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We investigate the existence of a global attractor and its upper semicontinuity for the
infinite-dimensional lattice dynamical system of a partly dissipative reaction-diffusion
system in the Hilbert space l2 × l2. Such a system is similar to the discretized FitzHugh-
Nagumo system in neurobiology, which is an adequate justification for its study.

1. Introduction

Lattice dynamical systems arise in various application fields, for instance, in chemical
reaction theory, material science, biology, laser systems, image processing and pattern
recognition, and electrical engineering (cf. [6, 7, 13]). In each field, they have their own
forms, but in some other cases, they appear as spatial discretizations of partial differential
equations (PDEs). Recently, many authors studied various properties of the solutions for
several lattice dynamical systems. For instance, the chaotic properties have been investi-
gated in [1, 7, 8, 10, 11, 17], and the travelling solutions have been carefully studied in
[2, 3, 7, 8, 9, 22].

From [18], we know that it is difficult to estimate the attractor of the solution semi-
flow generated by the initial value problem of dissipative PDEs on unbounded domains
because, in general, it is infinite dimensional. Therefore, it is significant to study the lat-
tice dynamical systems corresponding to the initial value problem of PDEs on unbounded
domains because of the importance of such systems and they can be regarded as an ap-
proximation to the corresponding continuous PDEs if they arise as spatial discretizations
of PDEs.

The main idea of this work is originated from [4, 16]. In [4, 19, 20], the researchers
proved the existence of global attractors for different lattice dynamical systems and they
investigated the finite-dimensional approximations of these global attractors. In fact,
Bates et al. [4] studied first-order lattice dynamical systems, and Zhou [20] gave a gen-
eralization of the result given by [4]. Zhou [19] studied a second-order lattice dynamical
system and investigated the upper semicontinuity of the global attractor.
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For a positive integer r, consider the Hilbert space

l2 =
{
u= (ui)i∈Zr : i= (i1, i2, . . . , ir

)∈ Zr , ui ∈R,
∑
i∈Zr

u2
i <∞

}
(1.1)

whose inner product and norm are given by, for all u= (ui)i∈Zr , v = (vi)i∈Zr ∈ l2,

〈u,v〉 =
∑
i∈Zr

uivi, ‖u‖ = 〈u,u〉1/2 =
( ∑
i∈Zr

u2
i

)1/2

. (1.2)

We will study the following lattice dynamical system of a partly dissipative reaction-
diffusion system:

u̇i + ν(Au)i + f1
(
ui
)

+ g1
(
ui
)

+αh1
(
ui,vi

)= q1,i,

v̇i + f2
(
vi
)

+ g2
(
vi
)−βh2

(
ui,vi

)= q2,i,
(1.3)

i= (i1, i2, . . . , ir)∈ Zr , t > 0, with the initial conditions

ui(0)= ui,0, vi(0)= vi,0, (1.4)

where ν is a positive constant, α and β are real constants such that

αβ > 0, (1.5)

the operator A : l2 → l2 is defined by, for all u= (ui)i∈Zr ∈ l2, i= (i1, i2, . . . , ir),

(Au)i = 2ru(i1,i2,...,ir )−u(i1−1,i2,...,ir )−u(i1,i2−1,...,ir )−···−u(i1,i2,...,ir−1)

−u(i1+1,i2,...,ir )−u(i1,i2+1,...,ir )−···−u(i1,i2,...,ir+1),
(1.6)

and for j = 1,2, s,s1,s2 ∈R,

qj =
(
qj,i
)
i∈Zr ∈ l2, (1.7)

f j(s),gj(s)∈ C1(R,R), f j(0)= gj(0)= 0, (1.8)

hj
(
s1,s2

)∈ C1(R2,R
)
, hj(0,0)= 0, (1.9)

εj ≤ f ′j (s), (1.10)

gj
(
s
)
s≥ 0, (1.11)

h1
(
s1,s2

)
s1 = h2

(
s1,s2

)
s2, (1.12)

where εj is a positive constant.
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For example, one can consider f j(s) = δjs, where δj is a positive constant, gj(s) =∑nj
i=0 γi j s

2i+1, where nj is a nonnegative integer and γi j is a nonnegative constant for each

i = 0,1, . . . ,nj , h1(s1,s2) = sm1−1
1 sm2

2 , and h2(s1,s2) = sm1
1 sm2−1

2 , where m1,m2 ≥ 2 are con-
stants. In fact, for f1(s)= λs, f2(s)= δs, g2(s)= 0, h1(s1,s2)= s2, and h2(s1,s2)= s1, where
λ and δ are positive constants, the system given by (1.3) and (1.4) can be regarded as
a spatial discretization of the following partly dissipative reaction-diffusion system with
continuous spatial variable x ∈Rr and t ∈R+:

ut − ν∆u+ λu+ g1(u) +αv = q1, vt + δv−βu= q2. (1.13)

The system (1.13) describes the signal transmission across axons and is a model of
FitzHugh-Nagumo equations in neurobiology, (cf. [5, 12, 15] and the references therein).
The existence of global attractors of the system given by (1.13) has been proved in a
bounded domain (cf. [14]) and in Rr (cf. [16]).

2. Preliminaries

We can write the operator A in the following form:

A=A1 +A2 + ···+Ar (2.1)

such that for j = 1,2, . . . ,r, and u= (ui)i∈Zr ∈ l2,(
Aju

)
i = 2u(i1,i2,...,ir )−u(i1,i2,...,i j−1,i j−1,i j+1,...,ir )−u(i1,i2,...,i j−1,i j+1,i j+1,...,ir ). (2.2)

For j = 1,2, . . . ,r, define the operators Bj ,B∗j : l2 → l2 as follows: for u= (ui)i∈Zr ∈ l2,(
Bju

)
i = u(i1,i2,...,i j−1,i j+1,i j+1,...,ir )−u(i1,i2,...,ir ),(

B∗j u
)
i = u(i1,i2,...,i j−1,i j−1,i j+1,...,ir )−u(i1,i2,...,ir ).

(2.3)

Then, it follows that for j = 1,2, . . . ,r,

Aj = B∗j Bj = BjB∗j , (2.4)

there exists a constant C0 = C0(r) such that

‖Au‖2 ≤ C0‖u‖2,
∥∥Bju∥∥2 = ∥∥B∗j u∥∥2 ≤ 4‖u‖2, ∀u∈ l2, (2.5)〈

Bju,v
〉= 〈u,B∗j v

〉
, ∀u,v ∈ l2. (2.6)

It is clear that A, Aj , Bj , and B∗j , j = 1,2, . . . ,r, are bounded linear operators from l2

into l2.
We can represent the initial value problem, (1.3) and (1.4), in the following form:

u̇+ νAu+ f1(u) + g1(u) +αh1(u,v)= q1,

v̇+ f2(v) + g2(v)−βh2(u,v)= q2,

u(0)= (ui,0)i∈Zr , v(0)= (vi,0)i∈Zr ,
(2.7)
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where u = (ui)i∈Zr , v = (vi)i∈Zr , Au = (Aui)i∈Zr , and for j = 1,2, f j(u) = ( f j(ui))i∈Zr ,
gj(u)= (gj(ui))i∈Zr , hj(u,v)= (hj(ui,vi))i∈Zr , qj = (qj,i)i∈Zr .

Consider the Hilbert space E := l2× l2, endowed with the inner product and norm as

follows: for ϕj = (u( j),v( j))T = ((u
( j)
i ),(v

( j)
i ))Ti∈Zr ∈ E, j = 1,2,

〈
ϕ1,ϕ2

〉
E =

〈
u(1),u(2)〉+

〈
v(1),v(2)〉,

‖ϕ‖E = 〈ϕ,ϕ〉1/2
E , ∀ϕ∈ E.

(2.8)

Now, the system given by (2.7) is equivalent to the following initial value problem in
the Hilbert space E := l2× l2:

ϕ̇+C(ϕ)= F(ϕ), ϕ(0)= (u0,v0
)T

, (2.9)

where ϕ= (u,v)T , C(ϕ)= (νAu,0)T , F(ϕ)= (G1(ϕ),G2(ϕ))T ,

G1(ϕ)= q1− f1(u)− g1(u)−αh1(u,v),

G2(ϕ)= q2− f2(v)− g2(v) +βh2(u,v).
(2.10)

For a given function f (s1,s2)∈ C1(R2,R), letD1 f (a,b) represent the partial derivative
of f with respect to the first independent variable, s1, at (s1,s2)= (a,b), and let D2 f (a,b)
represent the partial derivative of f with respect to the second independent variable, s2, at
(s1,s2)= (a,b). From (1.9) and the mean value theorem, it follows that given u= (ui)i∈Zr ,
v = (vi)i∈Zr ∈ l2, there exist ξ1i,ξ2i ∈ (0,1), for each i∈ Zr , such that

∥∥h1(u,v)
∥∥2 =

∑
i∈Zr

(
h1
(
ui,vi

))2 =
∑
i∈Zr

(
D1h1

(
ξ1iui,vi

)
ui +D2h1

(
0,ξ2ivi

)
vi
)2

≤ 2
(

max
|a|≤‖u‖

max
|b|≤‖v‖

(
D1h1(a,b)

)2
)
‖u‖2

+ 2
(

max
|b|≤‖v‖

(
D2h1(0,b)

)2
)
‖v‖2.

(2.11)

Thus, for u,v ∈ l2, we have h1(u,v)∈ l2. Similarly one can show that for u,v ∈ l2, h2(u,v)
∈ l2. By using (1.8) and the mean value theorem, it is easy to show that f1, f2, g1, and g2

map l2 into l2. From the above discussion, it is obvious that F maps E into E.

3. The existence of an absorbing set

First we will prove that there exists a unique local solution of the system given by (2.9)
in E. Suppose that (1.7), (1.8), and (1.9) are satisfied. Let G be a bounded set in E, and
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ϕj = (u( j),v( j))= ((u
( j)
i ),(v

( j)
i ))i∈Zr ∈G, j = 1,2, then

∥∥F(ϕ1
)−F(ϕ2

)∥∥2
E

= ∥∥G1
(
ϕ1
)−G1

(
ϕ2
)∥∥2

+
∥∥G2

(
ϕ1
)−G2

(
ϕ2
)∥∥2

≤ 2
∥∥ f1(u(1))− f1

(
u(2))∥∥2

+ 4
∥∥g1

(
u(1))− g1

(
u(2))∥∥2

+ 4α2
∥∥h1

(
u(1),v(1))−h1

(
u(2),v(2))∥∥2

+ 2
∥∥ f2(v(1))− f2

(
v(2))∥∥2

+ 4
∥∥g2

(
v(1))− g2

(
v(2))∥∥2

+ 4β2
∥∥h2

(
u(1),v(1))−h2

(
u(2),v(2))∥∥2

.

(3.1)

Using (1.9) and the mean value theorem, it follows that there exist ξ3i,ξ4i ∈ (0,1), for each
i∈ Zr , and L1 = L1(G) such that

∥∥h1
(
u(1),v(1))−h1

(
u(2),v(2))∥∥2

=
∑
i∈Zr

(
h1

(
u(1)
i ,v(1)

i

)
−h1

(
u(2)
i ,v(2)

i

))2

=
∑
i∈Zr

 D1h1

(
u(1)
i + ξ3i

(
u(2)
i −u(1)

i

)
,v(1)
i

)(
u(1)
i −u(2)

i

)
+D2h1

(
u(2)
i ,v(1)

i + ξ4i

(
v(2)
i − v(1)

i

))(
v(1)
i − v(2)

i

)


2

≤ 2
(

max
|a|≤‖u(1)‖+‖u(2)‖,|b|≤‖v(1)‖

(
D1h1(a,b)

)2
)∥∥u(1)−u(2)

∥∥2

+ 2
(

max
|a|≤‖u(2)‖,|b|≤‖v(1)‖+‖v(2)‖

(
D2h1(a,b)

)2
)∥∥v(1)− v(2)

∥∥2

≤ L1

(∥∥u(1)−u(2)
∥∥2

+
∥∥v(1)− v(2)

∥∥2
)
.

(3.2)

Thus

∥∥h1
(
u(1),v(1))−h1

(
u(2),v(2))∥∥2 ≤ L1

∥∥ϕ1−ϕ2
∥∥2
. (3.3)

We can obtain similar results, as (3.3), for f1, f2, g1, g2, and h2 by using (1.8), (1.9), and
the mean value theorem. In such a case, using (3.1), there exists L2 = L2(G) such that

∥∥F(ϕ1
)−F(ϕ2

)∥∥2
E ≤ L2

∥∥ϕ1−ϕ2
∥∥2
. (3.4)

Thus F is locally Lipschitz from E into E. In such a case from the standard theory of
ordinary differential equations, we get the following lemma.

Lemma 3.1. If (1.7), (1.8), and (1.9) are satisfied, then for any initial data ϕ(0) = (u0,
v0)T ∈ E, there exists a unique local solution ϕ(t) = (u(t),v(t))T of (2.9) such that ϕ ∈
C1([0,T),E) for some T > 0. If T <∞, then limt→T−‖ϕ‖2

E =∞.

Assume that (1.5), (1.7), (1.8), (1.9), (1.10), (1.11), and (1.12) are satisfied. Now we
are ready to prove that the solution of the system given by (2.9) exists globally and there
exists an absorbing set.
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Let ϕ= (u,v)T ∈ E be a solution of (2.9). If we consider the inner product of (2.9) with
ϕ in E, taking into account (2.4) and (2.6), we obtain

1
2
d

dt
‖u‖2 + ν

r∑
j=1

∥∥Bju∥∥2
+
〈
f1(u),u

〉
+
〈
g1(u),u

〉
+α
〈
h1(u,v),u

〉= 〈q1,u
〉

, (3.5)

1
2
d

dt
‖v‖2 +

〈
f2(v),v

〉
+
〈
g2(v),v

〉−β〈h2(u,v),v
〉= 〈q2,v

〉
, (3.6)

If we multiply (3.5) by |β|, (3.6) by |α|, and we sum up the results, taking into account
(1.5) and (1.12), we find that

|β|
2

d

dt
‖u‖2 +

|α|
2

d

dt
‖v‖2 + |β|ν

r∑
j=1

‖Bju‖2 + |β|〈 f1(u),u
〉

+ |α|〈 f2(v),v
〉

+ |β|〈g1(u),u
〉

+ |α|〈g2(v),v
〉= |β|〈q1,u

〉
+ |α|〈q2,v

〉
.

(3.7)

By using (1.8), (1.10), and the mean value theorem, for each i∈ Zr , there exists a constant
ξ5i ∈ (0,1) such that

〈
f1(u),u

〉= ∑
i∈Zr

(
f1
(
ui
)
ui
)= ∑

i∈Zr

(
f ′1
(
ξ5iui

)
u2
i

)≥ ε1‖u‖2. (3.8)

Thus we have

〈
f1(u),u

〉≥ ε1‖u‖2,
〈
f2(v),v

〉≥ ε2‖v‖2. (3.9)

From (1.11), we obtain

〈
g1(u),u

〉= ∑
i∈Zr

(
g1
(
ui
)
ui
)≥ 0,

〈
g2(v),v

〉≥ 0. (3.10)

Now if we substitute (3.9) and (3.10) into (3.7), we find that

|β|
2

d

dt
‖u‖2 +

|α|
2

d

dt
‖v‖2 + ε1|β|‖u‖2 + ε2|α|‖v‖2

≤ |β|〈q1,u
〉

+ |α|〈q2,v
〉≤ |β|

2ε1

∥∥q1
∥∥2

+
ε1|β|

2
‖u‖2 +

|α|
2ε2

∥∥q2
∥∥2

+
ε2|α|

2
‖v‖2.

(3.11)

Thus if we choose

σ =min
{|β|,|α|,ε1|β|,ε2|α|

}
, (3.12)
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then it follows that

d

dt
‖ϕ‖2

E +‖ϕ‖2
E ≤

(
β

σ

∥∥q1
∥∥)2

+
(
α

σ

∥∥q2
∥∥)2

. (3.13)

From the Gronwall lemma, we obtain

‖ϕ‖2
E ≤ e−t

∥∥ϕ0
∥∥2
E +

1− e−t
σ2

((
β
∥∥q1

∥∥)2
+
(
α
∥∥q2

∥∥)2
)

, (3.14)

lim
t−→∞‖ϕ‖

2
E ≤

(
β

σ

∥∥q1
∥∥)2

+
(
α

σ

∥∥q2
∥∥)2

. (3.15)

Inequality (3.15) implies that the solution semigroup {S(t)}t≥0 of (2.9) exists globally and
possesses a bounded absorbing set in E. In such a case, the maps

S(t) : ϕ(0)∈ E −→ S(t)ϕ(0)= ϕ(t)∈ E, t ≥ 0, (3.16)

generate a continuous semigroup {S(t)}t≥0 on E. Now from Lemma 3.1 and (3.15), we
are ready to present the following lemma.

Lemma 3.2. If (1.5), (1.7), (1.8), (1.9), (1.10), (1.11), and (1.12) are satisfied, then for
any initial data in E, the solution ϕ(t) of (2.9) exists globally for all t ≥ 0. That is, ϕ ∈
C1([0,∞),E). Moreover, there exists a bounded ball O = OE(0,r0) in E, centered at 0 with
radius r0, such that for every bounded set G of E, there exists T(G)≥ 0 such that

S(t)G⊂O, ∀t ≥ T(G), (3.17)

where r2
0 > ((β/σ)‖q1‖)2 + ((α/σ)‖q2‖)2. Therefore, there exists a constant T0 ≥ 0 depend-

ing on O such that

S(t)O ⊂O, ∀t ≥ T0. (3.18)

4. The existence of the global attractor

To prove the existence of the global attractor for the solution semigroup {S(t)}t≥0 of (2.9),
we need to prove the asymptotic compactness of {S(t)}t≥0. Along the lines of [4], the
key idea of showing the asymptotic compactness for such a lattice system is to establish
uniform estimates on “Tail Ends” of solutions.

Lemma 4.1. If (1.5), (1.7), (1.8), (1.9), (1.10), (1.11), and (1.12) are satisfied and ϕ(0)=
(u0,v0)∈O, where O is the bounded absorbing ball given by Lemma 3.2, then for any η > 0,
there exist positive constants T(η) and K(η) such that the solution ϕ(t) = (u(t),v(t))T =
(ϕi(t))i∈Zr = ((ui(t)),(vi(t)))Ti∈Zr ∈ E of (2.9) satisfies∑

‖i‖m≥K(η)

∥∥ϕi(t)∥∥2
E =

∑
‖i‖m≥K(η)

(
u2
i (t) + v2

i (t)
)≤ η (4.1)

for all t ≥ T(η), where ‖i‖m =max1≤ j≤r |i j| for i= (i1, i2, . . . , ir)∈ Zr .
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Proof. Consider a smooth increasing function θ ∈ C1(R+,R) such that

θ(s)= 0, 0≤ s < 1,

0≤ θ(s)≤ 1, 1≤ s < 2,

θ(s)= 1, s≥ 2,

(4.2)

and there exists a constant M0 such that θ′(s)≤M0 for all s∈R+.
Let L be an arbitrary positive integer. Set wi = θ(‖i‖m/L)ui, zi = θ(‖i‖m/L)vi, w =

(wi)i∈Zr , z = (zi)i∈Zr , and ψ = (w,z)T . Following [4], we take the inner product of (2.9)
with ψ in E, then it follows that

∑
i∈Zr

θ
(‖i‖m

L

)(
1
2
d

dt
u2
i + f1

(
ui
)
ui + g1

(
ui
)
ui +αh1

(
ui,vi

)
ui

)

+ ν
∑
i∈Zr

r∑
j=1

(
Bju

)
i

(
Bjw

)
i =

∑
i∈Zr

θ
(‖i‖m

L

)
q1,iui,

(4.3)

∑
i∈Zr

θ
(‖i‖m

L

)(
1
2
d

dt
v2
i + f2

(
vi
)
vi + g2

(
vi
)
vi−βh2

(
ui,vi

)
vi

)
=
∑
i∈Zr

θ
(‖i‖m

L

)
q2,ivi. (4.4)

If we multiply (4.3) by |β|, (4.4) by |α|, and we sum up the results, taking into account
(1.5) and (1.12), we get

∑
i∈Zr

θ
(‖i‖m

L

) |β|
2

d

dt
u2
i +
|α|
2

d

dt
v2
i + |β| f1

(
ui
)
ui

+|α| f2
(
vi
)
vi + |β|g1

(
ui
)
ui + |α|g2

(
vi
)
vi


+ |β|ν

∑
i∈Zr

r∑
j=1

(
Bju

)
i

(
Bjw

)
i =

∑
i∈Zr

θ
(‖i‖m

L

)(|β|q1,iui + |α|q2,ivi
)
.

(4.5)

Using (1.8), (1.10), and the mean value theorem, it follows that for each i∈ Zr ,

f1
(
ui
)
ui ≥ ε1u

2
i , f2

(
vi
)
vi ≥ ε2v

2
i . (4.6)

From (1.11), we obtain

g1
(
ui
)
ui ≥ 0, g2

(
vi
)
vi ≥ 0. (4.7)

Recalling (69) of [21], taking into account that ‖Bj‖ ≤ 2, j = 1,2, . . . ,r, one can see that

|β|ν
∑
i∈Zr

r∑
j=1

(
Bju

)
i

(
Bjw

)
i ≥−

16|β|νnM0

L
r2

0 , ∀t ≥ T0. (4.8)
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Now if we substitute (4.6), (4.7), and (4.8), into (4.5), we find that for t ≥ T0,

∑
i∈Zr

θ
(‖i‖m

L

)( |β|
2

d

dt
u2
i +
|α|
2

d

dt
v2
i + ε1|β|u2

i + ε2|α|v2
i

)

≤
∑
i∈Zr

θ
(‖i‖m

L

)(|β|q1,iui + |α|q2,ivi
)

+
16|β|νnM0

L
r2

0

≤
∑
i∈Zr

θ
(‖i‖m

L

)( |β|
ε1
q2

1,i +
ε1|β|

4
u2
i +
|α|
ε2
q2

2,i +
ε2|α|

4
v2
i

)
+

16|β|νnM0

L
r2

0 .

(4.9)

Thus if we choose

σ =min
{|β|,|α|,ε1|β|,ε2|α|

}
, (4.10)

then it follows that for t ≥ T0,

∑
i∈Zr

θ
(‖i‖m

L

)(
d

dt

∥∥ϕi(t)∥∥2
E +

∥∥ϕi(t)∥∥2
E

)

≤ 2
∑
i∈Zr

θ
(‖i‖m

L

)((
β

σ
q1,i

)2

+
(
α

σ
q2,i

)2
)

+
32|β|νnM0

L
r2

0

≤ 2
∑

‖i‖m≥L

((
β

σ
q1,i

)2

+
(
α

σ
q2,i

)2
)

+
32|β|νnM0

L
r2

0 .

(4.11)

Since q1,q2 ∈ l2, then for a given η > 0, we can fix L such that

2
∑

‖i‖m≥L

((
β

σ
q1,i

)2

+
(
α

σ
q2,i

)2
)

+
32|β|νnM0

L
r2

0 ≤
η

2
, (4.12)

and in such a case we get that

∑
i∈Zr

θ
(‖i‖m

L

)(
d

dt

∥∥ϕi(t)∥∥2
E +

∥∥ϕi(t)∥∥2
E

)
≤ η

2
, ∀t ≥ T0. (4.13)

From the Gronwall lemma, we obtain

∑
i∈Zr

(
θ
(‖i‖m

L

)∥∥ϕi(t)∥∥2
E

)
≤ e−t

∑
i∈Zr

(
θ
(‖i‖m

L

)∥∥ϕi(0)
∥∥2
E

)
+
η

2
, ∀t ≥ T0. (4.14)

Since ϕ(0)= (u0,v0)T ∈O, we have ∥∥ϕ(0)
∥∥
E ≤ r0. (4.15)

Therefore,

∑
i∈Zr

(
θ
(‖i‖m

L

)∥∥ϕi(t)∥∥2
E

)
≤ r2

0e
−t +

η

2
, ∀t ≥ T0. (4.16)
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But again for η > 0, there exists a constant T1 = T1(η) such that

r2
0e
−t ≤ η

2
, ∀t ≥ T1. (4.17)

Using (4.16) and (4.17) with K(η)= 2L, T(η)=max{T0,T1}, we obtain

∑
‖i‖m≥K(η)

∥∥ϕi∥∥2
E =

∑
‖i‖m≥K(η)

(
θ
(‖i‖m

L

)∥∥ϕi∥∥2
E

)

≤
∑
i∈Zr

(
θ
(‖i‖m

L

)∥∥ϕi∥∥2
E

)
≤ η, ∀t ≥ T(η).

(4.18)

The proof is completed. �

Lemma 4.2. If (1.5), (1.7), (1.8), (1.9), (1.10), (1.11), and (1.12) are satisfied, then the solu-
tion semigroup {S(t)}t≥0 of (2.9) is asymptotically compact in E, that is, if {ϕn} is bounded
in E and tn→∞, then {S(tn)ϕn} is precompact in E.

Proof. By using Lemmas 3.2 and 4.1, above, the proof of this lemma will be similar to
that of [19, Lemma 3.2]. �

Theorem 4.3. If (1.5), (1.7), (1.8), (1.9), (1.10), (1.11), and (1.12) are satisfied, then the
solution semigroup {S(t)}t≥0 of (2.9) possesses a global attractor � in E.

Proof. From the existence theorem of global attractors, (cf. [18, Lemmas 2 and 4]), we
get the result. �

5. Upper semicontinuity of the global attractor

Here we will study the upper semicontinuity of the global attractor � of the solution
semigroup {S(t)}t≥0 of (2.9), in the sense that � is approximated by the global attractors
of finite-dimensional versions of (2.9), as was done in [4] for a simpler system.

Let n be a positive integer, and

Zrn =
{
i∈ Zr : ‖i‖m ≤ n

}
. (5.1)

For i= (i1, i2, . . . , ir)∈ Zrn, considerw = (wi)‖i‖m≤n ∈R(2n+1)r . For convenience, we reorder
the subscripts of components of w as follows:

w = (w(−n,−n,...,−n,−n),w(−n,−n,...,−n,−n+1), . . . ,w(−n,−n,...,−n,n),

w(−n,−n,...,−n+1,−n),w(−n,−n,...,−n+1,−n+1), . . . ,

w(−n,−n,...,−n+1,n), . . . ,w(n,n,...,n,−n),w(n,n,...,n,−n+1), . . . ,w(n,n,...,n,n)
)T
.

(5.2)

Let

X =w = (wi
)
‖i‖m≤n :w ∈R(2n+1)r , (5.3)

where subscripts of components of w are ordered as in (5.2).
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Consider the (2n + 1)r-dimensional ordinary differential equations with the initial
data in X :

ẇi + ν(Aw)i + f1
(
wi
)

+ g1
(
wi
)

+αh1
(
wi,zi

)= q1,i,

żi + f2
(
zi
)

+ g2
(
zi
)−βh2

(
wi,zi

)= q2,i,

wi(0)=wi,0, zi(0)= zi,0
i∈ Zrn, t > 0.

(5.4)

The system (5.4) can be written as

ẇ+ νÃw+ f̃1(w) + g̃1(w) +αh̃1(w,z)= q̃1,

ż+ f̃2(z) + g̃2(z)−βh̃2(w,z)= q̃2,

w(0)= (wi,0
)
‖i‖m≤n, z(0)= (zi,0)‖i‖m≤n,

(5.5)

where w = (wi)‖i‖m≤n, z = (zi)‖i‖m≤n ∈ X , for k = 1,2, . . . ,r,

w(i1,...,−n,ik+1,...,ir ) =w(i1,...,n+1,ik+1,...,ir ),

w(i1,...,n,ik+1,...,ir ) =w(i1,...,−n−1,ik+1,...,ir ),

(Ãw)(i1,i2,...,ir ) = 2rw(i1,i2,...,ir )−w(i1−1,i2,...,ir )−w(i1,i2−1,...,ir )−···−w(i1,i2,...,ir−1)

−w(i1+1,i2,...,ir )−w(i1,i2+1,...,ir )−···−w(i1,i2,...,ir+1),

(5.6)

and for j = 1,2,

f̃ j(w)= ( f j(wi
))
‖i‖m≤n, g̃ j(w)= (gj(wi

))
‖i‖m≤n,

h̃ j(w,z)= (hj(wi,zi
))
‖i‖m≤n, q̃ j =

(
qj,i
)
‖i‖m≤n.

(5.7)

Forw = (wi)‖i‖m≤n ∈ X , define the linear operators B̃ j , B̃∗j ,Ã j : X → X , j = 1,2, . . . ,r, by

(
B̃ jw

)
i =w(i1,...,i j+1,...,ir )−w(i1,...,i j ,...,ir ),(

B̃∗j w
)
i =w(i1,...,i j−1,...,ir )−w(i1,...,i j ,...,ir ),(

Ã jw
)
i = 2w(i1,...,i j ,...,ir )−w(i1,...,i j−1,...,ir )−w(i1,...,i j+1,...,ir ),

(5.8)

then

Ã= Ã1 + Ã2 + ···+ Ãr , Ã j = B̃ j B̃∗j = B̃∗j B̃ j , j = 1,2, . . . ,r. (5.9)

For w( j) = (w
( j)
i )‖i‖m≤n ∈ X , j = 1,2, i= (i1, i2, . . . , ir)∈ Zrn, define

〈
w(1),w(2)〉

X =
∑

‖i‖m≤n
w(1)
i w(2)

i ,
∥∥w(1)

∥∥
X =

〈
w(1),w(1)〉1/2

X . (5.10)
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In such a case, it is clear that X = (X ,‖ · ‖X) is a Hilbert space, and Ẽ = X × X is a

Hilbert space with the following inner product and norm: for Yj = (w( j),z( j))T = ((w
( j)
i ),

(z
( j)
i ))T‖i‖m≤n ∈ Ẽ, j = 1,2,

〈
Y1,Y2

〉
Ẽ =

〈
w(1),w(2)〉

X +
〈
z(1),z(2)〉

X ,
∥∥Y1

∥∥
Ẽ =

(∥∥w(1)
∥∥2
X +

∥∥z(1)
∥∥2
X

)1/2
. (5.11)

It is easy to check that problem (5.5) can be formulated to the following first-order
system in the Hilbert space Ẽ:

Ẏ + C̃(Y)= F̃(Y), Y(0)= (w(0),z(0)
)T ∈ Ẽ, (5.12)

where

Y = (w,z)T , C̃(Y)= (νÃw,0)T , F̃(Y)= (G̃1(Y),G̃2(Y)
)T

,

G̃1(Y)= q̃1− λ f̃1(w)− g̃1(w)−αh̃1(w,z),

G̃2(Y)= q̃2− δ f̃2(z)− g̃2(z) +βh̃2(w,z).

(5.13)

Similar to Section 2, one can see that, if (1.5), (1.7), (1.8), (1.9), (1.10), (1.11), and
(1.12) are satisfied, then (5.12) is a well-posed problem in Ẽ. Thus for any Y(0)∈ Ẽ, there
exists a unique solution Y ∈ C([0,+∞), Ẽ)∩C1((0,+∞), Ẽ), see Lemmas 3.1 and 3.2, also
there exist maps of solutions Sn(t) : Y(0)∈ Ẽ→ Y(t)= Sn(t)Y(0)∈ Ẽ, t ≥ 0, generating a
continuous semigroup {Sn(t)}t≥0 on Ẽ.

Similar to Lemma 3.2 and Theorem 4.3, we can prove the following Lemma.

Lemma 5.1. If (1.5), (1.7), (1.8), (1.9), (1.10), (1.11), and (1.12) are satisfied, then there
exists a bounded ball Õ = ÕẼ(0,r0) in Ẽ, centered at 0 with radius r0 such that for every
bounded set G̃ of Ẽ, there exists T(G̃)≥ 0 such that

Sn(t)G̃⊂ Õ, ∀t ≥ T(G̃), n= 1,2, . . . , (5.14)

where r0 is the same constant given by Lemma 3.2, and it is independent of n. Moreover, the
semigroup {Sn(t)}t≥0 possesses a global attractor �n, �n ⊂ Õ ⊂ Ẽ.

Here we prove the upper semicontinuity of the global attractor � of the solution semi-
group {S(t)}t≥0 of (2.9). In such a case, we should extend the element u= (ui)‖i‖m≤n ∈ X
to an element of l2 such that ui = 0 for ‖i‖m > n, still denoted by u.

Lemma 5.2. If (1.5), (1.7), (1.8), (1.9), (1.10), (1.11), and (1.12) are satisfied, and ϕn(0)∈
�n, then there exists a subsequence {ϕnk (0)} of {ϕn(0)} and ϕ0 ∈� such that ϕnk (0) con-
verges to ϕ0 in E.

Proof. Consider ϕn(t)= Sn(t)ϕn(0)= (un(t),vn(t))T ∈ Ẽ to be a solution of (5.12). Since
ϕn(0) ∈�n, ϕn(t) ∈�n ⊂ Õ for all t ∈ R+, and again the element ϕn = (ϕn,i)‖i‖m≤n ∈ Ẽ
can be extended to the element ϕn = (ϕn,i)i∈Zr ∈ E, where ϕn,i = (0,0)T for ‖i‖m > n, it
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follows that ∥∥ϕn(t)
∥∥
Ẽ =

∥∥ϕn(t)
∥∥
E =

(∥∥un∥∥2
+
∥∥vn∥∥2)1/2

≤ r0, ∀t ∈R+, n= 1,2, . . . .
(5.15)

From (2.5) and (5.15), we get that∥∥C̃(ϕn(t)
)∥∥2

Ẽ ≤
∥∥C(ϕn(t)

)∥∥2
E =

∥∥νAun
∥∥2 ≤ νC0

∥∥un∥∥2 ≤ νC0r
2
0 , (5.16)

for all t ∈R+, n= 1,2, . . . .
Similarly, for j = 1,2, the element q̃ j = (qj,i)‖i‖m≤n ∈ R(2n+1)r can be extended to the

element qn, j = (qn, j,i)i∈Zr ∈ l2, where qn, j,i = qj,i for ‖i‖m ≤ n and qn, j,i = 0 for ‖i‖m > n.
From (1.8) and (1.9), we know that for j = 1,2,

f j(0)= gj(0)= hj(0,0)= 0. (5.17)

Therefore,∥∥F̃(ϕn(t)
)∥∥2

Ẽ =
∥∥F(ϕn(t)

)∥∥2
E =

∥∥qn,1− f1
(
un
)− g1

(
un
)−αh1

(
un,vn

)∥∥2

+
∥∥qn,2− f2

(
vn
)− g2

(
vn
)

+βh2
(
un,vn

)∥∥2

≤ 2
∥∥q1

∥∥2
+ 4
∥∥ f1(un)∥∥2

+ 8
∥∥g1

(
un
)∥∥2

+ 8α2
∥∥h1

(
un,vn

)∥∥2

+ 2
∥∥q2

∥∥2
+ 4
∥∥ f2(vn)∥∥2

+ 8
∥∥g2

(
vn
)∥∥2

+ 8β2
∥∥h2

(
un,vn

)∥∥2
.

(5.18)

Using (1.9), (5.15), and the mean value theorem, there exist ξ6i,ξ7i ∈ (0,1) for each i∈ Zr
such that∥∥h1

(
un,vn

)∥∥2 =
∑
i∈Zr

(
h1
(
un,i,vn,i

))2

=
∑
i∈Zr

(
D1h1

(
ξ6iun,i,vn,i

)
un,i +D2h1

(
0,ξ7ivn,i

)
vn,i
)2

≤ 2
(

max
a,b∈[−r0,r0]

(
D1h1(a,b)

)2
)
r2

0 + 2
(

max
b∈[−r0,r0]

(
D2h1(0,b)

)2
)
r2

0

(5.19)

for all t ∈ R+, n= 1,2, . . . . Again using (1.8), (1.9), (5.15), and the mean value theorem,
we can get similar results, as (5.19), for f1, f2, g1, g2, and h2. Thus from (5.18), it is obvious
that there exists a constant C1 = C1(r0,q1,q2, f1, f2,g1,g2,h1,h2) such that∥∥F̃(ϕn(t)

)∥∥2
Ẽ =

∥∥F(ϕn(t)
)∥∥2

E ≤ C1, ∀t ∈R+, n= 1,2, . . . . (5.20)

Now, by using (5.12), we obtain∥∥ϕ̇n(t)
∥∥2
E ≤ 2

∥∥C(ϕn(t)
)∥∥2

E + 2
∥∥F(ϕn(t)

)∥∥2
E. (5.21)

Hence, from (5.16) and (5.20), it follows that there exists a constant C2 = C2(r0,C0,C1)
such that ∥∥ϕ̇n(t)

∥∥
E ≤ C2, ∀t ∈R+, n= 1,2, . . . . (5.22)



286 Attractor for LDSs of PDRDSs

Let Jk (k = 1,2, . . .) be a sequence of compact intervals of R+ such that Jk ⊂ Jk+1 and
∪kJk = R+. Then there exists a subsequence of {ϕn(t)}, still denoted by {ϕn(t)}, and
ϕ(t)∈ C(R+,E) such that

ϕn(t)−→ ϕ(t) in C(J ,E) as n−→∞ for any compact set J ⊂R+, (5.23)

ϕ̇n(t)−→ ϕ̇(t) weak star in L∞
(
R+,E

)
as n−→ +∞. (5.24)

From (5.15) and (5.23), we obtain that there exists a constant C3 = C3(r0) such that for
ϕ(t)= (u(t),v(t))T = ((ui(t)),(vi(t)))Ti∈Zr ∈ E,∥∥ϕ(t)

∥∥
E =

(‖u‖2 +‖v‖2)1/2 ≤ C3, ∀t ∈R+. (5.25)

Let i∈ Zr and n≥ ‖i‖m. Since ϕn(t)= (un(t),vn(t))T = ((un,i(t)),(vn,i(t)))T‖i‖m≤n ∈ Ẽ is the
solution of (5.12), it follows that for all t ∈R+ and i∈ Zrn−1,

u̇n,i + ν
(
Aun

)
i + f1

(
un,i

)
+ g1

(
un,i

)
+αh1

(
un,i,vn,i

)= q1,i,

v̇n,i + f2
(
vn,i
)

+ g2
(
vn,i
)−βh2

(
un,i,vn,i

)= q2,i.
(5.26)

Therefore, for all ψ ∈ C∞0 (J), we obtain∫
J

(
u̇n,i + ν

(
Aun

)
i + f1

(
un,i

)
+ g1

(
un,i

)
+αh1

(
un,i,vn,i

))
ψ(t)dt =

∫
J
q1,iψ(t)dt,∫

J

(
v̇n,i + f2

(
vn,i
)

+ g2
(
vn,i
)−βh2

(
un,i,vn,i

))
ψ(t)dt =

∫
J
q2,iψ(t)dt.

(5.27)

From (1.8), and by using the mean value theorem, there exists ξ8i ∈ (0,1) for each i
such that ∣∣∣∣∫

J
f1
(
un,i

)
ψ(t)dt−

∫
J
f1
(
ui
)
ψ(t)dt

∣∣∣∣
≤ sup

t∈J

∣∣ f1(un,i
)− f1

(
ui
)∣∣∫

J

∣∣ψ(t)
∣∣dt

≤ sup
t∈J

(∣∣ f ′1 (un,i + ξ8i
(
ui−un,i

))∣∣∣∣un,i−ui
∣∣)∫

J

∣∣ψ(t)
∣∣dt.

(5.28)

By using (5.15) and (5.25), it is clear that there exists a constant C4 = C4(r0) such that∣∣un,i + ξi
(
ui−un,i

)∣∣≤ ∣∣un,i
∣∣+

∣∣ui∣∣≤ ∥∥un∥∥+‖u‖ ≤ C4 (5.29)

for all t ∈R+ and n= 1,2, . . . . In such a case, we obtain

sup
t∈J

∣∣ f ′1 (un,i + ξ8i
(
ui−un,i

))∣∣≤ sup
a∈[−C5,C5]

∣∣ f ′1 (a)
∣∣ < +∞. (5.30)

From (5.23), we know that as n→∞, we have

sup
t∈J

∣∣un,i−ui
∣∣−→ 0. (5.31)
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Therefore, from (5.28), (5.30), and (5.31), it is clear that∣∣∣∣∫
J
f1
(
un,i

)
ψ(t)dt−

∫
J
f1
(
ui
)
ψ(t)dt

∣∣∣∣−→ 0, as n−→∞. (5.32)

Similarly, one can get the same result, as (5.32), for f2, g1, g2, h1, and h2. In such a case
from (5.24), (5.26), and (5.27), it follows that

u̇i + ν(Au)i + λ f1
(
ui
)

+ g1
(
ui
)

+αh1
(
ui,vi

)= q1,i,

v̇i + δ f2
(
vi
)

+ g2
(
vi
)−βh2

(
ui,vi

)= q2,i.
(5.33)

But J is arbitrary, thus (5.33) holds for all t ∈R+, which means that ϕ(t) is a solution of
(2.9). From (5.25), it follows that ϕ(t) is bounded for t ∈R+, that is, ϕ(t)∈�, therefore
ϕn(0)→ ϕ(0)∈�, and the proof is completed. �

Now we are ready to represent the main result of this section. In fact, the following
theorem shows that the global attractor � of the lattice dynamical system (2.9) is upper
semicontinuous with respect to the (cutoff) approximate finite-dimensional dynamical
system (5.12).

Theorem 5.3. If (1.5), (1.7), (1.8), (1.9), (1.10), (1.11), and (1.12) are satisfied, then

lim
n→∞dE

(
�n,�)= 0, (5.34)

where dE(�n,�)= supa∈�n
infb∈�‖a− b‖E.

Proof. We argue by contradiction. If the conclusion is not true, then there exists a se-
quence ϕnk ∈�nk and a constant K > 0 such that

dE
(
ϕnk ,�)≥ K > 0. (5.35)

However, by Lemma 5.2, we know that there exists a subsequence ϕnkm of ϕnk such that

dE
(
ϕnkm ,�)−→ 0, (5.36)

which contradicts (5.35). The proof is completed. �
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