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1. Introduction

We consider the reaction-diffusion system

∂u

∂t
− aΔu− bΔv = f (u,v,w) in R+×Ω, (1.1)

∂v

∂t
− cΔu− aΔv− bΔw = g(u,v,w) in R+×Ω, (1.2)

∂w

∂t
− cΔv− aΔw = h(u,v,w) in R+×Ω, (1.3)

with the boundary conditions

λu+ (1− λ)∂ηu= β1 in R+× ∂Ω,

λv+ (1− λ)∂ηv = β2 in R+× ∂Ω,

λw+ (1− λ)∂ηw = β3 in R+× ∂Ω,

(1.4)
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and the initial data

u(0,x)= u0(x), v(0,x)= v0(x), w(0,x)=w0(x) in Ω. (1.5)

(i) For nonhomogeneous Robin boundary conditions, we use

0 < λ < 1, βi ∈R i= 1, 2,3. (1.6)

(ii) For homogeneous Neumann boundary conditions, we use

λ= βi = 0, i= 1, 2, 3. (1.7)

(iii) For homogeneous Dirichlet boundary conditions, we use

1− λ= βi = 0, i= 1, 2,3. (1.8)

Here, Ω is an open bounded domain of class C1 in RN , with boundary ∂Ω and ∂/∂η
denotes the outward normal derivative on ∂Ω.The a, b, and c are positive constants satis-
fying the condition

√
2a≥ (b+ c) which reflects the parabolicity of the system and implies

at the same time that the matrix of diffusion

A=
⎛
⎜⎝
a b 0
c a b
0 c a

⎞
⎟⎠ (1.9)

is positive definite; that is, the eigenvalues λ1, λ2, and λ3 (λ1 < λ2 < λ3) of its transposed
are positive.

The initial data are assumed to be in the following region:

Σ=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u0,v0,w0)∈R3 such that

⎧⎪⎨
⎪⎩

√
2μ|v0| ≤ u0 +μw0,

u0 ≤ μw0

if

⎧⎪⎨
⎪⎩

√
2μ|β2| ≤ β1 +μβ3,

β1 ≤ μβ3

(u0,v0,w0)∈R3 such that

⎧⎪⎨
⎪⎩

|u0 +μw0| ≤
√

2μv0,

u0 ≤ μw0

if

⎧⎪⎨
⎪⎩

|β1 +μβ3| ≤
√

2μβ2,

β1 ≤ μβ3

(u0,v0,w0)∈R3 such that

⎧⎪⎨
⎪⎩

√
2μ|v0| ≤ u0 +μw0,

μw0 ≤ u0

if

⎧⎪⎨
⎪⎩

√
2μ|β2| ≤ β1 +μβ3,

μβ3 ≤ β1

(u0,v0,w0)∈R3 such that

⎧⎪⎨
⎪⎩

|u0 +μw0| ≤
√

2μv0,

μw0 ≤ u0

if

⎧⎪⎨
⎪⎩

|β1 +μβ3| ≤
√

2μβ2,

μβ3 ≤ β1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(1.10)

where

μ= b

c
. (1.11)

One will treat the first case, the others will be discussed in the last section.
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We suppose that the reaction terms f , g, and h are continuously differentiable, poly-
nomially bounded on Σ satisfying

f
(√

2μv−μw,v,w
)
−
√

2μg
(√

2μv−μw,v,w
)

+μh
(√

2μv−μw,v,w
)
≥ 0, (1.12)

− f (μw,v,w) +μh(μw,v,w)≥ 0, (1.13)

f
(
−√2μv−μw,v,w

)
+
√

2μg
(
−√2μv−μw,v,w

)
+μh

(
−√2μv−μw,v,w

)
≥ 0

(1.14)

for all v,w ≥ 0. And for positive constants C′1 ≤ 1/μ, C′′1 ≤
√

2/μ, α1 ≥ 1/μ and β1 ≥
√

2/μ,

C′1 f (u,v,w) +C′′1 g(u,v,w) +h(u,v,w)≤ C1
(
α1u+β1v+w+ 1

)
; (1.15)

for all u, v, w in Σ, where C1 is a positive constant.
In the trivial case where b= c = 0, nonnegative solutions exist globally in time.
This class of systems motivated us to construct this type of functionals considered in

this paper in the aim to prove global existence of solutions.

2. Existence

In this section, we prove that if ( f ,g,h) points into Σ on ∂Σ, then Σ is an invariant region
for problem (1.1)–(1.5), that is, the solution remains in Σ for any intial data in Σ. Once
the invariant regions are constructed, both problems of the local and global existensce
become easier to be established.

2.1. Local existence. The usual norms in spaces Lp(Ω), L∞(Ω), and C(Ω) are denoted,
respectively, by

‖u‖pp = 1
|Ω|

∫

Ω

∣∣u(x)
∣∣pdx,

‖u‖∞ =max
x∈Ω

∣∣u(x)
∣∣.

(2.1)

For any initial data in C(Ω) or Lp(Ω), p ∈ (1,+∞) local existence and uniqueness of
solutions to the initial value problem (1.1)–(1.5) follow from the basic existence theory
for abstract semilinear differential equations (see Friedman [1], Henry [2], and Pazy [3]).
The solutions are classical on [0;Tmax [; where Tmax denotes the eventual blowing-up time
in L∞(Ω).

2.2. Invariant regions. The main result of this subsection is the following.

Proposition 2.1. Suppose that the functions f , g, and h point into the region Σ on ∂Σ,
then for any (u0;v0,w0) in Σ, the solution (u(t;·);v(t;·),w(t;·)) of the problem (1.1)–(1.5)
remains in Σ for any time [0;T∗[.
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Proof. The proof follows the same way to that of Kouachi (see [4]). Then we multiply
(1.1) by c, (1.2) by

√
2bc, and (1.3) by b. Adding the first result to the third one and

subtracting the second result, we get (2.2). Subtracting the first result from the third one,
we get (2.3). Adding the first, the second, and the third results to each other, we get (2.4):

∂U

∂t
− λ1ΔU = F(U ,V ,W) in ]0,T∗[×Ω, (2.2)

∂V

∂t
− λ2ΔV =G(U ,V ,W) in ]0,T∗[×Ω, (2.3)

∂W

∂t
− λ3ΔW =H(U ,V ,W) in ]0,T∗[×Ω (2.4)

with the boundary conditions

λU + (1− λ)∂ηU = ρ1 in ]0,T∗[×∂Ω,

λV + (1− λ)∂ηV = ρ2 in ]0,T∗[×∂Ω,

λW + (1− λ)∂ηW = ρ3 in ]0,T∗[×∂Ω,

(2.5)

and the initial data

U(0,x)=U0(x), V(0,x)=V0(x), W(0,x)=W0(x) inΩ, (2.6)

where

U(t,x)= cu(t,x)−√2bcv(t,x) + bw(t,x),

V(t,x)=−cu(t,x) + bw(t,x),

W(t,x)= cu(t,x) +
√

2bcv(t,x) + bw(t,x)

(2.7)

for all (t,x) in ]0,T∗[×Ω,

F(U ,V ,W)= (c f −√2bcg + bh
)
(u,v,w)

G(U ,V ,W)= (−c f + bh)(u,v,w)

H(U ,V ,W)= (c f +
√

2bcg + bh
)
(u,v,w)

(2.8)

for all (u,v,w) in Σ,

λ1 = a−√2bc,

λ2 = a,

λ3 = a+
√

2bc,

ρ1 = cβ1−
√

2bcβ2 + bβ3,

ρ2 =−cβ1 + bβ3,

ρ3 = cβ1 +
√

2bcβ2 + bβ3.

(2.9)

First, let us notice that the condition of the parabolicity of the system (1.1)–(1.3) implies
the one of the (2.2)–(2.4) system; since

√
2a≥ (b+ c)⇒ a >

√
2bc.
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Now, it suffices to prove that the region

{(U0,V0,W0) such that U0 ≥ 0,V0 ≥ 0,W0 ≥ 0} =R+×R+×R+ (2.10)

is invariant for system (2.2)–(2.4).
Since, from (1.12)–(1.14), we have that F(0,V ,W)≥0 suffices to be f (

√
2μv−μw,v,w)

−√2μg(
√

2μv − μw,v,w) + μh(
√

2μv − μw,v,w) ≥ 0, for all V ,W ≥ 0 and all v,w ≥ 0,
then U(t,x) ≥ 0, for all (t,x) in ]0,T∗[×Ω, thanks to the invariant region method (see
Smoller [5]), and Because G(U ,0,W) ≥ 0 suffices to be − f (μw,v,w) + μh(μw,v,w) ≥ 0
for allU ,W ≥ 0 and all v,w ≥ 0, thenV(t,x)≥0 for all (t,x) in ]0,T∗[×Ω, andH(U ,V ,0)
≥ 0 suffices to be f (−√2μv−μw,v,w) +

√
2μg(−√2μv−μw,v,w)+μh(−√2μv−μw,v,w)

≥ 0 for all U ,V ≥ 0 and all v,w ≥ 0, then W(t,x)≥ 0 for all (t,x) in ]0,T∗[×Ω, then Σ is
an invariant region for the system (1.1)–(1.3). �

Then system (1.1)–(1.3), with boundary conditions (1.4) and initial data in Σ, is equiv-
alent to system (2.2)–(2.4) with boundary conditions (2.5) and positive initial data (2.6).
As it has been mentioned at the beginning of this section and since ρ1, ρ2, and ρ3 are
positive, for any initial data in C(Ω) and Lp(Ω), p ∈ (1,+∞). (The local existence and
uniquness of the solutions to the initial value problem (2.2)–(2.6) gives us directly those
of (1.1)–(1.5).)

Once invariant regions are constructed, one can apply Lyapunov technique and estab-
lish global existence of unique solutions for (1.1)–(1.5).

2.3. Global existence. As the determinant of the linear algebraic system (2.7) with re-
gard to variables u,v, and w, is different from zero, then to prove global existence of
solutions of problem (1.1)–(1.5), one needs to prove it for problem (2.2)–(2.6). To this
subject; it is well-known that (see Henry [2]) it sufficies to derive anuniform estimate of
‖F(U ,V ,W)‖p,‖G(U ,V ,W)‖p, and ‖H(U ,V ,W)‖p on [0,T∗[ for some p > N/2.

Let us put A12 = (a−√bc/2)/
√
a(a−√2bc), A13 = a/2

√
a2− 2bc, A23 = (a+

√
bc/2)/√

a(a+
√

2bc), θ, and σ are as two positive constants sufficiently large such that

θ > A12, (2.11)
(
θ2−A2

12

)(
σ2−A2

23

)
>
(
A13−A12A23

)2
. (2.12)

Let us define, for any positive integer n, the two finite sequences

θq = θ(p−q)2

, q = 0, . . . , p,

σ p = σ (n−p)2
, p = 0, . . . ,n.

(2.13)

The main result of the paper is as follows.
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Theorem 2.2. Let (U(t,·),V(t,·),W(t,·)) be any positive solution of (2.2)–(2.6) and
assume the functional

L(t)=
∫

Ω
Hn
(
U(t,x),V(t,x),W(t,x)

)
dx, (2.14)

where

Hn(U ,V ,W)=
n∑

p=0

p∑

q=0

C
p
nC

q
pθqσ pU

qV p−qWn−p. (2.15)

Then, the functional L is uniformly bounded on the interval [0,T∗],T∗ < Tmax .

Corollary 2.3. Suppose that the functions f , g, and h are continuously differentiable on Σ,
point into ∂Σ and satisfy condition (1.15).Then all solutions of (1.1)–(1.5) with initial data
in Σ and uniformly bounded on Ω are in L∞(0,T∗;Lp(Ω)) for all p ≥ 1.

Proposition 2.4. Under the hypothesis of Corollary 2.3, if the reactions f , g, and h are poly-
nomially bounded, then all solutions of (1.1)–(1.5) with the initial data in Σ and uniformly
bounded on Ω are global time.

Proofs. For the proof of Theorem 2.2, we need some preparatory lemmas.

Lemma 2.5. Let Hn be the homogeneous polynomial defined by (2.15). Then

∂UHn = n
n−1∑

p=0

p∑

q=0

C
p
n−1C

q
pθ(q+1)σ (p+1)U

qV p−qW (n−1)−p,

∂VHn = n
n−1∑

p=0

p∑

q=0

C
p
n−1C

q
pθqσ (p+1)U

qV p−qW (n−1)−p,

∂WHn = n
n−1∑

p=0

p∑

q=0

C
p
n−1C

q
pθqσ pU

qV p−qW (n−1)−p.

(2.16)

Proof of Lemma 2.5. See Kouachi [6]. �

Lemma 2.6. The second partial derivatives of Hn are given by

∂U2Hn = n(n− 1)
n−2∑

p=0

p∑

q=0

C
p
n−2C

q
pθ(q+2)σ (p+2)U

qV p−qW (n−2)−p,

∂UVHn = n(n− 1)
n−2∑

p=0

p∑

q=0

C
p
n−2C

q
pθ(q+1)σ (p+2)U

qV p−qW (n−2)−p,

∂UWHn = n(n− 1)
n−2∑

p=0

p∑

q=0

C
p
n−2C

q
pθ(q+1)σ (p+1)U

qV p−qW (n−2)−p,

∂V 2Hn = n(n− 1)
n−2∑

p=0

p∑

q=0

C
p
n−2C

q
pθqσ (p+2)U

qV p−qW (n−2)−p,
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∂VWHn = n(n− 1)
n−2∑

p=0

p∑

q=0

C
p
n−2C

q
pθqσ (p+1)U

qV p−qW (n−2)−p,

∂W2Hn = n(n− 1)
n−2∑

p=0

p∑

q=0

C
p
n−2C

q
pθqσqU

qV p−qW (n−2)−p.

(2.17)

Proof of Lemma 2.6. See Kouachi [6]. �

Proof of Theorem 2.2. Differentiating L with respect to t yields

L′(t)=
∫

Ω

(
∂UHn

∂U

∂t
+ ∂VHn

∂V

∂t
+ ∂WHn

∂W

∂t

)
dx

=
∫

Ω

(
λ1∂UHnΔU + λ2∂VHnΔV + λ3∂WHnΔW

)
dx

+
∫

Ω

(
F∂UHn +G∂VHn +H∂WHn

)
dx = I + J.

(2.18)

Using Green’s formula and applying Lemma 2.5, we get I = I1 + I2, where

I1 =
∫

∂Ω

(
λ1∂UHn∂ηu+ λ2∂VHn∂ηv+ λ3∂WHn∂ηw

)
dx,

I2 =−n(n− 1)
∫

Ω

n−2∑

p=0

p∑

q=0

C
p
n−2C

q
p
(
BqpT

)·Tdx,

(2.19)

where

Bqp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ1σ (p+2)θ(q+2)
λ1 + λ2

2
σ (p+2)θ(q+1)

λ1 + λ3

2
σ (p+1)θ(q+1)

λ1 + λ2

2
σ (p+2)θ(q+1) λ2σ (p+2)θq

λ2 + λ3

2
σ (p+1)θq

λ1 + λ3

2
σ (p+1)θ(q+1)

λ2 + λ3

2
σ (p+1)θq λ3σ pθq

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.20)

for q = 0, p, p = 0,n− 2 and T = (∇U ,∇V ,∇W)t .
We prove that there exists a positive constant C2 independent of t ∈ [0,Tmax [ such that

I1 ≤ C2 ∀ t ∈ [0,Tmax [ (2.21)

and that

I2 ≤ 0 (2.22)

for several boundary conditions.
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(i) If 0 < λ < 1, using the boundary conditions (1.4), we get

I1 =
∫

∂Ω

(
λ1∂uHn

(
γ1−αU

)
+ λ2∂vHn

(
γ2−αV

)
+ λ3∂wHn

(
γ3−αZ

))
dx, (2.23)

where α= λ/(1− λ) and γi = ρi/(1− λ), i= 1,2,3.
Since K(U ,V ,W) = λ1∂uHn(γ1 − αU) + λ2∂vHn(γ2−αV)+λ3∂wHn(γ3−αW), where

Pn−1 and Qn are polynomials with positive coefficients and respective degrees (n− 1)
and n. Since the solution is positive, then

lim sup
(|U|+|V |+|W|)→+∞

K(U ,V ,W)=−∞ (2.24)

which proves that K is uniformly bounded on R3
+ and consequently (2.21).

(ii) If λ= 0, then I1 = 0 on [0,Tmax [.
(iii) The case of homogeneous Dirichlet conditions is trivial, since in this case the

positivity of the solution on [0,Tmax [×Ω implies that ∂ηU ≤ 0,∂ηV ≤ 0 and
∂ηW ≤ 0 on [0,Tmax [×∂Ω. Consequently, one gets again (2.21) with C3 = 0.

Now, we prove (2.22). The quadratic forms (with respect to∇U ,∇V , and∇W) asso-
ciated with the matrixes Bqp, q = 0, . . . , p, and p = 0, . . . ,n− 2 are positive since their main
determinants Δ1, Δ2, and Δ3 are positive, too. To see this, we have

(1) Δ1 = λ1σ (p+2)θ(q+2) > 0 for q = 0, . . . , p and p = 0, . . . ,n− 2;
(2)

Δ2 =

∣∣∣∣∣∣∣∣

λ1σ (p+2)θ(q+2)
λ1 + λ2

2
σ (p+2)θ(q+1)

λ1 + λ2

2
σ (p+2)θ(q+1) λ2σ (p+2)θq

∣∣∣∣∣∣∣∣

= λ1λ2σ
2
(p+2)θ

2
(q+1)

(
θ2−A2

12

)
,

(2.25)

for q = 0, . . . , p, and p = 0, . . . ,n− 2. Using (2.11), we get Δ2 > 0.
(3) Δ3 = |Bqp| = λ1λ2λ3σ

2
(p+2)σ

2
(p+1)θ

2
(q+1)θq[(θ2−A2

12)(σ2−A2
23)− (A13−A12A23)2]

for q = 0, . . . , p and p = 0, . . . ,n− 2. Using (2.12), we get Δ3 > 0 (see Kouachi [6]).
Substituting the expressions of the partial derivatives given by Lemma 2.5 in the sec-

ond integralyields

J=
∫

Ω
n
n−1∑

p=0

p∑

q=0

C
p
n−1C

q
p
[
σ (p+1)θ(q+1)F + σ (p+1)θqG+ σ pθqH

]
UqV p−qW (n−1)−pdx

=
∫

Ω
n
n−1∑

p=0

p∑

q=0

C
p
n−1C

q
pUqV p−qW (n−1)−p

[
F+

θq
θ(q+1)

G+
σ p

σ (p+1)

θq
θ(q+1)

H

]
σ (p+1)θ(q+1)dx.

(2.26)
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Using the expressions (2.8), we obtain

J =
∫

Ω
n
n−1∑

p=0

p∑

q=0

C
p
n−1C

q
pUqV p−qW (n−1)−p

×
((

1− θq
θ(q+1)

+
σ p

σ (p+1)

θq
θ(q+1)

)
c f +

(
− 1 +

σ p

σ (p+1)

θq
θ(q+1)

)√
2bcg

+

(
1 +

θq
θ(q+1)

+
σ p

σ (p+1)

θq
θ(q+1)

)
bh

)
σ (p+1)θ(q+1)dx.

(2.27)

And so, we get the following inequality:

J ≤
∫

Ω
n
n−1∑

p=0

p∑

q=0

C
p
n−1C

q
pUqV p−qW (n−1)−p

×
(1− θq/θ(q+1) +

(
σ p/σ (p+1)

)(
θq/θ(q+1)

)

1 + θq/θ(q+1) +
(
σ p/σ (p+1)

)(
θq/θ(q+1)

) c f

+
−1 +

(
σ p/σ (p+1)

)(
θq/θ(q+1)

)

1 + θq/θ(q+1) +
(
σ p/σ (p+1)

)(
θq/θ(q+1)

)
√

2bcg + bh
)
σ (p+1)θ(q+1)dx,

(2.28)

using condition (1.15) and relation (2.7) successively, we get

J ≤ C4

∫

Ω

n−1∑

p=0

p∑

q=0

C
p
n−1C

q
pUqV p−qW (n−1)−p(U +V +W + 1)dx. (2.29)

Following the same reasoning as in Kouachi [6], a straightforward calculation shows
that

L′(t)≤ C5L(t) +C6L
(n−1)/n(t) on [0,T∗], (2.30)

which for Z = L1/n can be written as

nZ′ ≤ C5Z +C6. (2.31)

A simple integration gives the uniform bound of the functional L on the interval
[0,T∗]; this ends the proof of the Theorem 2.2. �

Proof of corollary. The proof of this corollary is an immediate consequence of Theorem
2.2 and the inequality

∫

Ω
(U +V +W)pdx ≤ C8L(t) on [0,T∗[ (2.32)

for some p ≥ 1, taking into consideration expressions (2.7). �
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Proof of proposition. As it has been mentioned above; it suffices to derive a uniform es-
timate of ‖F(U ,V ,W)‖p, ‖G(U ,V ,W)‖p, and ‖H(U ,V ,W)‖p on [0,T∗[ for some p >
N/2. Since the functions f , g, and h are polynomially bounded on Σ, then using relations
(2.5), (2.7), and (2.8), we get that F, G, and H are polynomially bounded, too, and the
proof becomes an immediate consequence of Corollary 2.3. �

3. Final remarks

The second, the third, and the fourth cases are to be studied in the same way as we have
done with the first case.

The second case:.If {|β1 + μβ3| ≤
√

2μβ2 and β1 ≤ μβ3}, then system (1.1)–(1.3) can
be rewritten as follows:

∂u

∂t
− aΔu− bΔv = f (u,v,w) in R+×Ω,

∂w

∂t
− aΔw− cΔv = h(u,v,w) in R+×Ω,

∂v

∂t
− cΔu− bΔw− aΔv = g(u,v,w) in R+×Ω

(3.1)

with the same boundary conditions (1.4) and initial data (1.5).
In this case, the diffusion matrix of the system becomes

A=
⎛
⎜⎝
a 0 b
0 a c
c b a

⎞
⎟⎠ . (3.2)

Then all the previous results remain valid in the region

Σ=
{(
u0,v0,w0

)∈R3 such that:
∣∣u0 +μw0

∣∣≤√2μv0 and u0 ≤ μw0

}
, (3.3)

where

μ= b

c
. (3.4)

And system (2.2)–(2.4) becomes

∂U

∂t
− aΔU = F1(U ,V ;W),

∂V

∂t
− (a+

√
2
√
bc
)
ΔV =G1(U ,V ;W),

∂W

∂t
− (a−√2

√
bc
)
ΔW =H1(U ,V ;W),

(3.5)
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where

U(t,x)=−cu(t,x) + bw(t,x),

V(t,x)= cu(t,x) +
√

2bcv(t,x) + bw(t,x),

W(t,x)=−cu(t,x) +
√

2bcv(t,x)− bw(t,x)

(3.6)

for all (t,x) in ]0,T∗[×Ω,

F1(U ,V ;W)= (−c f + bh)(u,v,w),

G1(U ,V ;W)= (c f +
√

2
√
bcg + bh

)
(u,v,w),

H1(U ,V ;W)= (− c f +
√

2
√
bcg − bh

)
(u,v,w)

(3.7)

for all (u,v,w) in Σ; with the boundary conditions

λU + (1− λ)∂ηU = ρ1 in ]0,T∗[×∂Ω,

λV + (1− λ)∂ηV = ρ2 in ]0,T∗[×∂Ω,

λW + (1− λ)∂ηW = ρ3 in ]0,T∗[×∂Ω,

(3.8)

where

ρ1 =−cβ1 + bβ3,

ρ2 = cβ1 +
√

2bcβ2 + bβ3,

ρ3 =−cβ1 +
√

2bcβ2− bβ3,

(3.9)

and initial data (1.5).
The conditions (1.12)–(1.15) become, respectively,

− f (μw,v,w) +μh(μw,v,w)≥ 0,

f
(
−√2μv−μw,v,w

)
+
√

2μg
(
−√2μv−μw,v,w

)
+μh

(
−√2μv−μw,v,w

)
≥ 0,

− f
(√

2μv−μw,v,w
)

+
√

2μg
(√

2μv−μw,v,w
)
−μh

(√
2μv−μw,v,w

)
≥ 0

(3.10)

for all v,w ≥ 0, and for positive constants C′2 ≤
√

1/2μ, C′′1 ≤
√
μ/2, α2 ≥

√
1/2μ, and β2 ≥√

μ/2

C′2 f (u,v,w) + g(u,v,w) +C′′2 h(u,v,w)≤ C1
(
α2u+ v+β2w+ 1

)
; (3.11)

for all (u,v,w) in Σ, where C1 is a positive constant.
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The third case: If {√2μ|β2| ≤ β1 + μβ3 and μβ3 ≤ β1}, then system (1.1)–(1.3) can be
rewritten as follows:

∂v

∂t
− aΔv− bΔw− cΔu= g(u,v,w) in R+×Ω,

∂w

∂t
− cΔv− aΔw = h(u,v,w) in R+×Ω,

∂u

∂t
− bΔv− aΔu= f (u,v,w) in R+×Ω,

(3.12)

with the same boundary conditions (1.4) and initial data (1.5).
In this case, the diffusion matrix of the system becomes

A=
⎛
⎜⎝
a b c
c a 0
b 0 a

⎞
⎟⎠ . (3.13)

Then all the previous results remain valid in the region

Σ=
{(
u0,v0,w0

)∈R3 such that:
√

2μ
∣∣v0

∣∣≤ u0 +μw0 and μw0 ≤ u0

}
, (3.14)

where

μ= b

c
. (3.15)

And systems (2.2)–(2.4) become

∂U

∂t
− aΔU = F2(U ,V ;W),

∂V

∂t
− (a+

√
2
√
bc
)
ΔV =G2(U ,V ;W),

∂W

∂t
− (a−√2

√
bc
)
ΔW =H2(U ,V ;W),

(3.16)

where

U(t,x)= cu(t,x)− bw(t,x),

V(t,x)= cu(t,x) +
√

2bcv(t,x) + bw(t,x),

W(t,x)= cu(t,x)−
√

2bcv(t,x) + bw(t,x)

(3.17)

for all (t,x) in ]0,T∗[×Ω,

F2(U ,V ;W)= (c f − bh)(u,v,w),

G2(U ,V ;W)= (c f +
√

2
√
bcg + bh

)
(u,v,w),

H2(U ,V ;W)= (c f −√2
√
bcg + bh

)
(u,v,w)

(3.18)
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for all (u,v,w) in Σ; with the boundary conditions

λU + (1− λ)∂ηU = ρ1 in ]0,T∗[×∂Ω,

λV + (1− λ)∂ηV = ρ2 in ]0,T∗[×∂Ω,

λW + (1− λ)∂ηW = ρ3 in ]0,T∗[×∂Ω,

(3.19)

where

ρ1 = cβ1− bβ3,

ρ2 = cβ1 +
√

2bcβ2 + bβ3,

ρ3 = cβ1−
√

2bcβ2 + bβ3

(3.20)

and the initial data (1.5).
The conditions (1.12)–(1.15) become, respectively,

f (μw,v,w)−μh(μw,v,w)≥ 0,

f
(
−√2μv−μw,v,w

)
+
√

2μg
(
−√2μv−μw,v,w

)
+μh

(
−√2μv−μw,v,w

)
≥ 0,

f
(√

2μv−μw,v,w
)
−√2μg

(√
2μv−μw,v,w

)
+μh

(√
2μv−μw,v,w

)
≥ 0

(3.21)

for all v,w ≥ 0, and for positive constants C′3 ≤
√

2μ, C′′1 ≤ μ, α3 ≥
√

2μ, and β3 ≥ μ,

f (u,v,w) +C′3g(u,v,w) +C′′3 h(u,v,w)≤ C1
(
u+α3v+β3w+ 1

)
; (3.22)

for all (u,v,w) in Σ, where C1 is a positive constant.
The fourth case. If {|β1 +μβ3| ≤

√
2μβ2 and μβ3 ≤ β1}, then system (1.1)–(1.3) can be

rewritten as follows:

∂w

∂t
− aΔw− cΔv = h(u,v,w) in R+×Ω,

∂u

∂t
− aΔu− bΔv = f (u,v,w) in R+×Ω,

∂v

∂t
− bΔw− cΔu− aΔv = g(u,v,w) in R+×Ω

(3.23)

with the same boundary conditions (1.4) and initial data (1.5).
In this case, the diffusion matrix of the system becomes

A=
⎛
⎜⎝
a 0 c
0 a b
b c a

⎞
⎟⎠ . (3.24)
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Then all the previous results remain valid in the region

Σ=
{(
u0,v0,w0

)∈R3 such that:
∣∣u0 +μw0

∣∣≤√2μv0 and μw0 ≤ u0

}
, (3.25)

where

μ= b

c
. (3.26)

And system (2.2)–(2.4) becomes

∂U

∂t
− aΔU = F3(U ,V ;W),

∂V

∂t
− (a+

√
2
√
bc
)
ΔV =G3(U ,V ;W),

∂W

∂t
− (a−√2

√
bc
)
ΔW =H3(U ,V ;W),

(3.27)

where

U(t,x)= cu(t,x)− bw(t,x),

V(t,x)= cu(t,x) +
√

2bcv(t,x) + bw(t,x),

W(t,x)=−cu(t,x) +
√

2bcv(t,x)− bw(t,x)

(3.28)

for all (t,x) in ]0,T∗[×Ω,

F3(U ,V ;W)= (c f − bh)(u,v,w),

G3(U ,V ;W)= (c f +
√

2
√
bcg + bh

)
(u,v,w),

H3(U ,V ;W)= (− c f +
√

2
√
bcg − bh

)
(u,v,w)

(3.29)

for all (u,v,w) in Σ; with the boundary conditions

λU + (1− λ)∂ηU = ρ1 in ]0,T∗[×∂Ω,

λV + (1− λ)∂ηV = ρ2 in ]0,T∗[×∂Ω,

λW + (1− λ)∂ηW = ρ3 in ]0,T∗[×∂Ω,

(3.30)

where

ρ1 = cβ1− bβ3,

ρ2 = cβ1 +
√

2bcβ2 + bβ3,

ρ3 =−cβ1 +
√

2bcβ2− bβ3.

(3.31)
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The conditions (1.12)–(1.15) become, respectively:

f (μw,v,w)−μh(μw,v,w)≥ 0,

f
(−√2μv−μw,v,w

)
+
√

2μg
(−√2μv−μw,v,w

)
+μh

(−√2μv−μw,v,w
)≥ 0,

− f
(√

2μv−μw,v,w
)

+
√

2μg
(√

2μv−μw,v,w
)−μh

(√
2μv−μw,v,w

)≥ 0
(3.32)

for all v,w ≥ 0, and for positive constants C′4 ≤
√

1/2μ, C′′4 ≤
√
μ/2, α4 ≥

√
1/2μ, and β4 ≥√

μ/2,

C′4 f (u,v,w) + g(u,v,w) +C′′4 h(u,v,w)≤ C1
(
α4u+ v+β4w+ 1

)
; (3.33)

for all (u,v,w) in Σ, where C1 is a positive constant.
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