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ABSTRACT. Let A be a nonvoid countable subset of the unit interval [0,I] and let B be

an F -subset of [0 17 disjoint from A Then there exists a derivative f on [0 I] such

that 0fl, f 0 on A, f>O on B, and such that the extended real valued function i/f

is also a derivative.
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In this note, we construct a derivative f such that I/f is also a derivative, and

f and i/f have some curious properties mentioned in [I] and [2]. (By an Fo-set in the

real line, we mean the union of countably many closed subsets of R.) We prove

THEOREM i. Let A be a nonvoid countable subset of [0,I] and let B be an F -subset

of [0,i] disjoint from A. Then there exists a measurable function f on [0,I] such that

f 0 on A, f > 0 on B, 0f[ on [0,1] and

(I) f is everywhere the derivative of its primitive,

(2) i/f is Lebesgue summable on [0,I],

(3) I/f is everywhere the derivative of its primitive.

Here we let I/0.

When m(B) and A is dense, we will obtain a simple example of a derivative that

vanishes on a dense set of measure 0.

From [2] we infer that there exists a derivative f vanishing on A and positive on

B. From [i] we infer that there exists a derivative g infinite on A and finite on B.

However, Theorem provides a simultaneous solution to both of these problems. To

prove Theorem we will employ some of the methods used in [3].

Finally, we use these methods to construct a concrete example of functions gl and

that have finite or infinite derivatives at each point, such that the Dinig2
derivatives of their difference, gl-g2, satisfy certain pathological properties.

In all that follows, let (n(i))i= denote the sequence of integers I, I, 2, I, 2,

3, i, 2, 3, 4, i, 2, 3, 4, 5,

Proof of Theorem i. Let (ai)i= be a sequence of points in A such that each point

of A occurs at least once in the sequence. (Here we do not exclude the possibility

that A is a finite set.) We assume, without loss of generality, that B is nonvoid.



518 F.S. CATER

Let BICB2CB3c...cBi be an expanding sequence of closed sets such that B t,i=l Bi"
(Here we do not exclude the possibility that B is a closed set.) Let u

i denote the

distance from the point a to the set B As in [3] we put (x) (I + Ixl) -1/2
n(i) i

For each index j, put

gj(x) + ’=I (2iul(x-an(i) ))’

g(x) + i=l (2iul(x-an(i) ))’

f.j(x) I/gj(x), f(x) I/g(x).

Here we let 0 i/-. Then g(a) for aeA, because there are infinitely many indices

i for which a an(i). On the other hand, g(b) < forb e B; note that if b e Bk, then

(2kul(b-an(k))) (2k) < 2-1/2k,

i:k (2iul(b-an(i) 11
i <

We infer from Lemma 4 of [3], that g is Lebesgue summable on [0,i]. Note also that

g(x)-gj(x) g(x)gj(x)(fj(x)-f(x)) > 0,

and since g>l, gj>l, it follows that g-g-’J > f’-f3 > 0.

Now choose any x with g(x) < . By Lemma 4 of [3], we have

limh+0 h- ix+h
x

g(t)dt g(x).

Take any e>0. Select an index j so large that f.(x)-f(x)<g(x)-gj(x)<e. Since f. and

gj are continuous, when lhl is small enough we have

lh-i /x+h g(t)dt g(x) < e,
x

ih-1 ].x+h
x gj(t)dt gj(x) < e,

lh-I /X+hx f’j(t)dt fj(x) < e.

For such j and h we obtain

x+h
f
x+h

h
-I I (g(t)-gj(t))dt < g(xl-gj(x) + lh- g(tldt g(x)[

x x
x+h

+ lh-lf gj(t)dt gj(x) 3e.
x

From 0 < f o-f g-g. we obtain

[h-i _x+h
f(t)dt- f(x)[ [h-I fx+h f (t)dt- fj(x) + fj(x) f(x)

fx x

+ h
-1 Ix+h (f (t)- f(t))dt

x

-<_ 2e + h
-1 fX+hx (fj(t) f(t))dt

=< 2e + h
-I /X+hx (g(t) gj

It follows that lim h-I /x+h f(t)dt f(x).
h+O x

(t))dt < 5e.
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Choose any x with g(x) =. Take any N>O. Select j so large that gj(x)>N.
Since gj is continuous, there is a d>0 such that It-xl < d implies gj(t) > N. For such

-I
g(t)>gj(t)>N and f(t)<fj(t)<N It follows that for lhl < d,t,

h-i fx+h
x

g(t)dt >N O<h
-I f x+h f(t)dt <N

X

Finally,

lim h-i yx+h g(t)dt g(x).
h/0 x

lim h-I /x+h f(t)dt 0 f(x).
h/0 x

This completes the proof

When m(B) i, we do not know if our argument can be modified to make f 0 on

[0,1]\Bas in [2] Perhaps this requires an approach altogether different from ours

We say that x is a knot point of the function F if its Dini derivatives satisfy

D+F(x) D-F(x) and D+F(x) D_F(x) -.

We conclude by presenting a simple and direct example of functions gl and g2 having

derivatives (finite or infinite) at every point such that gl-g2
has knot points in

every interval (Consult [4] for analogous examples)

Let {ai}i= and {bi}i= be countable dense subsets of (0,I) that are disjoint

Let Z(c,d,x) (c(t-d))dt for c>0, d>0, x>0. We integrate to obtain

Z(c,d,x) { 2c-l[(l+cd) (l+cd-cx) 1/2]1/2 if x d,

2c-l[(l+cd) + (l+cx-cd)- 2] if x > d.

Let u. denote the distance from a to the set b 1,i n(i) bi} and let v
i

denote the

distance from b to the set {a ai}. Put
n(i)

(R) i -I
gl(x) =I z(2iu x) g2(x) Z(2 v

i
,b
n

,x)’an(i Ai=1 (i)

for 0<x<l. By the argument in the proof of Theorem we prove that gl and g2 are

finite onon A g’ on B glabsolutely continuous functions on (0,1) with gl 2

B, and g2’ finite on A. Put g gl-g2. Then g is absolutely continuous on (0,i),

g’ on A and g’ on B. Each of the sets

E {x: D+g(x) =}, E2
{x: D-g(x) =}, E

3
{x: D+g(x) -} and E4

{x:

D_g(x) -} is a dense G-subset of (0,i), i.e., is the intersection of countably

many open dense subsets of (0,i). It follows that EIOE20E3nE4 is also a dense G-subset
of (0,1). But each point in this intersection is a knot point of g, even though gl and

g2 have derivatives (finite or infinite) everywhere by the proof of Theorem I.
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