £, (s+&)ls(s+1) £+ (1 -2 £]
S=0
n-1
2y cm 2z
-2 - 1-)f | [s(s+ DEL+ (L= ZDHEN + (s + 1) R . @
S=0

The boundary conditions for Equation (4.2) are obtained by substituting the ex-
pressions for Y(R,0) and its derivatives in the expressions for the ¥Y(R,0) boundary-

conditions, Equations (2.15). The resulting boundary conditions for all values of

n 21, are:

[
o

f; (z) at Z=12 and Z = Z (4.4ab)

f, @ =0 at  z=2z and z=12, . (4.4cd)

4.3 Evaluation of fn(Z)

In general, it is not possible to evaluate fn(Z) in closed form. Two other poss~
ibilities present themselves: either numerical integration or an analytic solution
comprising an infinite series.

Numerical integration of equation (4.2) is a simple task since it merely entails
the successive solutions of linear, total differential-equations. The differential
equations are first cast in their corresponding finite-difference form, and the re-~
sulting system of algebraic equations are then solved by any of the well known solu-
tion algorithms. The particular one adopted here, was an available computer-library
subroutine.

The analytic solution is given by the sum of the complementary function (solution
of the homogeneous equation) and any particular solution of the full equation, Yn(Z).
Thus from Appendix C it is deduced that the analytic solution is expressed by:

AP ) RO @ CrL@) s e, @
n(n + 1) (n +2) (0 +3)

2
fn(Z) =-(1-27 *%(Z) (4.5a)
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land

fn'(Z) = AP (2) +BQ (2) + CoPyp (@) + D.Q .,(2) +Y'(2) (4.5b)

where An’ Bn’ Cn and Dn are constants which are determined from the solution of the

following matrix:

T r 0 r -
( Pn(Zl) Q,(2)) Pn+2(21) Qn+2(21) A - Yr'l(Zl)
Pn(ZZ) Qn(ZZ) Pn+2(22) Qn+2(22) Bn - Y;(ZZ)
Pr'n(zl) Q['I(Zl) Pr'1+2(zl) 1;+2(Zl) c Yn(Zl)
n(n +1)  n(n +1) (n+2)(n +3) @+ 2)(n + 3) n T
1
P'(z,) Q) (z,) Pl2(Zy) 42 (Zy) ) Y, (2Z,)
n(n + 1) n(n + 1) (n +2)(n + 3) (n+2)(n + 3) n 1-2 2
L B N

In general it is not possible to derive a closed form expression for Yn(Z). Thus

Adams' method is employed to obtain a Taylors' series expansion for Yn(Z) about 2

2)
i.e., -
- - m 4.6
Y (2) an,m(z Z,) (4.6)
m=0
=y (Z.) b=y ™ (2 )/m .7)
where bn,o =Y 2y ees B o n 2 !

Four of the coefficients bm may be chosen ad 1ib to produce any desired particu-

lar solution. A suitable choice is:

(4.8)

Subsequent coefficients are then derived by successive substitution and differ-

entiation of Equation (4.2). The following values result for bn,A’ bn,S’ bn,6 and
bn,7:
= (4.9a)
bn,4 0
F '(z,)
b = ____E_(.z_ (4.9b)
m3 o 120(1 - zg)2
2z F" (Z,)
b =— 2 b 4D 2 5 (4.9¢)
M6 -z ™ 04 -z
2
2(n + 1 +2)(1-2.)
16 B AerDeeDA-z 5
= = —c 5 )
n,7 7 a - ZZ) n,6 42(1 - ZZ) n
2 2
24(1 - 3 Zg) F;" (ZZ)
+ b . (4.9d)
n’

2,2
42(1 - ZZ)

5040(1 - 22)°
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Higher order coefficients may be derived in the same way. However, their evalu-
ation becomes increasingly more cumbersome, whereas the accuracy of the analytical
solution is impaired if the Yn(Z) is truncated too early. Thus, in general, numerical
integration is recommended.

However, for the particular case when the 91 and 92 boundaries are symmetrical,
as depicted in Figure 2, the analytical solution is considerably simplified. For this
case, Yl(Z) may be obtained in the following simple closed form:

.

Y@ = L4 ez’ -nz+20- 3252 - 2%)

32 2

(4.10)

[alie)]

Moreover, for n 2 2, the Yn(Z) Taylor-series expansion, which is given about

2 = 0 for this case, includes only odd powers of Z, i.e.:

_ 2m+l
Y (2) = ) By ome1 2 n>2 (4.11)
m=0
choosing
bn’1 = bn’3 =0 (4.12ab)
The following values are obtained for subsequent coefficients up to bn 11:
’
F! (0)
®n,5 = 7120 (4.12¢)
120 ((24 - 2(n + 1)(n + 2))b_ . + F'"(0)
b = n.> 1 (4.12d)
n,7 5040 °
bn 9 = (5040(60 - 2(n + 1)(n + 2))bn 7~ 120(n(n + 1)(n + 2)(n + 3)
’ ’

+ 360 - 40(n + 1) (n + 2))bn 5 + an(O))/362,880 (4.12e)
bn,11= ((40,642,560 - 725,760(n + 1) (n + 2)bn,9 + (423,360(n + 1)

(n+2) - 8,467,200 - 5040 n(n+l) (n+2) (n+3)) b + FnVH(O))/39,916,800 . (4.12f)

,7
Truncation of the Yn(Z) series after (bn,llzll) is sufficiently accurate, partic-

ularly if Zl is small.

5. THE VELOCITY AND PRESSURE SERIES.

Substitution for Y in Equations (2.12) by its series given in Equation (4.1)

yields: K
L3 A
VR(R,Z) Vo= 3 a (5.1)
R - R
n=o0
k
1 nfn(Z)
V,(R,Z) Vv 1 (5.2)
6 R2(l _ 22)1 Z N
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Substitution for Y in Equation (2.14a) by its series given in Equation (4.1), and

integration along a 6 = constant line from R = R to R = =, yields:

h_(Z)
1 n
P - Pm N —5 z a (5.3)
R R
n=o
where hn(Z) for o < n < k, are defined by:
a-z% £0 - 2 £
- o
hO(Z) = 3 (5.4)
N 1 v - 2 "mo "
hy @ = Gy (@ D@+ DEL, + Q=208 =22 £,
. fn—s fs
" - A \J - - —_—
+ Z [s £, £1__- (n-s¥2)£ ' £__ - st = s) . 1} forn =0 . (5.5)
s=o
Since at R = © the flow is certainly creeping, then WI = fo(z), and hence Equa-
R=c
tion (2.14b) gives
%3 | =o0 (5.6)
z R=00
Moreover, from Equation (5.3), it is deduced that:
9P/3R | = 0. (5.7)

R=>

Hence, P is a constant for a given flow problem, and Equation (5.3) gives the pres-
sure difference between any two points in the field.

It is remarked that the first term in each of the asymptotic series for VR’ Ve
and P gives the creeping flow solution.
6. DEMONSTRATION CASE.

For demonstration purposes, results are presented for the case where Zl = 0.996

and Z, = 0.896 (91 = 5°", 6, = 26°22”). For both converging and diverging flows,

2

eight terms were retained in the asymptotic expansion (i.e. k = 7).
6.1 Display of Results.

Figure 3 presents the f; profile. For creeping flow, this profile gives both the
£ 2 f!
radial-velocity (V_ = - —2-) and pressure (P - P = -2 )(1) distributions across the
R R2 w R3

cross-section R. [See note]

Note.The creeping flow solution gives: P - P_ = E%—[(l - Zz)f;]/3R3. Differentiating

©

the above equation and comparing with Equation (3.1) yields:

6 f;. dz
R 3R
Subsequent integration between Z and Z_. yields:

1
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P -P=--2[£()-f@] =22
R3 o1 o R3 o

where Pw represents the pressure at the wall Z = Zl which, from the above equation, is
also equal to the pressure at the wall Z = 22'
Figures (4.10) display the remaining f; profiles, i.e. forn=1 -7,

Figures (11,12) give the corresponding VR profiles, computed at R = 0.3 and R = 0.5,
respectively; at each section R (depicted by RN = 1/R) the velocity profiles for both
convergent and divergent flows are displayed, as well as the profile that would be
obtained if the inertial terms were neglected (creeéing flow solution).

Figure 13 presents the Ve profile for both converging and diverging flows at
R = 0.5 (RN = 2). The streamline patterns for converging and diverging flows are re-
vealed in Figures 14 and 15, respectively.

Figures (16-19) show the hn profiles for n = 1,3,5, and 7. The corresponding
cross-stream pressure-distribution at R = 0.5, is given, for both converging and di-
verging flows, in Figure 20; whereas, the diverging-flow streamwise pressure-distribu-
tion along the inner wall, is displayed in Figure 21. A critical dimensionless radius
Rc is indicated which marks the value of R beyond which 9P/93R changes sign.

6.2 Discussion of Results.

The radial velocity profile:
fl
(1) Creeping flow: The creeping flow profile, which is expressed by - —% , is

the same for converging and diverging flows. The profile is skew, since the skin-
friction area at the inner wall is smaller than the area at the outer wall.

(ii) Flow with inertia: Although the functions f; are identical for converging
and diverging flows, the velocity profiles are different for k 2 1, This is a conse-
quence of the q sign convention, which is positive for diverging flows and negative
for converging flows. Thus, the terms exhibiting odd powers of R will yield contri-
butions of opposite signs in converging and diverging flows.

Inspection of the f; profiles for o < n < k indicates the direction in which the
profiles develop as R changes; of course, as R decreases, the higher order terms be-
come more influential. For diverging flow, where R" is always positive, comparison of
the f; profiles for n 2 o shows that as R decreases, the velocity profiles become more
peaked, and that for sufficiently small values of R, a recirculation zone would exist
near the outer wall. For converging flow, where R" is negative for odd values of n,

the development of the VR profile with decreasing R is not deduced as easily as for



ASYMPTOTIC SOLUTION OF THE LOW REYNOLDS-NUMBER FLOW 775

diverging flow. However, if one focuses attention on the first two terms only, then

it is immediately apparent that the effect of the inertia terms would be to flatten
the creeping flow profile, and that the lower the value of R, the flatter the profile,

until eventually a boundary-layer type profile is obtained.

Inspection of the converging and diverging flow VR profiles calculated at RN =2
and RN = 3.3 shows that they confirm to the previous observations. Comparison of the
converging and diverging flow profiles at a given R, against the creeping flow one re-
veals that the diverging flow profiles deviate considerably more from the creeping
flow profiles than the corresponding converging flow ones. Moreover, comparison of
the diverging flow profile at RN = 3.3 against the one at RN = 2 shows marked differ-
ences., Extrapolation beyond RN = 3.3 indicates that recirculation near the outer wall
should be expected at slightly larger values of RN. It must be mentioned however,
that R = 0.3 (RN = 3.3) is roughly the smallest value of R for which the asymptotic
series will converge for the full eight terms.

The Y pattern and Ve profiles:

At large values of R, the streamlines for both converging and diverging flows are
radial straignt lines. However, as R decreases the deviation from radiality becomes
more pronounced, particularly for diverging flow. Thus at large values of R, Ve is
negligible; whereas, at small values of K, Ve is not negligible. Since for a given R,
the radial inclination of the streamlines is larger for diverging than for converging
flows, the magnitude of Ve is alse larger for diverging flows.

The pressure profiles:

(i) Cross-stream distribution: For n 2 1 the hn(Z) profiles change monotonical-

ly with nj; thus they imply a monotonic change of the diverging flow profile with R.
In particular, it is noticed that whereas for creeping flow the pressure at both walls
is equal, for diverging flow the pressure at the outer wall is larger that at the in-
ner one, the difference increasing with decreasing R.

Comparison of the converging and diverging flow profiles at the same R shows that

the latter is much more peaked, the same as with the V_ profile.

R

(ii) Streamwise distribution: Differentiation of Equation (5.7) with respect

to R yields:

3h 4h h 10 h
oP o 1 n 7
=V - — - — ... - (n + 3) e (6.1)
oR R4 RS Rn+4 Rll
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Since ho(Z) is positive and hn(Z) is negative for n 2 1, thence it is seen that
for diverging flow, the first term in the series (creeping flow solution) tends to give
a pressure-drop which is required to overcome the viscous forces; whereas, the remain-
ing terms (inertia terms contributions) tend to raise the pressure due to the diffuser
effect of the passage. Thus 9P will be positive for small values of R, and negative

oR

for large values of R. The value of R at which %% = 0 is designated RC and indicated
in Figure 21.

For converging flow, the first two terms will give a pressure drop, whereas the
remaining ones will alternate in sign. Thus it should be expected that 9dP/3R will be
negative, obviously due to the combined effects of viscous-friction and conversion of
pressure-energy into kinetic-energy.

7. CONCLUSION.

In this paper an asymptotic series solution is obtained for low Reynolds-number
flow between two co-axial cones with a common vertex., The first term in the asymptotic
series gives the creeping flow solution, which, to the best of the authors knowledge,
is presented here in closed form for the first time. Except for a special case where
another term was also obtained in closed form, subsequent terms of the asymptotic ser-
ies contain functions which are presented in infinite series forms. Theoretically,
the evaluation of these functions may be performed manually; however, in general, it
is recommended to resort to computer aid in order to solve directly the ordinary diff-
erential equations derived for these functions. It must be emphasized, though, that
the computational effort involved therein is much less than what would be required for
the numerical solution of the non-linear Navier-Stokes equations. Moreover, since the
functions to be evaluated numerically are universal for a given set of cone angles,
the computations need only be performed once for a given geometry.

The geometrical configuration considered here is encountered in fluid ducts of
many applications. Whenever the Reynolds-number of the flow is small, the mathematical
model presented here should yield useful predictions of the velocity and pressure dis-
tributions.

Appendix A: Solution of the fo(Z) equation.

Integrating Equation (3.1) twice w.r.t.Z. yields:
2 " —
(1 z7) fo + 6 fo = A0 Z+ B0 (A.1)

where Ao and Bo are constants.,
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The corresponding homogeneous equation
2, Zn ¥ =
(1 Z7) fo + 6 f0 =0 (A.2)
represents a special case of the more general differential Equation (B.l). Hence, the
complementary function is given by

(z?

e @) - =8 (e py@ + 0, Q@) (A.3)

o
where Co and D0 are constants.

A particular solution of.Equation (A.1) is
AZ+B

_ o o
fo(Z) i a— (A.4)

Hence, according to the general theory of linear differential equations, the gen-
eral solution of Equation (A.1l) is expressed by

T ey ' '
£,(2) =% (@ -DIlc P',(2) +D Q(2)] + AJZ+B . (A.5)

With the help of Equation (B.3), it may also be obtained that

A
o
£0(2) = =+ C, P,(2) +D_ Q,(2) . (A.6)

Appendix B: Solution of D.E. for the Integral of Legendre-Functione.
The solution of the differential-equation
(1-2% 6@ +nm+1) 6 () =0 (8.1)
wnere Gn(Z) is a function of Z, was derived by the authors as follows:
differentiating Equation (B.l) w.r.t.z. yields

a - 22) G;"(Z) -22 G:(Z) + n(n + 1) c;(z) =0 (B.2)

which is the Legendre differential-equation for the function G;(Z). Hence, G;(Z) is
given by
G;(Z) = An Pn(Z) + Bn Qn(Z) (B.3)
where An and Bn are constants.
In passing, it is mentioned that, because the integration of the Legendre funct-
ions on the right-hand side of Equation (B.3) yields the solution of the differential-
equation (B.1), the authors refer to the latter equation as the differential-equation

for the integral of Legendre-functions. However, since differentiation is always more

feasible than integration, the function Gn(z) is derived by first differentiating Equa-
tion (B.3) w.r.t.z. to yield
" = Al 0'
Gn(z) = A P!(Z) + B Q! (2) (B.4)

then substitution of the right-hand side of Equation (B.4) for GK(Z) in Equation (B.1)
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oroduce

a-z%

Gn(z) =T n(n + 1)

A} + 1 '—
A P'(2) +B QD) . (8.5)
Appendix C: Solution of the Homogeneous Differential LEquation for fn(z)

The homogeneous differential equation for fn(Z) is expressed by

(1-2%)? fﬁv- 4z<1-zz)f:'+ 2(n+1)(n+2)(1-zz)E: + n(nt) (n42) (143). T = 0 . (€.1)

Equation (C.l1) may be rearranged in the form:

2
(-4 9—— [a-z%) f"+ n(n+l) f o1+ (#2) (n3) [(1-2 ) f +n(n + 1)f ] = (€.2)
az?

Thus a solution of the differential-equation

" _
a-z% £ +n@+DE =0 (€.3)
is also a solution of (C.2). From Appendix B, the solution of this equation is
= a-2%
= - 2 T & )¢ [ '
fn S ED iAn Pn + Bn Qn} (C.4)

where A and B are arbitrary constants.
Iquation (C.1) can also be rewritten in the form
, 2
(1-2%) 9—5 [(1-z%) f + (042) (+3) 1 + n(+D) [(1-27) f + (042) (@43) 1= 0 .(C.5)
dz

Thus a solution of the differential-equation
. o_n _
-2 F +@+2)@+3) £ =0 (C.6)

is also a solution of (C.1). From Appendix B, this solution is given by

2
%"GT+ZRF¥3){C w+ﬂz)+n sz“)} (C.7)

where Cn and Dn are arbitrary constants.
" functi 7 . . . .
Since tne functions Pn(Z), Qn( ), Pn+2(Z) and Qn+2(u) are independent, and thus
offer four independent solutions to the fourth-order linear differential-equation
(C.1), then the general solution cf this equation is

A P'(Z) + B Q'(2) C (L) + D Q' Z)
F ooy = (1 - 52 n . n_ m n n+2
£ (2) = -1 - 2% { e 1) + (n Ty (w + 5 b, (C.8)

Moreover, considerations of Equation (B.3) yield

vy
fn(é) An Pn(z) + Bn Qn(z) + Cn Pn+2(z) + Dn Qn+2(z) . (c.9)
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Fig. 1 geometry of Problem Investigated F1g. 2 The Symmetrical Case
o .
fo
-
KIS
Sk
-4
i
2
4
2
z, 1

Fig. 3 f; profile

fez)

os

21=0996
22=0896

2, 20996
2220896

Fig. 4 f profile Fig. 5 f, profile



780

M. A.

SERAG-ELDIN AND Y. K. GAYED

f3 ()
10x10-2
2
| 3
ZZ 1 1 1 1 " 896 096 0936 o 0976 0996
j0 896 096 0936
~ -1
Z1=0.996 92
24 =0996 2,=0896 R
22=0.896
-4
-5
—-€
Fig. 6 fé profile Fig. 7 f; profile
. fé (¢3]
R
4
4]
. . Lol o
LY L1 096 Q%36 095 0976 O
2
-4
C896 omls . os:u‘s 0 L "9175 B e —-0x0
J_ax0¢ 20
2y =0.996 1
Z1 =0.996 - 250896 3o
2,=0896
4-12 e
ALY
—4-50
! __1.&(‘
Fig. 9 fé profile

Fig. 8 fé profile




ASYMPTOTIC SOLUTION OF THE LOW REYNOLDS-NUMBER FLOW

J VR N\
/ A\
— —— DIV <220 // -\'
———a— CREEP / \
—— CONY 200 : \
A
heo / \
! |
i RN
Zy =0.996 f \ ‘
Z2=0.896 A \ -‘
= ¥ \
e 7y |
4 120 H
4] o |
1 ) - // / |
09% / 100
s
/ .
/ / —~ 80
/ /
/
21 =0.996 - N /e
= ) ! /
Z5 =0.896 e // / o
] / /
i ) /
-i-16 ) '/ -420
] Z2 ,// ¥4}
- i L " Aol i
08% N916 0936 0956 c9/6 ALY 4
Fig.10 £, profile Fig.11 V. profil~ at R = 0.3
R

0896 316 0936 0956 09 0996
--02 CONV

Fig.12 Vp

profile at R = 0.5

Fig.13 Ve profile at R = 0.5




782 M. A. SERAG-ELDIN AND Y.K. GAYED

2 ~R =03

>
vR =04 ﬁ
«R =05 >

Z1=0.996 22=0.896

2,=0996 Z2=0-896
DIV FLOW STR LINES CONV FLOW STR. LINES
C Angles enlarged 4 times ) CAngles enlarged 4 times)

Fig.14 div. flow streamlines Fig.15 oonv. flow streamlines

1420 hq (2)
410
—\eoo
Z1=0996 .
Z,=0896
1780
1
4
ZZ 20 ) Z2
. 1 L ) 1 el il L 1 | 1 | I\ Il J S N
0896 0916 0936 owse 0976 0996 72 0.896 one as3e ose o oeee 2
Fig.16 h, profile Fig.17 h, profile



ASYMPTOTIC SOLUTION OF THE LOW REYNOLDS-NUMBER FLOW 783

Z4=0.996 i)
2,=0896 B
Z4=0996 Jdso0
Z,=0.896
_l.so
4o
430
+-20 20
—-24 jut) o-!ﬁ"
22 - _20x102 21 22 2}
—l o 1 L A 4 ! 1 ! 1 i 1 i A dad el
08% one 0938 [ os7e 0e%e 7 0096 one 0936 o98e ows 099 2
Fig.18 hS profile Fig.19 h7 profile
PRESS VARIATION ALONG INNER WALL
" FOR DIV FLOW.
e; .
e-
2
03
eof i, div o b

e 143
Rc = 0.485
Z1 =0.996

22=0.896

L3

74

Ry=20
Zq =099
Zo =0.896

86 32¢

62 1103

Zy

220 - - 32

22,
0896 0916 0936 0956 0976 0996

Fig.20 Cross-stream P profile Fig.21 Streamwise P variation



784

M. A. SERAG-ELDIN AND Y. K. GAYED

REFERENCES

MORSE, P.M. and FESHBACH, H. Methods of Theoretical Physics, Part I, McGraw-Hill,
(1953), p. 434-437.

PEUBE, J.L. "Sur L'ecoulement radial permanent d'un fluide visqueux incompressible
entre deux plans paralleles fixes", J. de Mechanique, vol. II, No. 4 (1963),
p. 377-394.

ACKERBERG, R.C. The Viscous Incompressible Flow Inside a Cone, J. Fluid Mech.
vol. 21, Part I (1965), p. 47-81.

RICE, W. and McALISTER, K.W. Laminar Throughflow of a Newtonian Fluid between
Coaxial Rotating Cones, Trans. of the ASME 210/March (1970).

ABRAMOWITZ, M. and STEGUN, I.A. Handbook of Mathematical Functions, Dover Publi-
cations (1965), p. 331-335.




