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We consider two quasistatic frictionless contact problems for piezoelectric bodies. For the
first problem the contact is modelled with Signorini’s conditions and for the second one
is modelled with normal compliance. In both problems the material’s behavior is elec-
troelastic and the adhesion of the contact surfaces is taken into account and is modelled
with a surface variable, the bonding field. We provide variational formulations for the
problems and prove the existence of a unique weak solution to each model. The proofs
are based on arguments of time-dependent variational inequalities, differential equations,
and fixed point. Moreover, we prove that the solution of the Signorini contact problem
can be obtained as the limit of the solution of the contact problem with normal compli-
ance as the stiffness coefficient of the foundation converges to infinity.

Copyright © 2006 Mircea Sofonea et al. This is an open access article distributed under
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1. Introduction

Considerable progress has been achieved recently in modelling, mathematical analysis,
and numerical simulations of various contact processes and, as a result, a general mathe-
matical theory of contact mechanics is currently emerging. It is concerned with the math-
ematical structures which underlie general contact problems with different constitutive
laws, that is, materials, varied geometries, and different contact conditions, see, for in-
stance, [14, 20] and the references therein; its aim is to provide a sound, clear, and rig-
orous background to the constructions of models for contact, proving existence, unique-
ness, and regularity results, assigning precise meaning to solutions, among others.

In this paper we study two quasistatic frictionless contact problems for electroelastic
materials with adhesion, in the framework of the mathematical theory of contact me-
chanics; our interest is to describe two physical processes in which both contact, ad-
hesion and piezoelectric effect are involved, to show that the resulting models lead to
well-posedness mathematical problems, and to study the link between the processes by
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proving a convergence result. Taking into account the piezoelectric effect in the study of
quasistatic adhesive contact problems represents the main trait of novelty of this paper.

The piezoelectric effect is characterized by the coupling between the mechanical and
electrical properties of the materials. Indeed, the apparition of electric charges on some
crystals submitted to the action of body forces and surface tractions was observed and
their dependence on the deformation process was underlined. Conversely, it was proved
experimentally that the action of electric field on the crystals may generate strain and
stress. A deformable material which presents such a behavior is called a piezoelectric
material. Piezoelectric materials are used extensively as switches and actuary in many
engineering systems, in radioelectronics, electroacoustics, and measuring equipments.
General models for electroelastic materials can be found in [3, 5, 15]. A static frictional
contact problem for electroelastic materials was considered in [4, 16]. A slip-dependent
frictional contact problem for electroelastic materials was studied in [21] and a frictional
problem with normal compliance for electroviscoelastic materials was considered in [22].
In the last two references the variational formulations of the corresponding problems
were derived and existence and uniqueness results for the weak solutions were obtained.

The adhesive contact between deformable bodies, when a glue is added to prevent rel-
ative motion of the surfaces, has received recently increased attention in the mathematical
literature. Basic modelling can be found in [10–12, 17, 25]. Analysis of models for adhe-
sive contact can be found in [1, 2, 6–9, 13, 24] and in the recent monographs [20, 23]. An
application of the theory of adhesive contact in the medical field of prosthetic limbs was
considered in [18, 19]; there, the importance of the bonding between the bone-implant
and the tissue was outlined, since debonding may lead to decrease in the persons ability
to use the artificial limb or joint. The novelty in all the above papers is the introduction
of a surface internal variable, the bonding field, denoted in this paper by β; it describes
the pointwise fractional density of active bonds on the contact surface, and sometimes
referred to as the intensity of adhesion. Following [10, 11], the bonding field satisfies
the restrictions 0 ≤ β ≤ 1; when β = 1 at a point of the contact surface, the adhesion is
complete and all the bonds are active; when β = 0, all the bonds are inactive, severed,
and there is no adhesion; when 0 < β < 1, the adhesion is partial and only a fraction β
of the bonds is active. We refer the reader to the extensive bibliography on the subject in
[12, 17, 18, 20, 23].

For the first problem we study in this paper the contact is modelled with Signorini’s
conditions and for the second one is modelled with normal compliance. In both prob-
lems the contact is adhesive and the piezoelectric effect is taken into account. We derive
a variational formulation of the problems and prove the existence of a unique weak so-
lution to each one. To this end we use similar arguments as in [6, 7, 9, 24] but with a
different choice of functionals and operators, since the constitutive law and the contact
boundary conditions, here and in the above-mentioned papers, is different. Moreover, we
study the behavior of the solution of the problem with normal compliance as the stiffness
coefficient of the foundation converges to infinity. Most of the results presented in this
paper can be extended to the case of multibody contact.

The paper is structured as follows. In Section 2 we present the models of electroelas-
tic frictionless contact with adhesion and provide comments on the contact boundary



Mircea Sofonea et al. 3

conditions. In Section 3 we list the assumptions on the data, derive the variational for-
mulation of each model, and state our main results, Theorems 3.4–3.6. Theorems 3.4 and
3.5 state the unique weak solvability of the adhesive frictionless contact problem with
Signorini and normal compliance conditions, respectively. Their proofs are provided in
Section 4 and are based on arguments of nonlinear equations with monotone operators,
differential equations and fixed point. Theorem 3.6 states the convergence of the solution
of the electroelastic adhesive contact problem with normal compliance to the solution
of the electroelastic adhesive Signorini contact problem, as the stiffness coefficient of the
foundation converges to infinity. Its proof is provided in Section 5 and is based on mono-
tonicity, lower semicontinuity, and compactness arguments.

2. Problems statement

We consider the following physical setting. An electroelastic body occupies a bounded
domain Ω ⊂ Rd (d = 2,3) with a smooth boundary ∂Ω = Γ. The body is submitted to
the action of body forces of density f0 and volume electric charges of density q0. It is also
submitted to mechanical and electric constraints on the boundary. To describe them, we
consider a partition of Γ into three measurable parts Γ1, Γ2, Γ3, on one hand, and on two
measurable parts Γa and Γb, on the other hand, such that measΓ1 > 0, measΓa > 0, and
Γ3 ⊆ Γb. We assume that the body is clamped on Γ1 and surface tractions of density f2

act on Γ2. On Γ3 the body is in adhesive contact with an insulator obstacle, the so-called
foundation. We also assume that the electrical potential vanishes on Γa and a surface
electric charge of density q2 is prescribed on Γb. We denote by Sd the space of second-
order symmetric tensors on Rd and we use · and ‖ · ‖ for the inner product and the
Euclidean norm on Rd and Sd, respectively. Also, below ν represents the unit outward
normal on Γ.

For the first problem we consider here the contact is modeled with Signorini’s condi-
tions with adhesion. Thus, the classical model for the process is the following.

Problem 2.1. Find a displacement field u : Ω × [0,T] → Rd, a stress field σ : Ω × [0,
T]→ Sd, an electric potential ϕ : Ω× [0,T]→ R, an electric displacement field D : Ω×
[0,T]→Rd, and a bonding field β : Ω× [0,T]→R such that

σ =�ε(u)−�∗E(ϕ) in Ω× (0,T), (2.1)

D=�E(ϕ) + �ε(u) in Ω× (0,T), (2.2)

Divσ + f0 = 0 in Ω× (0,T), (2.3)

div D= q0 in Ω× (0,T), (2.4)

u= 0 on Γ1× (0,T), (2.5)

σν = f2 on Γ2× (0,T), (2.6)

uν ≤ 0, σν− γνRν
(
uν
)
β2 ≤ 0,

(
σν− γνRν

(
uν
)
β2)uν = 0 on Γ3× (0,T),

(2.7)

−στ = pτ(β)Rτ
(

uτ
)

on Γ3× (0,T), (2.8)
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β̇ =−
(
β
(
γνRν

(
uν
)2

+ γτ
∥
∥Rτ

(
uτ
)∥∥2
)
− εa

)

+
on Γ3× (0,T), (2.9)

ϕ= 0 on Γa× (0,T), (2.10)

D · ν = q2 on Γb× (0,T), (2.11)

β(0)= β0 on Γ3. (2.12)

We now provide some comments on equations and conditions (2.1)–(2.12) and send
to [20, 23] for more details on the conditions (2.7)–(2.9) which describe the frictionless
contact with adhesion.

First, (2.1) and (2.2) represent the electroelastic constitutive law in which ε(u) denotes
the linearized strain tensor, E(ϕ)=−∇ϕ is the electric field, � is the elasticity operator,
� represents the piezoelectric operator, �∗ is its transposed, and � denotes the electric
permittivity operator. Details on the constitutive equations of the form (2.1), (2.2) can
be found, for instance, in [3, 4]. Next, (2.3) and (2.4) are the equilibrium equations for
the stress and electric-displacement fields, respectively, in which “Div” and “div” denote
the divergence operator for tensor- and vector-valued functions, respectively. Conditions
(2.5) and (2.6) are the displacement and traction boundary conditions, whereas (2.10)
and (2.11) represent the electric boundary conditions.

Conditions (2.7) represent the Signorini conditions with adhesion, where uν is the
normal displacement, σν represents the normal stress, γν denotes a given adhesion coeffi-
cient, and Rν is the truncation operator defined by

Rν(s)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L if s <−L,

−s if −L≤ s≤ 0,

0 if s > 0.

(2.13)

Here L > 0 is the characteristic length of the bond, beyond which it does not offer any
additional traction. The introduction of the operator Rν, together with the operator Rτ

defined below, is motivated by the mathematical arguments but it is not restrictive for
physical point of view, since no restriction on the size of the parameter L is made in what
follows. Thus, by choosing L very large, we can assume that Rν(uν)=−uν and, therefore,
from (2.7) we recover the contact conditions

uν ≤ 0, σν + γνuνβ
2 ≤ 0,

(
σν + γνuνβ

2)uν = 0 on Γ3× (0,T). (2.14)

These conditions were used in [8, 17] to model the unilateral adhesive contact. It follows
from (2.7) that there is no penetration between the body and the foundation, since uν ≤ 0
during the process. Also, note that when the bonding field vanishes, then the contact
conditions (2.7) become the classical Signorini contact conditions in the form with a
zero gap function, that is,

uν ≤ 0, σν ≤ 0, σνuν = 0 on Γ3× (0,T). (2.15)

Condition (2.8) represents the adhesive contact condition on the tangential plane in
which uτ is the tangential displacement, στ represents the tangential stress, pτ denotes a
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given function, and Rτ is the truncation operator given by

Rτ(v)=
⎧
⎪⎨

⎪⎩

v if ‖v‖ ≤ L,

L
v
‖v‖ if ‖v‖ > L. (2.16)

This condition shows that the magnitude of the shear on the contact surface depends on
the bonding field and on the tangential displacement, but as long as it does not exceed
the bond length L. The frictional tangential traction is assumed to be much smaller than
the adhesive one and, therefore, omitted.

Equation (2.9) describes the evolution of the bonding field with given positive material
parameters γν, γτ , and εa, in which r+ =max{r,0}. Recall that εa represents the so-called
Dupré’s surface energy and it measures the amount of energy needed to debond a unit
of surface area, see [12] for details. Here and below in this paper the dot above repre-
sents the derivative with respect to the time variable. We note that the adhesive process is
irreversible and, indeed, once debonding occurs, bonding cannot be reestablished, since
β̇ ≤ 0.

Finally, (2.12) represents the initial condition in which β0 is a given bonding field.
For the second problem we study in this paper the contact is modeled with normal

compliance and adhesion, and therefore the classical model for the process is the follow-
ing.

Problem 2.2. Find a displacement field uμ : Ω× [0,T]→Rd, a stress field σμ : Ω× [0,T]→
Sd, an electric potential ϕμ : Ω× [0,T]→ R, an electric displacement field Dμ : Ω× [0,
T]→Rd, and a bonding field βμ : Ω× [0,T]→R such that

σμ =�ε
(

uμ
)−�∗E

(
ϕμ
)

in Ω× (0,T), (2.17)

Dμ =�E
(
ϕμ
)

+ �ε
(

uμ
)

in Ω× (0,T), (2.18)

Divσμ + f0 = 0 in Ω× (0,T), (2.19)

div Dμ = q0 in Ω× (0,T), (2.20)

uμ = 0 on Γ1× (0,T), (2.21)

σμν = f2 on Γ2× (0,T), (2.22)

−σμν = 1
μ
pν
(
uμν
)− γνβ

2
μRν
(
uμν
)

on Γ3× (0,T), (2.23)

−σμτ = pτ(β)Rτ
(

uμτ
)

on Γ3× (0,T), (2.24)

β̇μ =−
(
β
(
γμνRν

(
uμν
)2

+ γτ
∥
∥Rτ

(
uμτ
)∥∥2
)
− εa

)

+
on Γ3× (0,T), (2.25)

ϕμ = 0 on Γa× (0,T), (2.26)

Dμ · ν = q2 on Γb× (0,T), (2.27)

βμ(0)= β0 on Γ3. (2.28)
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Here and below uμν and uμτ represent the normal and tangential components of the
displacement field uμ; also, σμν and σμτ represent the normal and tangential components
of the stress vector field σμν.

Note that equations and conditions involved in Problem 2.2 have the same signifi-
cance as those involved in Problem 2.1. The difference arises from the fact that here we
replace Signorini’s contact conditions with adhesion, (2.7), with the normal compliance
contact condition with adhesion, (2.23), where pν is a given positive function which will
be described below and μ > 0 is a penalization parameter which may be interpreted as
the deformability coefficient of the foundation, and then 1/μ is the surface stiffness coef-
ficient. Indeed, when μ is smaller, the reaction force of the foundation to penetration is
larger, and so the same force will result in a smaller penetration, which means that the
foundation is less deformable. When μ is larger, the reaction force of the foundation to
penetration is smaller, and so the foundation is less stiff and more deformable. In condi-
tion (2.23) the inter-penetrability between the body and the foundation is allowed, that
is, uμν can be positive on Γ3. The contribution of the adhesive to the normal traction is
represented by the term γνβ2

μRν(uμν); thus, the adhesive traction is tensile and is propor-
tional, with proportionality coefficient γν, to the square of the intensity of adhesion and
to the normal displacement, but as long as it does not exceed the bond length L.

3. Variational formulations and main results

In this section we list the assumptions on the data, derive a variational formulation for
the contact problems, and state our main results, Theorems 3.4–3.6. To this end we need
to introduce some notation and preliminary material.

We recall that the inner products and the corresponding norms onRd and Sd are given
by

u · v = uivi, ‖v‖ = (v · v)1/2 ∀u,v ∈Rd,

σ · τ = σi jτ i j , ‖τ‖ = (τ · τ)1/2 ∀σ ,τ ∈ Sd.
(3.1)

Here and everywhere in this paper i, j, k, l run from 1 to d, summation over repeated
indices is implied, and the index that follows a comma represents the partial derivative
with respect to the corresponding component of the spatial variable, for example, ui, j =
∂ui/∂xj .

Everywhere below we use the classical notation for Lp and Sobolev spaces associated
to Ω and Γ. Moreover, we use the notation L2(Ω)d, H1(Ω)d, �, and �1 for the following
spaces:

L2(Ω)d = {v = (vi
) | vi ∈ L2(Ω)

}
,

H1(Ω)d = {v = (vi
) | vi ∈H1(Ω)

}
,

�= {τ = (τi j
) | τi j = τji ∈ L2(Ω)

}
,

�1 =
{
τ ∈� | τi j, j ∈ L2(Ω)

}
.

(3.2)
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The spaces L2(Ω)d, H1(Ω)d, �, and �1 are real Hilbert spaces endowed with the canoni-
cal inner products given by

(u,v)L2(Ω)d =
∫

Ω
u · vdx, (u,v)H1(Ω)d =

∫

Ω
u · vdx+

∫

Ω
∇u ·∇vdx,

(σ ,τ)� =
∫

Ω
σ · τ dx, (σ ,τ)�1 =

∫

Ω
σ · τ dx+

∫

Ω
Divσ ·Divτ dx,

(3.3)

and the associated norms ‖ · ‖L2(Ω)d , ‖ · ‖H1(Ω)d , ‖ · ‖�, and ‖ · ‖�1 , respectively. Here and
below we use the notation

∇v = (vi, j
)
, ε(v)= (εi j(v)

)
, εi j(v)= 1

2

(
vi, j + vj,i

) ∀v ∈H1(Ω)d,

Divτ = (τi j, j
) ∀τ ∈�1.

(3.4)

For every element v ∈H1(Ω)d, we also write v for the trace of v on Γ and we denote
by vν and vτ the normal and tangential components of v on Γ given by vν = v · ν, vτ =
v− vνν.

Let us now consider the closed subspace of H1(Ω)d defined by

V = {v ∈H1(Ω)d | v = 0 on Γ1
}
. (3.5)

Since meas(Γ1) > 0, the following Korn’s inequality holds:

∥
∥ε(v)

∥
∥

� ≥ cK‖v‖H1(Ω)d ∀v ∈V , (3.6)

where cK > 0 is a constant which depends only on Ω and Γ1. Over the spaceV we consider
the inner product given by

(u,v)V =
(
ε(u),ε(v)

)
� (3.7)

and let ‖ · ‖V be the associated norm. It follows from Korn’s inequality (3.6) that
‖ · ‖H1(Ω)d and ‖ · ‖V are equivalent norms on V and, therefore, (V ,‖ · ‖V ) is a real
Hilbert space. Moreover, by the Sobolev trace theorem, (3.6) and (3.7), there exists a
constant c0 depending only on the domain Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d ≤ c0‖v‖V ∀v ∈V. (3.8)

We also introduce the spaces

W = {ψ ∈H1(Ω) | ψ = 0 on Γa
}

,

�1 =
{

E= (Ei
) | Ei ∈ L2(Ω), Ei,i ∈ L2(Ω)

}
.

(3.9)
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Since meas(Γa) > 0, the following Friedrichs-Poincaré inequality holds:

‖∇ψ‖L2(Ω)d ≥ cF‖ψ‖H1(Ω) ∀ψ ∈W , (3.10)

where cF > 0 is a constant which depends only on Ω and Γa and ∇ψ = (ψ,i ). Over the
space W we consider the inner product given by

(ϕ,ψ)W =
∫

Ω
∇ϕ ·∇ψdx (3.11)

and let ‖ · ‖W be the associated norm. It follows from (3.10) that ‖ · ‖H1(Ω) and ‖ · ‖W are
equivalent norms on W and, therefore, (W ,‖ · ‖W ) is a real Hilbert space. Moreover, the
space �1 is real Hilbert spaces with the inner product

(D,E)�1 =
∫

Ω
D ·Edx+

∫

Ω
div D ·div Edx, (3.12)

and the associated norm ‖ · ‖�1 . Here and below we denote div E= (Ei,i) for all E∈�1.
For every real Hilbert space X we use the classical notation for the spaces Lp(0,T ;X)

and Wk,p(0,T ;X), 1≤ p ≤∞, k = 1,2, . . . ; we also use the space of continuous functions
on [0,T] with values on X , denoted by C([0,T];X), equipped with the norm

‖x‖C([0,T];X) = max
t∈[0,T]

∥
∥x(t)

∥
∥
X , (3.13)

and we introduce the set

� = {θ ∈ L∞(0,T ;L2(Γ3
)) | 0≤ θ(t)≤ 1∀t ∈ [0,T], a.e. on Γ3

}
. (3.14)

Finally, if X1 and X2 are two Hilbert spaces endowed with the inner products (·,·)X1 and
(·,·)X2 and the associated norms ‖ · ‖X1 and ‖ · ‖X2 , respectively, we denote by X1 ×X2

the product space together with the canonical inner product (·,·)X1×X2 and the associated
norm ‖ · ‖X1×X2 .

In the study of Problems 2.1 and 2.2 we assume that the elasticity operator �, the
piezoelectric operator �, and the electric permittivity operator � satisfy the following:

� : Ω×Rd −→Rd, (3.15a)

�(x,ξ)= (ai jkl(x)ξkl
) ∀ξ = (ξi j

)∈ Sd, a.e. x ∈Ω, (3.15b)

ai jkl = akli j = ai jlk ∈ L∞(Ω), (3.15c)

∃m� > 0 such that

ai jkl(x)ξi jξkl ≥m�‖ξ‖2 ∀ξ = (ξi j
)∈ Sd, a.e. x ∈Ω,

(3.15d)

� : Ω×Sd −→Rd, (3.16a)

�(x,τ)= (ei jk(x)τjk
) ∀τ = (τ i j

)∈ Sd, a.e. x ∈Ω, (3.16b)

ei jk = eik j ∈ L∞(Ω), (3.16c)
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� : Ω×Rd −→Rd, (3.17a)

�(x,E)= (bi j(x)Ej
) ∀E= (Ei

)∈Rd, a.e. x ∈Ω, (3.17b)

bi j = bji ∈ L∞(Ω), (3.17c)

∃m� > 0 such that

bi j(x)EiEj ≥m�‖E‖2 ∀E= (Ei
)∈Rd, a.e. x ∈Ω.

(3.17d)

These assumptions show that the elasticity operator �, the piezoelectric operator �,
and the electric permittivity operator � are linear have measurable bounded components
denoted by ai jkl, ei jk, and bi j , respectively, and, moreover, � and � are symmetric and
positive definite. Recall also that the transposed operator �∗ is given by �∗ = (e∗i jk), where
e∗i jk = eki j , and the following equality holds:

�σ · v = σ ·�∗v ∀σ ∈ Sd, v ∈Rd. (3.18)

The normal compliance function pν and the tangential function pτ satisfy the follow-
ing:

pν : Γ3×R−→R+, (3.19a)

∃Lν > 0 such that
∣
∣pν

(
x,r1

)− pν
(

x,r2
)∣∣≤ Lν

∣
∣r1− r2

∣
∣ ∀r1,r2 ∈R, a.e. x ∈ Γ3,

(3.19b)

(
pν
(

x,r1
)− pν

(
x,r2

))(
r1− r2

)≥ 0 ∀r1,r2 ∈R, a.e. x ∈ Γ3, (3.19c)

the mapping x �−→ pν(x,r) is measurable on Γ3, for any r ∈R, (3.19d)

pν(x,r)= 0 ∀r ≤ 0, a.e. x ∈ Γ3, (3.19e)

pτ : Γ3×R−→R+, (3.20a)

∃Lτ > 0 such that
∣
∣pτ

(
x,β1

)− pτ
(

x,β2
)∣∣≤ Lτ

∣
∣β1−β2

∣
∣ ∀β1,β2 ∈R, a.e. x ∈ Γ3,

(3.20b)

∃Mτ > 0 such that
∣
∣pτ(x,β)

∣
∣≤Mτ ∀β ∈R, a.e. x ∈ Γ3,

(3.20c)

the mapping x �−→ pτ(x,β) is measurable on Γ3, for any β ∈R, (3.20d)

the mapping x �−→ pτ(x,0) belongs to L2(Γ3
)
. (3.20e)

Various examples of functions pν and pτ which satisfy conditions (3.19) and (3.20) can
be found in [20, 23]. Here we restrict ourselves to remark that the function pν(r) = r+

satisfies condition (3.19) and we conclude that our results below are valid for the corre-
sponding contact problem.
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We also suppose that the body forces and surface tractions have the regularity

f0 ∈W1,∞
(

0,T ;L2(Ω)d
)

, f2 ∈W1,∞
(

0,T ;L2(Γ2
)d)

, (3.21)

and the densities of electric charges satisfy

q0 ∈W1,∞(0,T ;L2(Ω)
)
, q2 ∈W1,∞(0,T ;L2(Γb

))
, (3.22)

q2(t)= 0 on Γ3 ∀t ∈ [0,T]. (3.23)

Note that we need to impose assumption (3.23) for physical reasons; indeed, the founda-
tion is supposed to be insulator and therefore the electric boundary conditions on Γ3 do
not have to change in function of the status of the contact, are the same on the contact
and on the separation zone, and are included in the boundary condition (2.11) or (2.27).

We define the functions f : [0,T]→V and q : [0,T]→W by

(
f(t),v

)
V =

∫

Ω
f0(t) · vdx+

∫

Γ2

f2(t) · vda,

(
q(t),ψ

)
W =

∫

Ω
q0(t)ψdx−

∫

Γb
q2(t)ψda,

(3.24)

for all u,v ∈ V , ψ ∈W , and t ∈ [0,T], and note that conditions (3.21) and (3.22) imply
that

f ∈W1,∞(0,T ;V), q ∈W1,∞(0,T ;W). (3.25)

The adhesion coefficients γν, γτ , and εa satisfy the conditions

γν,γτ ∈ L∞
(
Γ3
)
, εa ∈ L2(Γ3

)
, γν,γτ ,εa ≥ 0 a.e. on Γ3 (3.26)

and, finally, the initial data satisfies

β0 ∈ L2(Γ3
)
, 0≤ β0 ≤ 1 a.e. on Γ3. (3.27)

For the Signorini problem, we use the convex subset of admissible displacements given
by

U = {v ∈V | vν ≤ 0 on Γ3
}

(3.28)

as well as the adhesion functional jad : L∞(Γ3)×V ×V →R defined by

jad(β,u,v)=
∫

Γ3

(− γνβ
2Rν
(
uν
)
vν + pτ(β)Rτ

(
uτ
) · vτ

)
da. (3.29)

For the problem with normal compliance, in addition to the functional (3.29), we need
the normal compliance functional jnc :V ×V →R given by

jnc(u,v)=
∫

Γ3

pν
(
uν
)
vνda. (3.30)
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By a standard procedure based on Green’s formula we can derive the following varia-
tional formulation of the Signorini contact problem (2.1)–(2.12).

Problem 3.1. Find a displacement field u : [0,T]→ V , an electric potential field ϕ : [0,
T]→W , and a bonding field β : [0,T]→ L∞(Γ3) such that

u(t)∈U ,
(
�ε
(

u(t)
)
,ε
(

v−u(t)
))

� +
(
�∗∇ϕ(t),ε

(
v−u(t)

))
� + jad

(
β(t),u(t),v−u(t)

)

≥ (f(t),v−u(t)
)
V ∀v ∈U , t ∈ [0,T],

(3.31)
(
�∇ϕ(t),∇ψ)L2(Ω)d −

(
�ε
(

u(t)
)
,∇ψ)L2(Ω)d =

(
q(t),ψ

)
W ∀ψ ∈W , t ∈ [0,T],

(3.32)

β̇(t)=−
(
β(t)

(
γνRν

(
uν(t)

)2
+ γτ

∥
∥Rτ

(
uτ(t)

)∥∥2
)
− εa

)

+
a.e. t ∈ (0,T), (3.33)

β(0)= β0. (3.34)

The variational formulation of the problem with normal compliance (2.17)–(2.28) is
as follows.

Problem 3.2. Find a displacement field uμ : [0,T] → V , an electric potential field ϕμ :
[0,T]→W , and a bonding field βμ : [0,T]→ L∞(Γ3) such that

(
�ε
(

uμ(t)
)
,ε(v)

)
� +

(
�∗∇ϕμ(t),ε(v)

)
� + jad

(
βμ(t),uμ(t),v

)
+

1
μ
jnc
(

uμ(t),v
)

= (f(t),v
)
V ∀v ∈V , t ∈ [0,T],

(3.35)

(
�∇ϕμ(t),∇ψ)L2(Ω)d−

(
�ε
(

uμ(t)
)
,∇ψ)L2(Ω)d =

(
q(t),ψ

)
W ∀ψ∈W , t∈[0,T],

(3.36)

β̇μ(t)=−
(
βμ(t)

(
γνRν

(
uμν(t)

)2
+ γτ

∥
∥Rτ

(
uμτ(t)

)∥∥2
)
− εa

)

+
a.e. t ∈ (0,T), (3.37)

βμ(0)= β0. (3.38)

Remark 3.3. We note that the restrictions 0≤ β ≤ 1 and 0≤ βμ ≤ 1 are implicitly included
in the variational Problems 3.1 and 3.2, respectively. Indeed, (3.33) and (3.34) guarantee
that β(x, t) ≤ β0(x) and, therefore, assumption (3.27) shows that β(x, t) ≤ 1 for t ≥ 0,
a.e. x ∈ Γ3. On the other hand, if β(x, t0) = 0 at time t0, then it follows from (3.33) and
(3.34) that β̇(x, t)= 0 for all t ≥ t0 and, therefore, β(x, t)= 0 for all t ≥ t0, a.e. x ∈ Γ3. We
conclude that 0≤ β(x, t)≤ 1 for all t ∈ [0,T], a.e. x ∈ Γ3. The same arguments show that
0≤ βμ(x, t)≤ 1 for all t ∈ [0,T], a.e. x ∈ Γ3.

Our main existence and uniqueness results which we state here and prove in the next
section are the following.
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Theorem 3.4. Assume that (3.15)–(3.17), (3.20)–(3.23), and (3.26)-(3.27) hold. Then
Problem 3.1 has a unique solution (u,ϕ,β). Moreover, the solution satisfies

u∈W1,∞(0,T ;V), (3.39)

ϕ∈W1,∞(0,T ;W), (3.40)

β ∈W1,∞(0,T ;L2(Γ3
))∩�. (3.41)

Theorem 3.5. Assume that (3.15)–(3.17), (3.19)–(3.23), and (3.26)-(3.27) hold. Then,
for all μ > 0, Problem 3.2 has a unique solution (uμ,ϕμ,βμ) with the regularity expressed
in (3.39)–(3.41).

A “quintuple” of functions (u,σ ,ϕ,D,β) which satisfy (2.1), (2.2), and (3.31)–(3.34) is
called a weak solution of the contact Problem 2.1. We conclude by Theorem 3.4 that, un-
der the stated assumptions, Problem 2.1 has a unique weak solution. To precise the regu-
larity of the weak solution we note that the constitutive relations (2.1) and (2.2), the as-
sumptions (3.15)–(3.17), and the regularities (3.39), (3.40) show that σ ∈W1,∞(0,T ;�),
D∈W1,∞(0,T ;L2(Ω)d); moreover, (3.31), (3.32) combined with the definitions of f and
q yield

Divσ(t) + f0(t)= 0, div D(t)= q0(t) ∀t ∈ [0,T]. (3.42)

It follows now from the regularities (3.21), (3.22) that Divσ ∈W1,∞(0,T ;L2(Ω)d) and
div D∈W1,∞(0,T ;L2(Ω)), which shows that

σ ∈W1,∞(0,T ;�1
)
, (3.43)

D∈W1,∞(0,T ;�1
)
. (3.44)

We conclude that the weak solution (u,σ ,ϕ,D,β) of the piezoelectric contact Problem 2.1
has the regularity (3.39)–(3.44).

A “quintuple” of functions (uμ,σμ,ϕμ,Dμ,βμ) which satisfy (2.17), (2.18), and (3.35)–
(3.38) is called a weak solution of the electroelastic contact Problem 2.2. We conclude by
Theorem 3.5 and the arguments above that, under the stated assumptions, for all μ > 0
Problem 2.2 has a unique weak solution, and it has the regularity expressed in (3.39)–
(3.44).

The behavior of the solution (uμ,ϕμ,βμ) as μ→ 0 is given by the following result that
we state here and prove in Section 5.

Theorem 3.6. Assume that (3.15)–(3.17), (3.19)–(3.23), and (3.26)-(3.27) hold and as-
sume moreover that

pν(x,r)= 0 iff r ≤ 0, a.e. x ∈ Γ3. (3.45)
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Then the solution (uμ,ϕμ,βμ) of problem (3.35)–(3.38) converges to the solution (u,ϕ,β) of
problem (3.31)–(3.34), that is,

∥
∥uμ(t)−u(t)

∥
∥
V +

∥
∥ϕμ(t)−ϕ(t)

∥
∥
W +

∥
∥βμ(t)−β(t)

∥
∥
L2(Γ3) −→ 0 (3.46)

as μ→ 0, for all t ∈ [0,T].

In addition to the mathematical interest in the result above, it is important from the
physical point of view, since it shows that the weak solution of the electroelastic adhe-
sive contact problem with a rigid obstacle may be approached as closely as one wishes
by the solution of the electroelastic adhesive contact problem with a deformable foun-
dation, with a sufficiently small deformability coefficient. Theorem 3.6 is also important
from numerical point of view since it justifies the use of the normal compliance contact
condition as an approximation of the Signorini condition, in the numerical treatment of
Problem 2.1.

In the proofs of Theorems 3.4–3.6 we use a number of inequalities involving the func-
tionals jad and jnc that we present in what follows. Below in this section β, β1, β2 denote
elements of L2(Γ3) such that 0≤ β,β1,β2 ≤ 1 a.e. on Γ3, u1, u2, and v represent elements
of V and c > 0 represent generic constants which may depend on Ω, Γ1, Γ3, pν, pτ , γν, γτ ,
and L.

First, we notice that the jad and jnc are linear with respect to the last argument and
therefore

jad(β,u,−v)=− jad(β,u,v), jnc(u,−v)=− jnc(u,v). (3.47)

Next, using (3.29), the properties of the truncation operators Rν and Rτ as well as
assumption (3.20) on the function pτ , after some calculus, we find

jad
(
β1,u1,u2−u1

)
+ jad

(
β2,u2,u1−u2

)≤ c
∫

Γ3

∣
∣β1−β2

∣
∣
∥
∥u1−u2

∥
∥da (3.48)

and, by (3.25), we obtain

jad
(
β1,u1,u2−u1

)
+ jad

(
β2,u2,u1−u2

)≤ c∥∥β1−β2
∥
∥
L2(Γ3)

∥
∥u1−u2

∥
∥
V . (3.49)

Similar computations, based on the Lipschitz continuity of Rν, Rτ , and pτ , show that the
following inequality also holds:

∣
∣ jad

(
β,u1,v

)− jad
(
β,u2,v

)∣∣≤ c∥∥u1−u2
∥
∥
V‖v‖V . (3.50)

We now take β1 = β2 = β in (3.49) to deduce

jad
(
β,u1,u2−u1

)
+ jad

(
β,u2,u1−u2

)≤ 0. (3.51)

Also, we take u1 = v and u2 = 0 in (3.51), then we use the equalities Rν(0)= 0, Rτ(0)= 0,
and (3.47) to obtain

jad(β,v,v)≥ 0. (3.52)
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Now, we use (3.30) to see that

∣
∣ jnc

(
u1,v

)− jnc
(

u2,v
)∣∣≤

∫

Γ3

∣
∣pν

(
u1ν
)− pν

(
u2ν
)∣∣
∣
∣vν

∣
∣da (3.53)

and therefore (3.19b) and (3.8) imply

∣
∣ jnc

(
u1,v

)− jnc
(

u2,v
)∣∣≤ c∥∥u1−u2

∥
∥
V‖v‖V . (3.54)

We use again (3.30) to find

jnc
(

u1,u2−u1
)

+ jnc
(

u2,u1−u2
)=

∫

Γ3

(
pν
(
u1ν
)− pν

(
u2ν
))(

u2ν−u1ν
)
da (3.55)

and therefore (3.19c) implies

jnc
(

u1,u2−u1
)

+ jnc
(

u2,u1−u2
)≤ 0. (3.56)

Take u1 = v and u2 = 0 in the previous inequality and use (3.19e) and (3.47) to obtain

jnc(v,v)≥ 0. (3.57)

The inequalities (3.49)–(3.57) combined with equalities (3.47) will be used in various
places in the rest of the paper.

4. Proof of Theorems 3.4 and 3.5

We turn now to the proof of Theorem 3.4 which will be carried out in several steps. To
this end, we assume in the following that (3.15)–(3.17), (3.20)–(3.23), and (3.26)-(3.27)
hold; below, c denotes a generic positive constant which may depend on Ω, Γ1, Γ3, �, �,
�, γν, γτ , and T but does not depend on t nor on the rest of the input data, and whose
value may change from place to place. Moreover, for the sake of simplicity, we suppress,
in what follows, the explicit dependence of various functions on x ∈Ω∪Γ.

Let � denote the closed set of the space C([0,T];L2(Γ3)) defined by

�= {β ∈ C([0,T];L2(Γ3
))∩� | β(0)= β0

}
(4.1)

and let β ∈� be given. In the first step we consider the following variational problem.

Problem 4.1. Find a displacement field uβ : [0,T]→V and an electric potential ϕβ : [0,T]
→W such that, for all t ∈ [0,T],

uβ(t)∈U ,
(
�ε
(

uβ(t)
)
,ε
(

v−uβ(t)
))

� +
(
�∗∇ϕβ(t),ε

(
v−uβ(t)

))
�

+ jad
(
β(t),uβ(t),v−uβ(t)

)

≥ (f(t),v−uβ(t)
)
V ∀v ∈U ,

(4.2)

(
�∇ϕβ(t),∇ψ)L2(Ω)d −

(
�ε
(

uβ(t)
)
,∇ψ)L2(Ω)d =

(
q(t),ψ

)
W ∀ψ ∈W. (4.3)
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In order to solve Problem 4.1 we consider the product spaceX =V ×W endowed with
the inner product

(x, y)X = (u,v)V + (ϕ,ψ)W ∀x = (u,ϕ), y = (v,ψ)∈ X (4.4)

and the associated norm ‖ · ‖X . We also introduce the set K ⊂ X and the functions Aβ :
[0,T]×X → X , f : [0,T]→ X , defined by

K =U ×W , (4.5)
(
Aβ(t)x, y

)
X =

(
�ε(u),ε(v)

)
� + (�∇ϕ,∇ψ)L2(Ω)d +

(
�∗∇ϕ,ε(v)

)
�−

(
�ε(u),∇ψ)L2(Ω)d

+ jad
(
β(t)u,v

) ∀x = (u,ϕ), y = (v,ψ)∈ X , t ∈ [0,T],
(4.6)

f (t)= (f(t),q(t)
) ∀t ∈ [0,T]. (4.7)

We start with the following equivalence result.

Lemma 4.2. The couple xβ = (uβ,ϕβ) : [0,T]→ V ×W is a solution to Problem 4.1 if and
only if xβ : [0,T]→ X satisfies

xβ(t)∈ K ,
(
Aβ(t)xβ(t), y− xβ(t)

)≥ ( f (t), y− xβ(t)
)
X ∀y ∈ K , (4.8)

for all t ∈ [0,T].

Proof. Let xβ = (uβ,ϕβ) : [0,T]→V ×W be a solution to Problem 4.1. Let y = (v,ψ)∈ K
and let t ∈ [0,T]. We use the test function ψ − ϕβ(t) in (4.3), add the corresponding
inequality to (4.2), and use (4.4)–(4.7) to obtain (4.8). Conversely, assume that xβ =
(uβ,ϕβ) : [0,T]→ X satisfies (4.8) and let t ∈ [0,T]. For any v ∈U , we take y = (v,ϕβ(t))
in (4.8) to obtain (4.2). Then, for any ψ ∈W , we take successively y = (uβ,ϕβ(t) +ψ) and
y = (uβ,ϕβ(t)−ψ) in (4.8) to obtain (4.3). �

We use now Lemma 4.2 to obtain the following existence and uniqueness result.

Lemma 4.3. Problem 4.1 has a unique solution (uβ,ϕβ)∈ C([0,T];V ×W).

Proof. Let t ∈ [0,T]. We use (3.15)–(3.18), (3.50), and (3.51) to see thatAβ(t) is a strongly
monotone Lipschitz continuous operator on X ; since K is a nonempty closed convex set
of X , by a standard result on elliptic variational inequalities it follows that there exists
a unique element xβ(t) = (uβ(t),ϕβ(t)) ∈ X which satisfies (4.8). For t1, t2 ∈ [0,T], an
argument based on (3.15) and (3.49) shows that

∥
∥xβ
(
t1
)− xβ

(
t2
)∥∥

X ≤ c
(∥
∥β
(
t1
)−β(t2

)∥∥
L2(Γ3) +

∥
∥ f
(
t1
)− f

(
t2
)∥∥

X

)
. (4.9)

By (3.25) and (4.7) we deduce that f ∈W1,∞(0,T ;X) and recall that β ∈ C([0,T];X), see
(4.1). It follows now from (4.9) that the mapping t �→ xβ : [0,T]→ X is continuous. The
existence and uniqueness part in Lemma 4.3 is now a consequence of Lemma 4.2. �
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In the second step we use the displacement field uβ obtained in Lemma 4.3, denote
by uβν, uβτ its normal and tangential components, and we consider the following initial-
value problem.

Problem 4.4. Find a bonding field θβ : [0,T]→ L2(Γ3) such that

θ̇β(t)=−
(
θβ(t)

(
γνRν

(
uβν(t)

)2
+ γτ

∥
∥Rτ

(
uβτ(t)

)∥∥2
)
− εa

)

+
a.e. t ∈ (0,T),

θβ(0)= β0.
(4.10)

We obtain the following result.

Lemma 4.5. There exists a unique solution to Problem 4.4 and it satisfies θβ ∈W1,∞(0,T ,
L2(Γ3))∩�.

Proof. Consider the mapping Fβ : [0,T]×L2(Γ3)→ L2(Γ3) defined by

Fβ(t,θ)=−
(
γνθ
(
Rν
(
uβν(t)

)2
+ γτ

∥
∥Rτ

(
uβτ(t)

)∥∥2
)
− εa

)

+
, (4.11)

for all t ∈ [0,T] and θ ∈ L2(Γ3). It follows from the properties of the truncation oper-
ators Rν and Rτ that Fβ is Lipschitz continuous with respect to the second argument,
uniformly in time. Moreover, for any θ ∈ L2(Γ3), the mapping t �→ Fβ(t,θ) belongs to
L∞(0,T ;L2(Γ3)). Using now a version of Cauchy-Lipschitz theorem (see, e.g., [23, page
48]), we obtain the existence of a unique function θβ ∈W1,∞(0,T ,L2(Γ3)) which solves
(4.10). Also, the arguments used in Remark 3.3 show that 0≤ θβ(t)≤ 1 for all t ∈ [0,T],
a.e. on Γ3. Therefore, from the definition of the set �, we find that θβ ∈ �, which con-
cludes the proof of the lemma. �

It follows from Lemma 4.5 that for all β ∈� the solution θβ of Problem 4.4 belongs to
�, see (4.1). Therefore, we may consider the operator Λ : �→� given by

Λβ = θβ. (4.12)

The third step consists in the following result.

Lemma 4.6. There exists a unique element β∗ ∈� such that Λβ∗ = β∗.

Proof. Suppose that βi are two functions in � and denote by (ui,ϕi), θi the functions
obtained in Lemmas 4.3 and 4.5, respectively, for β = βi, i = 1,2. Let t ∈ [0,T]. We use
arguments similar to those used in the proof of (4.9) to deduce that

∥
∥u1(t)−u2(t)

∥
∥
V +

∥
∥ϕ1(t)−ϕ2(t)

∥
∥
W ≤ c

∥
∥β1(t)−β2(t)

∥
∥
L2(Γ3), (4.13)

which implies that
∥
∥u1(t)−u2(t)

∥
∥
V ≤ c

∥
∥β1(t)−β2(t)

∥
∥
L2(Γ3). (4.14)

On the other hand, it follows from (4.10) that

θi(t)= β0−
∫ t

0

(
θi(s)

(
γνRν

(
uiν(s)

)2
+ γτ

∥
∥Rτ

(
uiτ(s)

)∥∥2
)
− εa

)

+
ds (4.15)
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and then

∥
∥θ1(t)− θ2(t)

∥
∥
L2(Γ3) ≤ c

∫ t

0

∥
∥
∥θ1(s)Rν

(
u1ν(s)

)2− θ2(s)Rν
(
u2ν(s)

)2
∥
∥
∥
L2(Γ3)

ds

+
∫ t

0

∥
∥
∥θ1(s)

∥
∥Rτ

(
u1τ(s)

)∥∥2− θ2(s)
∥
∥Rτ

(
u2τ(s)

)∥∥2
∥
∥
∥
L2(Γ3)

ds.

(4.16)

Using the definition of Rν and Rτ and writing θ1 = θ1− θ2 + θ2, we get

∥
∥θ1(t)− θ2(t)

∥
∥
L2(Γ3) ≤ c

∫ t

0

∥
∥θ1(s)− θ2(s)

∥
∥
L2(Γ3)ds+ c

∫ t

0

∥
∥u1(s)−u2(s)

∥
∥
L2(Γ3)dds.

(4.17)

By Gronwall’s inequality, it follows that

∥
∥θ1(t)− θ2(t)

∥
∥
L2(Γ3) ≤ c

∫ t

0

∥
∥u1(s)−u2(s)

∥
∥
L2(Γ3)dds (4.18)

and, using (3.8), we obtain

∥
∥θ1(t)− θ2(t)

∥
∥
L2(Γ3) ≤ c

∫ t

0

∥
∥u1(s)−u2(s)

∥
∥
Vds. (4.19)

We use (4.12) and the estimate (4.19) to find

∥
∥Λβ1(t)−Λβ2(t)

∥
∥
L2(Γ3) ≤ c

∫ t

0

∥
∥u1(s)−u2(s)

∥
∥
Vds. (4.20)

We now combine (4.14) and (4.20) to see that

∥
∥Λβ1(t)−Λβ2(t)

∥
∥
L2(Γ3) ≤ c

∫ t

0

∥
∥β1(s)−β2(s)

∥
∥
L2(Γ3)ds (4.21)

and reiterating this inequality m times yields

∥
∥Λmβ1−Λmβ2

∥
∥
C([0,T];L2(Γ3)) ≤

cmTm

m!

∥
∥β1−β2

∥
∥
C([0,T];L2(Γ3)). (4.22)

Recall that � is a nonempty closed set in the Banach space C([0,T];L2(Γ3)) and note
that inequality (4.22) shows that for m sufficiently large Λm : � → � is a contraction.
Then, by using the Banach fixed point theorem, it follows that Λ has a unique fixed point
β∗ ∈�. �

Now, we have all the ingredients to provide the proof of Theorem 3.4.

Proof

Existence. Let β∗ ∈� be the fixed point of Λ and let (u∗,ϕ∗) be the solution of Problem
4.1 for β = β∗, that is, u∗ = uβ∗ and ϕ∗ = ϕβ∗ . Since θβ∗ = β∗, we conclude by (4.2),
(4.3), and (4.10) that (u∗,ϕ∗,β∗) is a solution of Problem 3.1 and, moreover, β∗ satisfies
(3.41). Also, since β∗ = θβ∗ ∈W1,∞(0,T ;L2(Γ3)) and f ∈W1,∞(0,T ;X), inequality (4.9)



18 Electroelastic contact problems with adhesion

implies that the function x∗ = (u∗,ϕ∗) : [0,T]→ X is Lipschitz continuous; therefore, x∗

belongs to W1,∞(0,T ;X), which shows that the functions u∗ and ϕ∗ have the regularity
expressed in (3.39), (3.40).

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness of the
fixed point of operator Λ defined by (4.12). Indeed, let (u,ϕ,β) be a solution of Problem
3.1 which satisfies (3.39)–(3.41). It follows from (4.2), (4.3) that u is a solution to Problem
4.1 and, since by Lemma 4.3 this problem has a unique solution denoted by (uβ,ϕβ), we
obtain

u= uβ,

ϕ= ϕβ.
(4.23)

Then, we replace u = uβ in (3.33) and use the initial condition (3.34) to see that β is
a solution to Problem 4.4. Since by Lemma 4.5 this last problem has a unique solution
denoted by θβ, we find

β = θβ. (4.24)

We use now (4.12) and (4.24) to see that Λβ = β, that is, β is a fixed point of the operator
Λ. It follows now from Lemma 4.6 that

β = β∗. (4.25)

The uniqueness part of the theorem is now a consequence of (4.23) and (4.25). �

We turn now to the proof of Theorem 3.5 which is similar to the proof of Theorem 3.4
and it is carried out in several steps. Since the modifications are straightforward, we do
not indicate the details. Below in this section we assume that μ > 0 is fixed and, for sim-
plicity, we do not indicate the dependence of the solution on μ.

Proof. (i) For any β ∈�, we prove that there exists a unique couple of functions (uβ,ϕβ)∈
C([0,T];V ×W) such that, for all t ∈ [0,T],

(
�ε
(

uβ(t)
)
,ε(v)

)
� +

(
�∗∇ϕβ(t),ε(v)

)
� + jad

(
β(t),uβ(t),v

)
+

1
μ
jnc
(

uβ(t),v
)

= (f(t),v
)
V ∀v ∈V ,

(
�∇ϕβ(t),∇ψ)L2(Ω)d −

(
�ε
(

uβ(t)
)
,∇ψ)L2(Ω)d =

(
q(t),ψ

)
W ∀ψ ∈W.

(4.26)

To provide this step we use arguments similar to those used in the proof of Lemmas 4.2
and 4.3. The main difference arises from the fact that now (4.8) is replaced by the equality

xβ(t)∈ X ,
(
Aβ(t)xβ(t), y

)
X =

(
f (t), y

)
X ∀y ∈ X , t ∈ [0,T], (4.27)
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where, for β ∈� and t ∈ [0,T], Aβ(t) : X → X is the operator defined by
(
Aβ(t)x, y

)
X =

(
�ε(u),ε(v)

)
� +

(
�∇ϕ,∇ψ)L2(Ω)d +

(
�∗∇ϕ,ε(v)

)
�−

(
�ε(u),∇ψ)L2(Ω)d

+ jad
(
β(t)u,v

)
+

1
μ
jnc(u,v) ∀x = (u,ϕ), y = (v,ψ)∈ X.

(4.28)

We use (3.15)–(3.18) and the properties (3.47)–(3.57) of the functionals jad and jnc to see
that Aβ(t) is again a strongly monotone Lipschitz continuous operator.

(ii) For a given β ∈�, we prove that there exists a unique element θ such that

θβ ∈W1,∞(0,T ;L2(Γ3
))∩�,

θ̇β(t)=−
(
γνθβ(t)

(
Rν
(
uβν(t)

)2
+ γτ

∥
∥Rτ

(
uβτ(t)

)∥∥2
)
− εa

)

+
a.e. t ∈ (0,T),

θβ(0)= β0.

(4.29)

The proof of this step is based on Lemma 4.5.
(iii) The operator Λ : �→� given by

Λβ = θβ (4.30)

has a unique element β∗ ∈�. The proof is based on estimates similar to those presented
in Lemma 4.6 and the Banach fixed point theorem.

(iv) Let β∗ ∈ � be the fixed point of Λ and denote u∗ = uβ∗ , ϕ∗ = ϕβ∗ , where (uβ∗ ,
ϕβ∗) is the couple of functions obtained in step (i) for β = β∗. Then, we use (4.26)–
(4.30) to see that (u∗,ϕ∗,β∗) is the unique solution of Problem 3.2 and it satisfies (3.39)–
(3.41). �

5. Proof of Theorem 3.6

The proof of Theorem 3.6 is carried out in several steps. We suppose in what follows that
(3.15)–(3.17), (3.19)–(3.23), (3.26)-(3.27), and (3.45) hold and we denote by c a strictly
positive generic constant which does not depend on time or on μ, and whose value may
change from place to place.

In the first step we consider the following auxiliary problem: find a displacement field
ũμ : [0,T]→V and an electric potential field ϕ̃μ : [0,T]→W such that, for all t ∈ [0,T],

(
�ε
(

ũμ(t)
)
,ε(v)

)
� +

(
�∗∇ϕ̃μ(t),ε(v)

)
� + jad

(
β(t), ũμ(t),v

)
+

1
μ
jnc
(

ũμ(t),v
)

= (f(t),v
)
V ∀v ∈V ,

(5.1)

(
�∇ϕ̃μ(t),∇ψ)L2(Ω)d −

(
�ε
(

ũμ(t)
)
,∇ψ)L2(Ω)d =

(
q(t),ψ

)
W ∀ψ ∈W. (5.2)

This problem is of the form (4.26), since here β = β(t) is known, taken from the Signorini
Problem 3.1. Therefore, by using the arguments in step (i) of the proof of Theorem 3.5,
we deduce that, for each μ > 0, problem (5.1)-(5.2) has a unique solution which satisfies
ũμ ∈W1,∞(0,T ;V), ϕ̃μ ∈W1,∞(0,T ;W).

We have the following convergence result.
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Lemma 5.1. As μ→ 0,

∥
∥ũμ(t)−u(t)

∥
∥
V +

∥
∥ϕ̃μ(t)−ϕ(t)

∥
∥
W −→ 0, (5.3)

for all t ∈ [0,T].

Proof. Let t ∈ [0,T]. We choose v = ũμ(t) in (5.1) and ψ = ϕ̃μ(t) in (5.2) to find

(
�ε
(

ũμ(t)
)
,ε
(

ũμ(t)
))

� +
(
�∗∇ϕ̃μ(t)

)
,ε
(

ũμ(t)
)

�

+ jad
(
β(t), ũμ(t), ũμ(t)

)
+

1
μ
jnc
(

ũμ(t), ũμ(t)
)

= (f(t), ũμ(t)
)
V ,

(5.4)

(
�∇ϕ̃μ(t),∇ϕ̃μ(t)

)
L2(Ω)d −

(
�ε
(

ũμ(t)
)
,∇ϕ̃μ(t)

)
L2(Ω)d =

(
q(t), ϕ̃μ(t)

)
W. (5.5)

We add equalities (5.4), (5.5) and use (3.18), (3.52), and (3.57) to obtain

(
�ε
(

ũμ(t)
)
,ε
(

ũμ(t)
))

� +
(
�∇ϕ̃μ(t),∇ϕ̃μ(t)

)
L2(Ω)d ≤

(
f(t), ũμ(t)

)
V +

(
q(t)ϕ̃μ(t)

)
W

(5.6)

and, keeping in mind (3.15), (3.17), we deduce that there exists c > 0 such that

∥
∥ũμ(t)

∥
∥
V +

∥
∥ϕ̃μ(t)

∥
∥
W ≤ c

(∥∥f(t)
∥
∥
V +‖q(t)

∥
∥
W

)
. (5.7)

Thus, there exist ũ(t) ∈ V , ϕ̃μ(t) ∈W , and subsequences of the sequences {ũμ(t)}μ,
{ϕ̃μ(t)}μ, denoted again by {ũμ(t)}μ, {ϕ̃μ(t)}μ, such that

ũμ(t)−→ ũ(t) weakly in V , ϕ̃μ(t)−→ ϕ̃(t) weakly in W , as μ−→ 0. (5.8)

Using again (3.52), (5.4), and (5.7), after some computations, we find that

jnc
(

ũμ(t), ũμ(t)
)≤ cμ. (5.9)

It follows from (5.8) that

ũμ(t)−→ ũ(t) in L2(Γ3
)d

, as μ−→ 0 (5.10)

and, recalling (3.30) for jnc and using (5.9) and (5.10), we find that

∫

Γ3

pν
(
ũν(t)

)
ũν(t)ds= 0. (5.11)

Since the integrand is nonnegative (see (3.19c) and (3.19e)), from the previous equality
we find that pν(ũν(t))ũν(t) = 0 a.e. on Γ3. It follows now from (3.45) that ũν(t) ≤ 0 a.e.
on Γ3 which shows that ũ(t)∈U .
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Next, by choosing the test function v− ũμ(t) in (5.1) and keeping in mind the proper-
ties of the normal compliance function pν, we obtain

(
�ε
(

ũμ(t)
)
,ε
(

v− ũμ(t)
))

� +
(
�∗∇ϕ̃μ(t),ε

(
v− ũμ(t)

))
� + jad

(
β(t), ũμ(t),v− ũμ(t)

)

≥ (f(t),v− ũμ(t)
)
V ∀v ∈U.

(5.12)

We then test in (5.2) with ψ − ϕ̃μ(t), add the resulting equality to (5.12), and use (3.18)
to obtain

(
�ε(ũμ(t)

)
,ε
(

v− ũμ(t)
))

� +
(
�∇ϕ̃μ(t),∇(ψ− ϕ̃μ(t)

))
L2(Ω)d

+
(
�∗∇ϕ̃μ(t),ε(v)

)
�−

(
�ε
(

ũμ(t)
)
,∇ψ)L2(Ω)d + jad

(
β(t), ũμ(t),v− ũμ(t)

)

≥ (f(t),v− ũμ(t)
)
V +

(
q(t),ψ− ϕ̃μ(t)

)
W ∀v ∈U , ψ ∈W.

(5.13)

Next, we use (3.29), (5.10), and the properties of Rν, Rτ , and pτ to see that

jad
(
β(t), ũμ(t),v− ũμ(t)

)−→ jad
(
β(t), ũ(t),v− ũ(t)

)
as μ−→ 0, (5.14)

for any v ∈ V . Therefore, by (5.8), (5.13), (5.14), and a lower semicontinuity argument
we find that
(
�ε
(

ũ(t)
)
,ε
(

v− ũ(t)
))

� +
(
�∇ϕ̃(t),∇(ψ− ϕ̃(t)

))
L2(Ω)d

+
(
�∗∇ϕ̃(t),ε(v)

)
�−

(
�ε
(

ũ(t)
)
,∇ψ)L2(Ω)d + jad

(
β(t), ũ(t),v− ũ(t)

)

≥ (f(t),v− ũ(t)
)
V + (q(t),ψ− ϕ̃(t)

)
W ∀v ∈U , ψ ∈W.

(5.15)

We take now v = u(t) and ψ = ϕ(t) in (5.15) to obtain

(
�ε
(

ũ(t)
)
,ε
(

u(t)− ũ(t)
))

� +
(
�∇ϕ̃(t),∇(ϕ(t)− ϕ̃(t)

))
L2(Ω)d

+
(
�∗∇ϕ̃(t),ε

(
u(t)

))
�−

(
�ε
(

ũ(t)
)
,∇ϕ(t)

)
L2(Ω)d + jad

(
β(t), ũ(t),u(t)− ũ(t)

)

≥ (f(t),u(t)− ũ(t)
)
V +

(
q(t),ϕ(t)− ϕ̃(t)

)
W ∀v ∈U , ψ ∈W.

(5.16)

On the other hand, we take v = ũ(t) in (3.31) and add the resulting inequality to the
equality (3.32) in which we take ψ = ϕ̃(t)−ϕ(t); as a result we obtain

(
�ε(u(t)

)
,ε
(

ũ(t)−u(t)
))

� +
(
�∇ϕ(t),∇(ϕ̃(t)−ϕ(t)

))
L2(Ω)d

+
(
�∗∇ϕ(t),ε

(
ũ(t)

)−u(t)
)

�

− (�ε(u(t)
)
,∇(ϕ̃(t)−ϕ(t)

))
L2(Ω)d + jad

(
β(t),u(t), ũ(t)−u(t)

)

≥ (f(t), ũ(t)−u(t)
)
V +

(
q(t), ϕ̃(t)−ϕ(t)

)
W ∀v ∈U , ψ ∈W.

(5.17)
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We add (5.16), (5.17) and use again (3.15), (3.17), and (3.18) to see that

c
(∥
∥ũμ(t)−u(t)

∥
∥2
V +

∥
∥ϕ̃μ(t)−ϕ(t)

∥
∥2
W

)

≤ jad
(
β(t), ũ(t),u(t)− ũ(t)

)
+ jad

(
β(t),u(t), ũ(t)−u(t)

)
.

(5.18)

We now use (3.51) to show that the right-hand side of this inequality is nonpositive and,
thus,

ũ(t)= u(t), ϕ̃μ(t)= ϕ(t). (5.19)

We conclude that u(t) is the unique weak limit in V of any subsequence of the sequence
{ũμ(t)}μ and, therefore, we find that the whole sequence {ũμ(t)}μ converges weakly to the
element u(t)∈U . The same argument shows that the whole sequence {ϕμ(t)}μ converges
weakly to the element ϕ(t)∈W .

Using now (5.13) with v = u(t), ψ = ϕ(t), and assumptions (3.15), (3.17) on �, �, we
deduce that

c
(∥
∥ũμ(t)−u(t)

∥
∥2
V +

∥
∥ϕ̃μ(t)−ϕ(t)

∥
∥2
W

)

≤ (f(t), ũμ(t)−u(t)
)
V +

(
q(t), ϕ̃μ(t)−ϕ(t)

)
W + jad

(
β(t), ũμ(t),u(t)

)− ũμ(t)

+
(
�ε(u(t)

)
,ε
(

u(t)− ũμ(t)
))

� +
(
�∇ϕ(t),∇(ϕ(t)− ϕ̃μ(t)

))
L2(Ω)d

+
(
�∗∇ϕ̃μ(t),ε(u)

)
�−

(
�ε
(

ũμ(t)
)
,∇ϕ)L2(Ω)d .

(5.20)

Taking into account (3.18), (5.8), (5.14), and (5.19), we obtain from the previous inequal-
ity that

∥
∥ũμ(t)−u(t)

∥
∥2
V +

∥
∥ϕ̃μ(t)−ϕ(t)

∥
∥2
W −→ 0 as μ−→ 0, (5.21)

which concludes the proof. �

The next step in the proof of the theorem is the following.

Lemma 5.2. There exists c > 0 such that

∥
∥ũμ(t)−uμ(t)

∥
∥
V +

∥
∥ϕ̃μ(t)−ϕμ(t)

∥
∥
W ≤ c

∥
∥βμ(t)−β(t)

∥
∥
L2(Γ3), (5.22)

for all t ∈ [0,T] and μ > 0.

Proof. Let t ∈ [0,T] and μ > 0. From (3.35), (3.36), (5.1), and (5.2) after some computa-
tions we find that

(
�ε
(

uμ(t)− ũμ(t)
)
,ε
(

ũμ(t)−uμ(t)
))

�

+
(
�∇(ϕμ(t)− ϕ̃μ(t)

)
,∇(ϕ̃μ(t)−ϕμ(t)

))
L2(Ω)d

+ jad
(
βμ(t),uμ(t), ũμ(t)−uμ(t)

)− jad
(
β(t), ũμ(t), ũμ(t)−uμ(t)

)

+
1
μ
jnc
(

uμ(t), ũμ(t)−uμ(t)
)− 1

μ
jnc
(

ũμ(t), ũμ(t)−uμ(t)
)= 0.

(5.23)
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We use (3.47), (3.49), and (3.56) to see that

jad
(
βμ(t),uμ(t), ũμ(t)−uμ(t)

)− jad
(
β(t), ũμ(t), ũμ(t)−uμ(t)

)

≤ c∥∥βμ(t)−β(t)
∥
∥
L2(Γ3)

∥
∥ũμ(t)−uμ(t)

∥
∥
V ,

jnc
(

uμ(t), ũμ(t)−uμ(t)
)− jnc

(
ũμ(t), ũμ(t)−uμ(t)

)≤ 0.

(5.24)

We use now the last two inequalities in (5.23) and combine the resulting inequality with
(3.15), (3.17) to obtain (5.22). �

We have now all the ingredients to prove Theorem 3.6.

Proof. Let t ∈ [0,T]. Using norm triangle inequality and (5.22), we obtain

∥
∥uμ(t)−u(t)

∥
∥
V +

∥
∥ϕμ(t)−ϕ(t)

∥
∥
W +

∥
∥βμ(t)−β(t)

∥
∥
L2(Γ3)

≤ ∥∥ũμ(t)−u(t)
∥
∥
V +

∥
∥ϕ̃μ(t)−ϕ(t)

∥
∥
W + c

∥
∥βμ(t)−β(t)

∥
∥
L2(Γ3).

(5.25)

We now use (3.33), (3.34), (3.37), (3.38) and arguments similar to those used in the
proof of (4.19) to see that

∥
∥βμ(t)−β(t)

∥
∥
L2(Γ3) ≤ c

∫ t

0

∥
∥uμ(s)−u(s)

∥
∥
Vds. (5.26)

Plugging (5.26) in (5.25) and applying the Gronwall lemma to the resulting inequality,
we obtain
∥
∥uμ(t)−u(t)

∥
∥
V +

∥
∥ϕμ(t)−ϕ(t)

∥
∥
W +

∥
∥βμ(t)−β(t)

∥
∥
L2(Γ3)

≤ ∥∥ũμ(t)−u(t)
∥
∥
V +

∥
∥ϕ̃μ(t)−ϕ(t)

∥
∥
W + c

∫ t

0

(∥∥ũμ(s)−u(s)
∥
∥
V +

∥
∥ϕ̃μ(s)−ϕ(s)

∥
∥
W

)
ds.

(5.27)

On the other hand, we note that (5.7) implies that

∥
∥ũμ(t)−u(t)

∥
∥
V +
∥
∥ϕ̃μ(t)−ϕ(t)

∥
∥
W ≤ c

(∥∥f(t)
∥
∥
V +
∥
∥q(t)

∥
∥
W +

∥
∥u(t)

∥
∥
V +
∥
∥ϕ(t)

∥
∥
W

)
.
(5.28)

Since (5.3) and (5.28) hold for all t ∈ [0,T], from Lebesgue convergence theorem we
deduce that

∫ t

0

(∥∥ũμ(s)−u(s)
∥
∥
V +

∥
∥ϕ̃μ(s)−ϕ(s)

∥
∥
W

)
ds−→ 0 as μ−→ 0. (5.29)

The convergence result (3.46) is now a consequence of (5.3), (5.27), and (5.29). �

We end this section with the remark that Theorem 3.6 implies the following conver-
gence result, in terms of stress and electric displacement field:

∥
∥σμ(t)−σ(t)

∥
∥

�1
+
∥
∥Dμ(t)−D(t)

∥
∥

�1
−→ 0 (5.30)
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as μ→ 0, for all t ∈ [0,T]. Indeed, let t ∈ [0,T] and μ > 0; the electroelastic constitutive
laws (2.1), (2.2), (2.17), and (2.18) combined with the properties of the operators � and
� yield
∥
∥σμ(t)−σ(t)

∥
∥

� +
∥
∥Dμ(t)−D(t)

∥
∥
L2(Ω)d ≤ c

(∥∥uμ(t)−u(t)
∥
∥
V +

∥
∥ϕμ(t)−ϕ(t)

∥
∥
W

)
.
(5.31)

Also, since (3.31) and (3.35) imply Divσμ(t) = Divσ(t) = −f0(t) and (3.32) and (3.36)
imply div Dμ(t)= div D(t)=−q0(t), we deduce that

∥
∥σμ(t)−σ(t)

∥
∥

�1
= ∥∥σμ(t)−σ(t)

∥
∥

�,
∥
∥Dμ(t)−D(t)

∥
∥

�1
= ∥∥Dμ(t)−D(t)

∥
∥
L2(Ω)d .

(5.32)

The convergence (5.30) is now a consequence of (3.46), (5.31), and (5.32).
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