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ABSTRACT. A locally conformal symplectic (l.c.s.) manifold is a pair (M2n,fl) where

M2n(n > i) is a connected differentiable manifold, and a nondegenerate 2-form on

M such that M k9 Us (Us- open subsets) /U e, o Us -IR, d O.

Equivalently, d ^ .q for some closed 1-form . L.c.s. manifolds can be seen

as generalized phase spaces of Hamiltonian dynamical systems since the form of the

Hamilton equations is, in fact, preserved by homothetlc canonical transformations.

The paper discusses first Hamiltonian vector fields, and infinitesimal automorphisms

(i.a.) on l.c.s, manifolds. If (M,) has an i.a. X such that (X) 0, we say

that M is of the first kind and assumes the particular form de ^ e

Such an M is a 2-contact manifold with the structure forms (,e), and it has a

vertical 2-dlmensional foliation V. If V is regular, we can give a flbration theorem

which shows that M is a T2-principal bundle over a symplectlc manifold. Particularly,

9 is regular for some homogeneous l.c.s, manifolds, and this leads to a general con-

struction of compact homogeneous l.c.s, manifolds. Various related geometric results,

including reductivity theorems for Lie algebras of i.a. are also given. Most of the

proofs are adaptations of corresponding proofs in symplectlc and contact geometry. The

paper ends with an Appendix which states an analogous fibratlon theorem in Riemannlan

geometry.

KEY WORDS AND PHRASES. Locally conformal symplectic manifold, s-contact manifold,

Boothby-Wang fibration.
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i. INTRODUCTION.

A symplectic manifold is a pair (M2n,), where M2n is an even dimensional dif-

ferentiable manifold (all our manifolds are assumed C and connected) and fl is a

closed nondegenerate 2-form on M. Such manifolds are very important since they pro-

vide a good geometric framework for Hamiltonian mechanics, and for other chapters of

theoretical physics. If the 2-form is nondegenerate but not closed, (M2n,fl) is

an almost symplectic manifold, and this definition provides a class of geometrically
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interesting manifolds. In between, the locally conformal symplectlc (l.c.s.) mani-

folds are defined as almost symplectic manifolds M
2n

(n > I) which have an open

covering {Us} 6 A’ and a system of functions o U- such that d(e ) =0.

Equivalently, dos glue up to a closed 1-form and

d A (i.i)

Formula (i.i) was established by H.C. Lee [i and we call the Lee form; it is

well defined, and d O. Clearly, iff is exact, the manifold is globally con-

formal symplectic (g.c.s.).

We refer the reader to [2 ], [3 ], [4 and [5 for the first properties and

examples of l.c.s.manifolds,that also provide a geometric motivation for the study of

this class of manlfolds. But, let us also point out a physics motivation. Indeed, let us

look at a dynamical system with n degrees of freedom. Then its phase space can be

seen as a 2n-dimensional differentiable manifold M and the dynamics consists of the

orbits of a well defined vector field X Every point of M has an open neighbour-

hood Us with the local coordinates (qi "a)) (i j=l n) given by positions(s) Pj
and momenta, and there is a Hamiltonian function H(a) (qi ()) such that the

(a), Pj
orbits are defined by the Hamilton equations

i (c)
dq(e) H(s dPi H(s)

s) i
(1.2)

dt Pi dt 8q(e)

The well known symplectic interpretation 6 tells us that X is precisely the
(=)

Hamiltonian field of H() with respect to the symplectic form (e) i=l s)
Now the usual continuation of this interpretation consists in asking the local

forms (s) and local functions H(e) to glue up to a global symplectic form and

a global Hamiltonian H. But this is not compulsory since the only global entity is

X and we must only ask that the transition functions

i i k (e)), (8) (8) k h()q(B) q(8)(qcs) Ph Pi Pi (q(a) p (1.3)

preserve the form of the Hamilton equations (1.2). This happens not only if (1.3)

implies 8 (i.e.,(l.3) are canonical transformations), but also if (1.3) implies

8 IBsa E8e const.# 0 (i.e., (1.3) are homothetic canonical transformations)

if we take H(8 18sH(a) In other words, we get the Hamiltonian dynamics if the

geometric structure of the phase space is defined by an open covering {Us}a 6 A and

a corresponding system of local symplectic forms such that over UUB# one

has

8 18 18s const. (1.4)

In this case, we get easily from (1.4) the cocycle condition

B7 B (1.5)

hence we have a basic line bundle L on M, and instead of a Hamiltonian function

we have a Hamiltonian cross-section of L (a "twisted Hamiltonian").

It is well known that the cocycle condition (1.5) implies

l e / e (1.6)

for some functions o Ue+ IR defined up to a te f/ue (f:M +), and then (1.4)
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shows that a
e (1.7

is a global non-degenerate 2-form on M defined up to a global factor. Hence (M,)

is an l.c.s, manifold.

Therefore, the l.c.s, manifolds are natural phase spaces of Hamiltonlan dynamical

systems, more general then the symplectic manifolds, and this is the announced motiva-

tion.

Finally, we indicate that the l.c.s, manifolds play an important role in the re-

cent works of A. Lichnerowicz . ].

In this paper, we do not intend to discuss problems of mechanics or physics, but

some problems concerning the differential geometrical structure of the l.c.s, mani-

folds. In Bectlon 2, we discuss infinitesimal automorphisms (i.a. of an l.c.s.

structure .. If there is an i.a. X such that (X) O, the manifold (M,) is

called of the first kind, and has a particular form, while M becomes a 2-contact

manifold [12] This happens necessarily if (M,) is homogeneous nonsymplectlc. In

Section 3,we define regular l.c.s, manifolds, and give a corresponding Boothby-Wang

fibration theorem 8 9 We also deduce that a homogeneous l.c.s, manifold

with an invariant i.a.X such that (X) # 0 is regular. In Section 4, we discuss

compact homogeneous i.c.s, manifolds, and show a method for constructing such manl-

T
2

folds as (torus)-bundles over compact homogeneous simply connected Hodge manifolds

by applying the results of I0] for contact manifolds. We also apply the method of

[I] in order to derive some reductivity results for Lie algebras of i.a. of l.c.s.

structures In each section we also give various other related results. Most of the

proofs are adaptations of corresponding proofs in symplectic and contact geometry.

The paper closes with an Appendix where we give a Riemannlan analogon of the Boothby-

Wang fibration theorem.

This text is a part of a series of lectures on Boothby-Wang fibration theorems

given by the author at the Istituto Matematico del Politecnico dl Torino (Italy),

under the invitation of the Italian Consigllo Nazlonale delle Rlcerche (C.N.R.). I

should like to express here my thanks to the CNR of Italy and to my hosts in Torlno,

particularly prof. F. Tricerri.

2. HAMILTONIAN FIELDS. INFINITESIMAL AUTOMORPHISMS.

Let (M2n,) be an l.c.s, manifold with the Lee form , such that (i.i) holds

(and d 0). Then, we also have the characteristic vector field A defined by

i(A) --, and it is easy to get

i(A) O, LAW O, LAn 0 (2.1)

Let C (M) denote the associative algebra of C-fuctlons on M, and f M-IR be
one such function. As in Section i, there is a well defined line bundle L on M, and f
has well defined associated cross section fL of L iven by the local functions f

e Then, the usual symlectc HamItonian formalism [6] provides us with the
local fields Xf given by

i(Xf) df (2.2)

But (2.2) is equivalent to i(Xf) df f which shows that the local fields Xf
glue up to a global vector field Xf defined by

i(Xf) df f (2.3)
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Xf will be called the Hamiltonian vector field of f with respect to the 1.c.s.

form Clearly, Xf defines the dynamics of the local Hamiltonians fa as de--

scribed in Section I.

Using these fields, we define now the Poisson bracket

{f,g (Xg,Xf) Xfg-g(Xf) -Xgf+f(Xg)= ea{f,g} (2.4)

The last expression of (2.4) shows that PM)=(C(M), (. ,.}) is a Lie algebra (called

the Poisson-Lie algebra of (M,)) and that one has

X{f,g} [Xf,Xg] (2.5)

or, equivalently, the mapping H P(M) x(M) (where x(M) is the Lie algebra of the

vector fields of M) given by f Xf is a Lie algebra homomorphism.

The following fact is rather interesting.

PROPOSITION 2.1 Let (M,) be a (connected’.) l.c.s, manifold that is .not g.c.s.

Tlen H is a monomorphism.

PROOF. By (2.3), Xf 0 means df -fm 0 and f cannot be nowhere zero

since otherwise m would be exact, and M would be g.c.s. Hence, let f(xo) 0 for

Xo 6 M and put (d/) ( # 0) on some open connected neighbourhood of xo

Then df -fm 0 gives d(f) O, whence f const., and f 0 on that neigh-

bourhood. Now, for an arbitrary x 6 M one can build a chain of open connected

neighbourhoods UI, Un such that Xo 6 UI x 6 U
n

U
i Ui+I # (i=l, n-l),

and m/U. is exact (i =i, n). Then f 0 propagates along this chain from
1

x to x Therefore, Xf 0 implies f 0.

REMARK. This result is not true on g.c.s, manifolds.

Furthermore, it follows from (2.3) that any Hamiltonian field satisfies

Lxf (Xf) (2.6)

hence, generally and unlike in the symplectic case, Xf is not an infinitesimal automor-

phism (i.a.) of (M,). Of course, the latter are defined by O, and form a

bracket-Lie algebra x(M). We do have Xf 6 x(M) iff m(Xf) 0 or, equivalently in view

of (2.1) and (2.3), Af 0. Vector fields X such that re(X) 0 will be called

horizontal fields.

Now, let us refer to an arbitrary X 6 x(M). Then we have LX=-O and, by (i.I),

Lx=O as well. The later condition implies m(X)=const. Particularly, if X,Y 6 x(M),
then m(X)=const., m(Y)=const., and dm(X,Y)=O yield m([X,Y])=O. Hence, the application
, x(M) ]R defined by (X)=m(X) is a Lie algebra homomorphism for the commutative

Lie algebra structure of JR. We call the Lee homomorphism of x(M). The kernel ker

is the Lie algebra of the horizontal elements of x(M), denoted xhr(M). The i.a.

X 6 x(M) with (X)#O will be called transversal i.a. (t.i.a.), and we shall say that

the l.c.s, manifold M is of the first kind if it has t.l.a. Otherwise, M is of the

second kind, and the Lee homomorphism is trivial. If m has vanishing points, M is

necessarily of the second kind. Hence, if M is of the first kind m 0 everywhere, and,

if M is compact, M has a vanishing Euler-Poincar characteristic. If (M,) is of the

/Xo--(x -fnfirst kind, and f:M ->jR is a function such that df ), then (M,e has the Lee

form 0-df with a vanishing point, and it is %... of the second kind. Clearly, if M is
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of the first kind is onto, and we have the following exact sequence of Lie algebras

hor c: (2 7)
0 X (M) Xp,(M) -+ IR O.

It turns out tha we c. obtain much more information about the l.c.s..anifolds

of the first kind. Indeed, let us fix an element B E 0-i(i) = f(M), and call B the

Y has unique decomposition
basic t.i.a, of (M,f). Then, every (M) a

hor (2 8)
Y X + (Y)B, X E Xf (M)

Now, put 0 -i(B) fl (hence 0(B) 0), and write down LBf 0 as i(B)dfl 4- di(B)fl 0

This yields a particular expression for f namely

fl dO co A 0

Furthermore, we have

0 =-LBi(B)fl -i (B) di (B) f -i(B)(f- i(B)df) 0

’hence

i(B)dO 0

and rank dO < 2n But then (2.9) and fin4 0 yield

^ 0 ^ (d0)
n-1 4 0

(2.9)

(2. lO)

(2.11)

(2.12)

everywhere. This yields

PROPOSITION 2.2. A manifold M
2n

admits an l.c.s, structure of the first kind

iff it admits two l-fvrms ,0 such that d O, rank dO < 2n, and (2.12) holds at

every point of M.
PROOF. Above, we obtained ,0 from fi Conversely, if ,0 are given,

(2.9) yields an l.c.s, structure with Lee form . Then the equations

(B) i 0(B) 0 i(B)d0 0 (2.13)

define a unique vector field B on M (that also satisfies i(B) -0) such that

LB0 0 LB 0 Hence B is a (basic) t.i.a. .E.D.
Of course, and 0 define f uniquely, but does not define uniquely

(,0). Note also that

(A) 0 0(A) I i(A)d0 0 (2.14)

define the characteristic vector field of M (i(A) ),and since exptB) preserves

it also preserves A. This means [B,A] O, and we obtain on M the vertical

foliation V span {A,B} whose leaves are the orbits of a natural action of 2
In the next Section, we shall use V in order to get more geometric information on M.

In connection with the above discussion, we shall also make the following comple-

mentary considerations. Formula (2.6) proves that a Hamiltonian field is a conformal

infinitesimal transformation(c.i.t.)of (M,). Generally, a vector field X of M

is a c.i.t, if [Lf]

LX aXf (2.15)

where X is a function on M. The c.i.t, form a bracket Lie algebra to be denoted

by x(M), and if besides (2.15) one also has Lyf ayfi it follows

L[x,y] (Xay- Yax) (2.16)

cThe Hamiltonian fields form a Lie subalgebra XHam(M) of (M). Now, if X saris-
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fies (2.15) then, by differentiating this condition and since n > 1 we get

LX dx,
whence it follows that

(2.17)

aX (X) + k k const. (2.18)

If this X is used in (2.15) we see that (2.15) is equivalent to LX k
where are the local symplectic forms of the l.c.s, structure. Hence X is a

c.i t iff it is an infinitesimal homothety of the forms
C

C
Furthermore, we can extend the Lee homomorphism to x(M) /IR given by

(X) re(X) aX -k(k of (2.18)). If X,Y 6 (M), and we have (2.16), it follows

([X,Y]) -d(X,Y) 0, hence the extended is also a Lie algebra homomorphism.

Its kernel consists of fields X such that e 0 i.e., of locally Hamiltonian

fields, and we denote ker XHam(M)XHam(M). It is precisely the locally Hamil-

tonian fields that should be interesting in mechanics.

If the extended Lee homomorphism is nontrivial i.e., if there is a non-local-
e

ly P.awiltonian field in x(M), we have the following exact sequence of Lie algebras

c c _+0 XHam (M) x(M) IR 0 (2.19)

and we shall say that -M has many c.i.t.
-i

If this happens, let us fix an element C 6 (i), called a basic field which
C

gives uniquely for every Y 6 x(M)
(M) (2 20)Y X + (Y)C, X XHam

Then, if y -i(C) we have LC i(C)d +di(C)=(C)fl+ ^ dy aC i.e.,

(C) + ^ y dy 0 or equivalently

dy ^ y (2.21)

Hence, by comparing with (2.9), we see that an l.c.s, manifold with many c.i.t, is

a candidate of a manifold of the first kind. More precisely, let us note that the

Lee homomorphism of (2.19) is conformally invariant. Indeed, if -- -+efl then

+ Xpwe get + dq0 and if LX X we get LX X with X X
Whence we obtain

(x) (x) =x-- (x) =x (x)

Hence the existence of many c.l.t, is a conformally invariant property. Now, assume

that there is a vector field C on (M,) such that (C) I, and d[ei(C)] is a

degenerate 2-form for some function 0 on M. Then Proposition 2.2 shows that

(M,e) is an l.c.s, manifold of the first kind.

Let (M,) be an l.c.s, manifold of the first kind, and B a basic t.l.a. Let
hor hor
X (M,B) be the Lie subalgebra of X (M) whose automorphisms also preserve B

hor
i.e., X 6 X (M,B) iff (X) 0,Lx 0,[X,B] O. On the other hand denote by

C(M) the subset of C (M) that consists of functions that are foliate with respect

to the foliation or, equivalently, satisfy Af 0, Bf O, and remember the ap-

plication H(f) Xf Then, we can prove

PROPOSITION 2.3. Let M be an l.c.s, manifold of the first kind which is not

g.c.s. Then C(M) is a Poisson-Lie subalgebra P of P(M), and H sends iso-
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hot
morphically PV onto XR (M,B).

PROOF. Let f E CV(M), and H(f) Xf. By (2.6) and the remark afterwards,

since Af O, Xf E xr(M). Then, by (2.3) and (2.9)we get

i(Xf)d8 + -8(Xf) df- f

which applied to B and since Bf 0 implies

8(Xf) -f

(2.22)

Now (2.22) reduces to i(Xf)d8 df, which with (2.23) implies LXf8 O, and because
hor

of Lxffl 0 we also have [Xf,B] O. Hence H sends C(M) to Xfl (M,B), and

it is injective because of (2.23).
hor

Conversely, let X (M,B) (which implies re(X) O, LX8 O), and define

f -8(X) Then
i(X) i(X)(d8 ^ 8)= i(X)d0 (X) 8 + 8(X)

LX8 d(8(X)) (X) 8 + 8(X) df f

i.e., X Xf Furthermore, as in the remark following (2.6), (X) (Xf) 0

implies Af O, and we also have (8)(B) 0 X(8(B)) 8([X,B]) -8([X,B])

dS(B,X) 0 B(8(X)) X(8(B)) 8([B,X]) B(8(X)), i.e., Bf 0. Hence H is

also a surjection for the sets of Proposition 2.3.

Xg
hor

Finally, let f g C (M) and therefore Xf Xfl (M,B). Then [Xf X
g

hor
X{f,g}=X (M,B) and, since by Proposition 2.1 H is inJective, we must have

{f,g} Cv(M). _O..E.D.
We close this Section by another simple but interesting result. An l.c.s, mani-

fold (M,) is homogeneous if it admits a transitive Lie group G of -preservlng

diffeomorphisms. (In Section 4, we shall give a rather general construction of such

manifolds.

PROPOSITION 2.4. Let (M,) be a homogeneous l.c.s, manifold which is not sym-

plectic. Then it is necessarily a manifold of the first kind.

PROOF. Remember that all our manifolds are connected. Then the homogeneity .roup

G may be assumed connected as well. Since M is not symplectic and homogeneous,

# 0 everywhere, and M is foliated by m 0 Let p,q be points on different

leaves of this foliation, and let y E G such that y(p) q. Then we may write

y exp XlO...oexp
_

for some elements X (a 1 k) of the Lie algebra of

G. These elements have associated vector fields X x(M), and we must have (Xa)O
for at least one index e since otherwise y acts along the leaves of O, and it

cannot send p to q. Q.E..
COROLLARY 2.5. A semisimple Lie group G cannot act transitively on a nonsym-

plectic l.c.s, manifold.

PROOF. Indeed, if G is semisimple its Lie algebra g is equal to the derived

algebra g’ But we know that any bracket of i.e. is horizontal. Hence g would

consist only of horizontal fields, which contradicts Proposition 2.4.

3. REGULAR L.C.S. MANIFOLDS.

In Section 2, we saw that an l.c.s, manifold of the first kind has important

foliations Inspired by a corresponding theory of contact manifolds 8 ], we shall

define the regular l.c.s, manifolds as l.c.s, manfolds M of the first kind for which

(2.23)
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it is possible to choose a basic t.i.a. B such that the corresponding vertical foli-
ation ] span t’A,B is simple (regular) and the corresponding space of leaves M/];N
is ,] Ilausdorff differentiable manifold. Under these hypotheses, we may expect a fibra-
tion theorem, and, in fact, such a tl’orem was given for a more general structure
[12], [9

2n+sNamely, let M be a differentiable manifold. An s-contact structure on M
1 sconsists of s 1-forms and one 2-form q of rank 2n such that

i s n^ A A # 0 (everywhere)
(3.11udmU uf (a const." u=l s), d 0

u
If n > 1, a const, is a consequence of the other relations. If at least one of

u
the is nonzero, the structure will be called of nonzero type. s-contact

structure defines a decomposition TN C I/ where C (the horizontai bundle) is
s

given by ml 0 m 0, and /-- {X/i(X)f 0} (the vertical bundle). Note-

over, we have s uniquely defined basic vertical vector fields E (u 1,..., s)
u

given by

i(Ev)mU aUv i(Ev) 0 (u,v I., s) (3.2)

This relations imply

umu i(Ev)dmU e i(E )a 0 (3 3)
vv

LEv 0 (3.4)

i([E Ev])t LE i(Ev)t i(Ev)LE t 0
u u

i([Eu,E ]) L
E i(E )- i(Ev)LE 0

v v
u u

whence

(3.5)

this foliation is simple, and N M/V is Hausdorff, we say that M is ar
s-contact manifold, and the following result holds [12], 9

(M2n+s u
PROPOSITION 3.1. Let m , be a compact connected regular s-contact

M2n+s N2nmanifold, and p: the corresponding submersion. Then p is a principal

T
s

(torus)-bundle, N is a symplectic manifold with the symplectic form ’ such
uthat p*’ and there are some constants c such that {cUreu} is a connection

on p with the curvature proportional to ’
PROOF. The regularity hypothesis implies the regularity of the foliations by the

orbits of E for each u=l ,s, whence these orbits must be embedded circles [8 ].
u

Then, for each u=l,...,s, the period function Eu(X) inf{t/t > O, exp(tEu)(X)=X}
is a constant Cu # O, in view of Tanno’s theorem [13 applied to the pair (Eu,mU).
Now, we see that the bracket con:nuting vector fields (i/cu)Eu yield a free right ac-

tion of T
s s/ m.s on M. Furthermore, let U be a cubical flat regular coordin-

ate neighbourhood for (M,V) with the coordinates (xa,xu) (a i ,2n; u--i ,s)
a

T
ssuch that x const, on the leaves of Put U’ p(U), and define h:U

-1
P (u’) bYh((xa), (t I ts)) exp( tl

E1)... exp( ts Es)((xa)), (3.7)
c I c

s
where o U’ M is given by o(xa) (xa,0). Then h is a diffeomorphism which

[E ,E 0 (u,v, 1 s) (3.6)
u v

Hence is a foliation of M by the orbits of a natural action of s on M. If
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gives a local trivialization for p such that the right action of Ts is right mul-

tiplication on the TS-component in (3.7). This proves the principal bundle struc-

ture of p. All the other assertions of Proposition 3.1 are clean from (3.2), (3.3),

(3.4). Q.E.D.
The following converse result is also clear.

M
2n+s N2nPROPOSITION 3 2 Let (N

2n ’) be a symplectic manifold and p: a

T
s u * u
-principal bundle endowed with a connection (u) such that d

u

const.) Then (mu, p*,) is a regular s-contact structure on M.

Now, by Proposition 2.2, an l.c.s, manifold M admits associated 2-contact
i 2

structures (m,0, dO) such that a O, a i, and conversely. Moreover, if M

is regular the associated 2-contact structure can be assumed regular, and we have

M2n-N2n-2PROPOSITION 3 3 Let M
2n

be a compact regular I c s manifold, and p:

be the corresponding submersion on the space of the leaves of a regular vertical folia-

tion V of M. Then p is a T2-principal fibre bundle over the symplectic mani-

fold N Conversely, if p is such a principal bundle, and it is endowed with a

connection (m,0) such that d O, and dO projects to the symplectic form of N,

then M is a regular l.c.s, manifold.

Proposition 3.3 provides a construction method for regular l.c.s, manifolds. In

fact, it is easy to understand that p can be obtained as a composition of principal

fibrations: first, we can project M onto the manifold P of the orbits of B and

this will be a flat principal circle bundle over a regular contact manifold. Then

project P onto N by the Boothby-Wang fibration 8 which is again a principal

circle bundle. Particularly, the symplectic form of N must represent an integral

cohomology class 8 Conversely, the construction of M will be realized in these

two steps: construct P like in 8 and then M as a flat principal circle bundle

over P

The results above are a straightforward generalization of the Boothby-Wang fibra-

tion theorem 8 Moreover, many of the other results of the basic paper 7 can

also be generalized straightforwardly to the present situation, and we shall indicate

here this generalization

PROPOSITION 3.4. Let M be a regular compact l.c.s, manifold. Then the group

of the automorphisms of M acts transitively on M.

PROOF. Let U be a cubical flat regular coordinate neighbourhood of (M,V)

like in the proof of Proposition 3.1. Let G be the automorphism group of M. Then,

we see like in 8 that G acts transitively along the slices of m 0 in U

But it also acts transitively on slices by the translations of the corresponding para-

meter. Hence G acts transitively on U, and, because of connectedness, it also acts

transitively on M .E.D.
In 3 it is shown that, if M is a compact connected l.c.s., and m # 0 every-

where, then the group of its conformal transformations acts transitively on M.
Furthermore, an s-contact manifold (M, mu, ) is called homogeneous if M G/K,

where G is a Lie group of s-contact automorphisms which acts transitively and
u ueffectively on M, and K is a closed subgroup of G Hence, V g E G, g m,

g (the second relation follows from the first in the nonzero type case). Then
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one has

PROPOSITION 3.5. Let (M G/K, mu, ) be a homogeneous s-contact manifold of

the nonzero type. Then M is a regular s-contact manifold.
u

PROOF. 8 The forms m lift to corresponding left-invariant forms

m on G which are ad K-invariant, and we shall look at the closed subgroup

H c G (H m K) defined by

H {h 6 G/(adh) m (adh) }

Then, if K denotes the Lie algebra of G, h of H and k of K, if we denote by

X a generical element of T G (e is the unit of G) and by X the corres-
e

ponding left invariant field of G, we get:

{X E j / LXu 0 LX O}

Since everything in the above construction is left-invariant, if we use the definition

of the Lie derivative, we see that the conditions which define X E h are equivalent

to

(dU)e(X,Y)__ O, e(X--’ [Y_, _Z]) 0 (3.8)

where Y, Z are arbitrary elements of g, and we also used d 0 Since a # 0

for some index u, L 0 follows from Lxu
0 and the only remaining condi-

tion is the first condition (3.8), which is equivalent to fle(X’Y) 0 I.e.,

h {X g / e(X,Y) 0} and since rank 2n 8 ], we get dim h dim k + s.

Furthermore, it is known that for a triple G H m K as above there is a na-

tural diagram of locally trivial fibrations

G G/K
o p (3.9)

G/H

where, particularly, 0 has the structure group H and the s-dimensional fibre

H/K. Now, if E are the basic vertical fields on G/K, there are (non-unique)
u

left-invariant lifts E to G which satisfy i(Eu) 0 so that E (e) are in
u u

h It is easy to deduce from this that the tangent distribution of the leaves of

on G/K is precisely the vertical distribution of the fibration p But then, by

applying the Corollary on p. 28 of [14] it follows that the foliation V is simple

and its basis is a covering manifold of G/H i.e., a Hausdorff manifold.

REMARKS. i) Just like in 8 we can see that the space of the leaves

(G/K)/g is G/(H0. K), where H
0

is the connected component of e in H. 2) The

proof of Proposition 3.5 also holds for all au 0 if G is semisimple but the

same argument as for Corollary 2.5 shows that, if a
u

0 holds for at least one

index u, G cannot be semisimple.

COROLLARY 3.6. Let (M,) be a homogeneous l.c.s, manifold which admits an

invariant t.i.a. Then M is a regular l.c.s, manifold.

The supplementary hypothesis is necessary in order to have a homogeneous associa-

ted 2-contact structure, and to apply to it Proposition 3.5. We notice that if (M,) is

a homogeneous nonsymplectic l.c.s, manifold such that M G/K, where G is a

reductive Lie group (particularly, G is a compact group), then M must have an in-

variant t.i.a. Indeed, as in the proof of Proposition 2.4, there is an element X
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which generates a t.i.a. But then (2.7) yields an exact sequence of Lie algebras

hor __c
0 g --+m 0 (3.10)

hor
where consists of elements of which yield horizontal fields on M and

hor
since is reductive has an ad G-invariant complement. .E.P. If G is

reductive (compact) we shall say that M is of the reductive (compact) type.

4. COMPACT HOMOGENEOUS L.C.S. MANIFOLDS.

Like for the regularity property, we may expect to obtain information about corn-

pact homogeneous l.c.s, manifolds from a discussion of compact honogeneous s-contact

manifolds, and for the latter it is possible to extend in a rather straightforward

manner the results established for contact manifolds in [I0 ].

Let (M G/K, mu, ) be (here, and always in the sequel) a compact homogeneous

s-contact manifold of nonzero type. Then M is regular by Proposition 3.5, and there

T
s

is a -principal bundle p M N over the symplectic manifold (N, ’) with

p ’ Obviously, N is also compact and symplectic homogeneous with the homo-

geneity group G since G preserves the whole structure of M and, particularly,

the vertical foliation V (see Section 3 for notation). Now, recall that a homogene-

ous symplectic manifold with group G is homogeneous strongly symplectic if for every

_X 6 g the field XN induced on N is a Hamiltonian field. Then we have

PROPOSITION 4. i. The basis N of the projection p M N above is homogeneous

strongly symplectic.

PROOF. [I0 ]. Consider X E g and the induced fields X
M

on M X
N p,XM

on N and denote, as usual, by E (u i,..., s) the basic vertical vector fields
u

i
of M that are obviously G-invariant fields. Assume, for instance, a # 0, whence

(i/al)dmI
Then

LEui
i i mlm (i()) o i([E ,XM]) + i(XM) 0

u xM u
u

(u 1,..., s), and ml(XM) projects to a function fx on N. Furthermore, since

LXMWl 0 we have

p*(iXN’) i
X

a i
I i()d

I i- d(I(XM))= p,dfx
M

which yields i ’ -(i/al)dfx and shows that XN is a Hamiltonian field. (.E.D.X
N

COROLLARY 4.2. The basis N of the projection p M N described at the

beginning of this section is a simply connected compact homogeneous symplectlc mani-

fold, and its symplectic form belongs to a Khler metric that is homothetical to a

Hodge metric. The Betti numbers b2h+l(N) are zero.

All this is gathered in Theorem I of [|0, p. 341] on the basis of results of

Borel, Lichnerowicz and Milnor.

The above results give us the structure of compact homogeneous s-contact mani-

T
s

folds of the nonzero type as -principal bundles over special homogeneous symplectic

manifolds. Conversely, we have

M
2n+s

N
2n

be a TS-principal bundle, where N
2n

isPROPOSITION 4.3. Let p

a compact simply connected homogeneous Hodge manifold with the Khler form ’
Assume p has a connection (mU)(u i,..., s) such that dmU aUp,, where not
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all a
u

0 Then (M,mu p*’) is a compact homogeneous s-contact manifold

PROOF. That (mu ) is a regular s-contact structure is known by Proposition

3.2. The homogeneity of this structure will be proven like for the contact case in

I0 ]. Namely, by results of Montgomery and Lichnerowicz as quoted in I0 we

may assume N G/K with G a compact and semisimple Lie group, and (N, ’) is a

Hamiltonian space, i.e., there is a Lie algebra homomorphism 0 g- P(N) (the

Poisson algebra) such that V X E g one has

i(XN)’ d(0(X) (4. i)

]R
s

Now take the Lie algebra g IR
s

with the zero bracket in and define

Y g ks x(M) by

S S
U U

y(X (t u) X
N

(O(X) op) E a E E t E (4 2)
u=l s

u=I u u’
u=l

U
where X N is the horizontal lift of XN with respect to the connection (mu), e

are the constants which appear in Proposition 4.3, and E are the basic verticl
u

vector fields of the s-contact structure of M. Then, a computation similar to that

of I0, p. 347] shows that y is a Lie algebra homomorphism and, therefore im y

is a finite dimensional Lie subalgebra of (M). Accordingly, there is a connected

Lie group G of left transformations of M, and we can see like in 10 that G

acts transitively Ons M (l.e., V x0 E M and v TxoM, if we decompose

v=horizontal(v) + E U(v) E
u

and if X g is such that X(x0) horizontal(v)
u=l

which is possible since G is transitive on N, the field

A y[X (-0(X) P(X0)
u u (V))u= i s

is such that A(x0) v This implies the transitivity of G .)

U
Finally, we see again like in I0 that L(X (tu)) 0 and L(X (tu)) 0

follows since the s-structure is of the nonzero type. This means that preserves

the s-structure of M .E..
From these results it follows:

COROLLARY 4.4. Let (M,) be a compact homogeneous l.c.s, manifold which admits

an invariant t.i.a. Then M has a T2-principal bundle structure p M
2n N2n-2,

where N is a simply connected compact homogeneous Hodge manifold. Conversely, every

such bundle which is endowed with an adequate connection as in Proposition 43 is a

compact homogeneous l.c.s, manifold. If M is as in the present Corollary, its first

Betti number is bl(M) i.

Here, only the last assertion has to be justified, and it follows by first con-

sidering M as a flat circle bundle over a contact manifold P, then fiberinK P over
N as a principal fibre bundle, and finally by applying twice the Gysin exact sequence
theorem and using the fact that bl(N) 0

Now, let us consider again a homogeneous l.c.s, manifold (M G/K, ), let g
hotbe the Lie algebra of G and g the subalgebra of those X of g that m()--O.

Accordingly, we have the exact sequence (3.10). The symplectic case suggests us to
horsay that M is trongly homoseneous if for every X g X

M is the Hamiltonian

field Xf of a function f P(M) with Af 0 (see Section 2). Similarly, M is
horHamiltonian l.c.s, if a Lie algebra homomorphism 0 g P(M) exists such that
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hOT If M is not g.c.s, and it hasA(im qO) 0 and X E g one has XM Xq0(X
a G-invariant t.i.a, then we have the Lie algebr--a isomorphism H of Proposition 2.3,

hot
and H-I restricted to fields XM

defined by X E g yields a homomorphism showing

that M is a Hamiltonian l.c.s.

PROPOSITION 4.5. Let (M G/K,) be a compact strongly homogeneous l.c.s, mani-
hoT

fold which is not g.c.s., and assume G is connected. Then the Lie algebra g is

hot
semisimple if A g, and g s e span {A} (s semlsimple) if A 6

_
hoT Af 0 and in view ofPROOF. II] Every X 6 g satisfies Xf(X_) hoT

Proposition 2.1, f is unique. Accordingly, we may define on g an inner product

X,Y i.. Mf(X) f (Y) an (4.3)

hot
where M is oriented such that an 0 and if Z g we have

>+ <X, [Z,YI =-I- [{f(Z), f (X)} f(Y) +,Y n jM (4.4)

.... ]M M

hot
That is, the inner product (4.3) is Ad ghr-invariant, and we conclude that g is

hoT
a reductive Lie algebra, and that g s c where s is semisimple, and c is

hot
the centre of g

Now, let us note that there is a connected subgroup Ghr = G whose Lie algebra
hoT GhOris g and acts transitively on every leaf L of the foliation m 0

Indeed, if p,q f L a leaf of m 0 and q g(p), g G,g expXlO...exp h’
XI,... E g ,then, generally, the situation is such that, for instance, XI ghor,

X2 ghor, X3 hor etc. But then exp XI sends the leaf L to a leaf L’, exp X_2
sends L’ to L" exp X

3
preserves L" etc., and we also must have some X_u, X_v, X

such that their exponentials bring us back from L" (or whatever other leaf) to L.

Since any bracket of i.a. is horizontal, if we exchange in g the order of the

exponentials such that X ,X_v,X_w come next to X
1
X
2 this adds a factor in G

hr

Then, exp XlOexp X2=exp X =exD X =exp X preserves L and is also in G
hr

There---u -v Ghor-Wfore, eventually, we get some y such that y(p) q .E.D. This clearly
hotimplies that V p L and T L there is an element X E g such that

P P
XM(P} p

hoTFurthermore, let us look at the previous decomposition g s c and con-
hotsider X c i.e., [X,Y] 0 for all Y g This implies X{f(X), f(Y)} 0

hence {f (X), f(Y)} ---(,YM 0 This equality together with the p--reviou--s argu-
ment shows that (i(XM))p (p) 0 Vp M and VSp TpM such that mp(p)=0,
i.e., i(XM) %m for some function % and A. ..D.

Let us note the following Corollary which, as a matter of fact, follows also from

the proof of Proposition 4.3.

COROLLARY 4.6. Let (M=G/K,) be a compact homogeneous l.c.s, but not g.c.s.

manifold with an invariant t.i.a.B. Then M can be also represented as / where

the Lie algebra of is of the form g s @ 2 and s__ is a semisimple Lie algebra.
horPROOF. Consider the Lie algebra g g span {A}span {B} Clearly, g

hoT
g / span {A} By Proposition 4.5 we have

hor
g s__ @ span {A}, and the result

follows.
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Another related result is

COROLLARY 4.7. Let (M G/K,) be a compact strongly homogeneous l.c.s, but

not g.c.s, manifold such that A doesn’t represent an element of g. Then M has

a G-invariant transversal infinitesimal automorphism B

PROOF. We know that the Lie algebra g is not semisimple, and, therefore, it

hor
must have a nonzero abelian ideal I. Then, I g is a commutative ideal of

hor hor hor
and since, under the hypothesis, is semisimple, I g O. Hence

dim I i, and I can be seen as generated by B where B and (B) i. Since

I is an ideal we have [X,B] %B, V X 6 g and since [X,B] has to be horizontal,

[X,B] 0 and B is a central element in g But then B is the requested i.a.

Q...

5. RIEMANNIAN MANIFOLDS

In the present paper, we used the Boothby-Wang fibration technique of

8 in order to clarify the geometric structure of a regular l.c.s, manifold. This

is an interesting technique, and we should like to indicate here a different applica-

tion of it. This section is not on l.c.s, manifolds but on Riemannian manifolds.

Let M
m

be a compact connected Riemannian manifold with the metric g Let us

assume that there is given an action of the additive group IR
s

on Mm by isometries

of g all of whose orbits are s-dimensional. Then, the orbits of this action define

on M a foliation V (called the vertical foliation) whose leaves are s-dimensional

submanifolds tangent to some independent commuting vector fields E (u i,..., s)
u

provided by the natural basis of ]R
s

Clearly, we have ug 0 If V is a

simple foliation whose space of leaves is Hausdorff, we say that the action of IR
s

on

M is regular.
A few more simple details about (M,g) and the action above will be needed.

Namely, let C be the horizontal distribution orthogonal to Then, we can define

the 2-tensor

and the s 1-forms

y(X,Y) g(prC X, prC Y)

u u u(E) / 0 (u,v =1, s)
V V C

Since every vector field X has a unique decomposition

we get

s
X X’ + Z mU(x) E X’ E C

u=I U

S

g(X,Y) y(X,Y) + Z g(Eu,Ev)mU(x)mV(Y)
u,v=l

(5.2)

(5.4)

Furthermore since E preserve g and they also preserve C and commute withu
prC Hence

e
E y 0 v O. (5.5)
u u

Conversely, let (Mm,y,mu) (u=l s) be a differentiable manifold endowed with

a positive semidefinite 2-covariant tensor y of rank m-s and with s independent
Pfaff forms mu uThen 0 defines a subbundle C of TM, and {X/i(X)y O}

defines a subbundle Assume that the structure is such that TM C and
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define vector fields E in V such that V(Eu) v Furthermore, assume that
u u

the following relations hold

LE=o, LE-- O. (5.6)

u u

Then, we may define g(Eu,Ev) 6uv and use (4) in order to get a Riemannian metric

admitting E as Killing vector fields. Furthermore, we shall have
u

(LE mV)(Ew) 0 _V([Eu ,Ev])
u

(Le y)(Ev,X’ 0 =-([Eu,Evl, X’) (X’ E ),
u

whence [E ,E 0 for all u,v 1,..., s Hence, if the structure (,, u) satis-

fies ’IN C / and (6) it provides M with a Riemannian structure, and an isetric

action of 1t
s

with s-dimensional orbits.

Now, we can formulate the folIowing Boothby-Wang type fibration theore

PROPOSITION. Let (Mm,g) be a compact connected Riemannian manifold endowed

with a regular isometric action of s with the associated structure (y,mu) defined

above, and with the vertical foliation Then, the projection p M B M/ is

a TS(torus)-principal bundle endowed with a connection (CuOu)(Cu const.). The

basis B has a Riemannian metric y’ such that p y, and p is a Riemannian

submersion. Conversely, if p M B is a TS-principal bundle over the Riemannian

manifold (B,y’), and (mu) is a connection of this bundle then M admits a R[eman-

nian metric and a regular isometric action of IRs with s-dimensional orbits such that

p is a Riemannian submersion.

PROOF. The proof of the existence of the principal bundle structure required is

exactly the same as in the case of Proposition 3.1. All the other facts stated in

Proposition are easy consequences of the formulas (i) (6).
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