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ABSTRACT. The concept of a reflexive algebra (o-algebra) of subsets of a set X is

defined in this paper. Various characterizations are given for an algebra (o-algebr
to be reflexive. If V is a real vector lattice of functions on a set X which is

closed for pointwise limits of functions and if B {A A X and CA(X) V} is

the o-algebra induced by V then necessary and sufficient conditions are given for

to be reflexive (where CA(X) is the indicator function).
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I. INTRODUCTION.

The object of this paper is to study the concept of reflexive algebra and a reflex-

ive o-algebra B of subsets of a set X. The concept naturally arises, when we consider

the topology generated by an algebra or -algebra B on X An algebra B of sub-

sets of X is said to be reflexive if (()) 8, where () is the topology gen-

erated on X by taking B as a base and B(T) is the family of closed and open subsets

of X under a zero-dimensional topology .
In section 2, we discuss some preliminaries concerning representations of algebras

and we introduce some definitions. In section 3, various characterizations are given

for an algebra to be reflexive. For a o-algebra it is shown that an equivalent condi-

tion for it to be reflexive is that its real measurable functions should coincide with

(B)-real continuous functions. Thus for reflexive o-algebras the study of real measur-

able functions amounts to the study of real continuous functions with respect to topology

T(B). Given any algebra there is the smallest reflexive algebra generated by it. An

example is given to show that not every measure on a o-algebra can be extended to

the smallest reflexive o-algebra containing it.

If V is a real vector lattice of functions on a set X which is closed for point-

wise limits of functions and if {A IA! X such that CA(X) e V} is the o-algebra

induced by V, necessary and sufficient conditions are given for to be reflexive.

2. PRELIMINARIES AND DEFINITIONS.

Let (X,B) be an arbitrary algebra of subsets of X. Define for x,y in X x y

if for every B , if x B we have y B. It is easily seen that is an
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equivalence relation and the map q: X X/~ gives an algebra

q(8) {q(B): B 8}

in X/~ which is isomorphic to 8. Moreover q(B) is point-separating. In view of the

above procedure, we will in the sequel assume that all our algebras are point-separating.

Let B* denote any Boolean algebra which is isomorphic to 8. Let S(8) S(8")
denote the Stone-space of the Boolean algebra 8" We note that S(B)

{l X is a maximal filter in B*}. On S(B) the topology is generated by sets of the

form [B] [B*] {% S(8): B* e % where B 8} where B B* is the isomorphism

between B and * It is known that this topology (S(8), o) is a compact zero-

dimensional space and that the Boolean algebra of Clopen (closed and open) subsets of

S(8) is isomorphic to 8" and thus isomorphic to

If A is any Boolean algebra and (X,8) is such that A is isomorphic to 8 then

we say that (X,8) is a representation of A.

For each representation (X,8) of a Boolean algebra 8* there is a natural em-

bedding

: (x, ()) (s()o)

where () is the topology generated by 8 on X defined by

(X) {B* e 8": x e B

Then (X) is a dense subspace of S(8). Conversely, if T is any dense subspace of

S(8) then (T, A) is a representation of 8" where A {T n [B]: B B}.

DEFINITION I. A topological space (X,) is called a P-space if every F set in X

is closed.

3. MAIN RESULTS.

We start this section by first observing that for every B the space (X,T(B)) is

a zero-dimensional Hausdorff space. If further B is a o-algebra then (X,r(B)) is a

P-space. However it can happen that (X,(B)) may be a P-space without 8 being a

o-algebra as the ensuing simple example shows.

EXAMPLE i. Let m denote the first infinite cardinal and let

8 {A m: IAI < or I A < }

Then (X, (8)) is discrete and thus a P-space, while clearly is not a o-algebra.

(IAI is the cardinality of A).

Let denote a zero-dimensional topology on a set X By defining x y

(x,y e X) if and only if for each U e if x U we have y e U, we obtain an equiv-

lence relation. The quotient space X/~ is Hausdorff and zero-dimensional. In view of

this, without loss of generality we will assume in the sequel that (X,) is itself a

Hausdorff and zero-dimensional, and hence completely regular. We then denote by ()

the family of clopen subsets of (X,r). We now have

THEOREM I. The family () is always an algebra on X. Moreover B() is a o-algebra

if and only if (X,) is a P-space.

PROOF. The first part is obvious. If (X,) is a P-space then the union of countably

many clopen sets is clopen, which shows that () is a o-algebra. Conversely, if the

union of countably many clopen sets is clopen, is obviously a P-space.

The following facts are easily established:

%(8(%)) . (3.1)

8(% (8)) . (3.2)
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In view of Example i, it is seen that the reverse inclusion in (3.2) does not al-

ways hold. This prompts the following definition:

DEFINITION 2. An algebra B of subsets of a set X is reflexive if

EXAMPLE 2. Let I denote the first uncountable cardinal and let

8 {A i AI -< or II-A _< }

Then B is a non reflexive o-algebra on ml In this case 8((8) P(ml ), the

set of all subsets of ml However if

ml {ordinals : -< ml and further if

8 {A -i such that either 171-A _< m or AI _< and m A

then 8 is a non trivial reflexive o-algebra on ml"
LEMMA i. 8( r(8((8)))) 8(T(8)) and hence 8(T(8)) is always reflexive.

PROOF. Since (8(r)) r it follows that

8( (8((8) ))) 8((8)

LEMMA 2. For every algebra 8 the algebra RS= 8((8)) is the smallest reflexive

’algebra that contains 8 If further 8 is a o-algebra so is R
8

PROOF. In view of 8((8)) 8 it follows that 8 R
8

and by Lemma I, R
8

is re-

flexive. If is any reflexive algebra such that

8 fl R
8

then fl 8(T(fl) 8((8)) R
8

and hence R
8

is minimal. If R is a o-algebra,

by an earlier result it follows that (R8) is a P-space and hence R
8 B((Rs)) is

a o-algebra. This completes the proof.

We now note the following two properties:

Always 8 () (3.3)

Always 8( T)c T (3.4)

THEOREM 2. For a Boolean algebra 8 the following conditions are equivalent:

(i)

(ii) is reflexive and for each x X {x} 8.

(iii) 8 P(X) i.e. 8 is trivial.

PROOF. (i) (iii). By (i) each open set in Y(8) is closed and hence every point is

open and thus Y(8) is discrete. Hence 8 P(X).

That (iii) => (ii) is obvious.

We now prove that (ii) (i). Since 8 is reflexive, 8(Y(8) 8 and since

all points belong to 8 all one-point sets are open in Y(8) Thus Y(8) is dis-

crete. Hence 8(Y(8) 8 P(X) which implies (i).

THEOREM 3. If 8 is a reflexive o-algebra and if (X, r(8)) is such that all one-point

subsets of X are G6 sets in r(8) then 8 P(X).

PROOF. Since 8 is a o-algebra, (8) is a P-space and thus it must be discrete. But

8 (T(8) and hence 8 P(X).
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THEOREM 4. For topology r the following conditions are equivalent:

(i) ().

(ii) is discrete.

(iii) t P(X)

PROOF. Since all open sets are ciopen, is discrete and hence x P(X).

DEFINITION 3. A compact Hausdorff space Z is called Banaschewski compactification of

its dense subspace X, if for every clopen set U in X,

[z z
I (X-U) where

-Z
A means the closure taken in Z.

THEOREM 5. For an algebra B the following statements are equivalent:

(i) B is reflexive

(ii) B B() for some topology T on X.

(iii) S(B) is the Banaschewski compactification of (X, r(8)

(iv) If C X and C u B’ and X-C u B" where B’ and B" are subsets of

B then C B (here C u B’ means that C is union of sets from B’).

PROOF. (i) (ii) Since 8 ((8)), it is sufficient to take ().

(ii) (iv). If C is as in (iv) and if T is as in (ii) then C is clopen

in and thus C e

(iv) (iii). Suppose U is a clopen set in (X, (B)) then by (iv) U e B.
Hence U n (X-U) , where closure is taken in S(B).

(iii) (i) Suppose that U is clopen in r(B) then o (X-J) in S(B)

and thus U [B] 0 X for some B e B which implies that U

This completes the proof.

THEOREM 6. For a o-algebra B the following statements are equivalent:

(i) B is reflexive.

(ii) B B() for some P-topology

(iii) S(B) is the Stone-ech compactification of (X, ()).

(iv) The (X, B)-real measurable functions coincide with (X, (8))-real continuous

functions.

PROOF. (i) (ii) It suffices to take I (B).

(ii) =>(iv). Clearly (X, B)-measurability implies (X, (B) )-continuity.

Conversely if f: X R is continuous, then the inverse images of open sets in R are

open Fo -sets in (X, (B) and these are clopen, since (B) is a P-space. Thus

inverse images of open sets belong to B((B)). As B() it follows that

B((B)) B and thus f is measurable.

(iv) => (iii). Let f: X R be (B)-continuous. Thus f is (X,B)-

measurable and hence there exists a B e B such that f-1(0)c [B]. f-i(I)
and thus

s() s()

f (0) o f (i) #.

This proves that (iv) implies (iii).

(iii) (i). The proof of this implication is the same as in Theorem 5.
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,
THEOREM 7. For a Boolean algebra 8 the following statements are equivalent:

(i) 8 is complete.

(ii) Every representation (X, 8 of 8 is reflexive.

PROOF. (i) => (ii). If is complete then S(8 is extremally disconnected. Let

,
X S(8 be a dense subspace of S(8 and let

,
8 [B] X B ,

Suppose that U X is clopen in X. Then there exist disjoint open sets U and V

* * U*in S(8) with U N X U and V N X X U. Then U* n V* and hence is

clopen. This means that U* 8* and U* X U 8. This proves that (1) => (li).

,
Conversely, suppose 8 is not complete. Then there exist open sets U and V

in S(8 such that U Int(U) and U V # # but U V Let X (U V,o).

Then X is dense in S(8 and U is clopen in X but U 5. Hence 8 is not re-

flexive. This completes the proof.

One of the relevant questions is that whether a measure defined on can be ex-

tended to the smallest reflexive o-algebra 8(T(8)) containing 8. The following easy

example shows that this may not be always possible.

EXAMPLE 3. If X is a set of cardinality 2c, let

8 B X: IBI or IX-BI and

(8) 0, if B i= countable

I, otherwise

Then 8 is a o-algebra and is a two valued measure on 8. Clearly 8(T(8)) P(X).

Since 2
c

is not measurable does not have an extention.

In the next theorem the following question is discussed. Let V be a vector

lattice of real funcitons on a set X which is closed under pointwise limits of func-

tions in V If CA(X is the indicator function of the subset A X, then it is

known that the collection

8 {A ! X: CA
V

is a o-algebra and that V is precisely the set of real B-measurable functions The

next theorem gives a characterization for 8 to be reflexive.

THEOREM 8. Let V be a vector lattice of real functions defined on a set X and let

V be closed under pointwise limits. Let

8 A X C
A

V

Then 8 is reflexive if and only if for each f: X R such that f Sup {g

Inf {h8} where gee V, h8
V we have f V.

PROOF In this result we use (iv) of Theorem 5 Suppose A =u 8’ and X-A u 8"

where 8’, 8 8 Let gB CB(X) and hB CX_B(X) Then clearly

Sup {gB CA(X) Inf {hB}
B 8’ B 8"

Hence C
A

e V and thus C B which shows that 8 is reflexive.
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Conversely, if 8 is reflexive then T(8)-continuous functions are measurable.

Thus a function f which is both upper semi-continuous and lower semi-contlnuous is

continuous and hence it is measurable. Thus f V

The proof is complete.
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