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We present a smooth augmented Lagrangian algorithm for semiinfinite programming (SIP). For
this algorithm, we establish a perturbation theorem under mild conditions. As a corollary of the
perturbation theorem, we obtain the global convergence result, that is, any accumulation point of
the sequence generated by the algorithm is the solution of SIP.We get this global convergence result
without any boundedness condition or coercive condition. Another corollary of the perturbation
theorem shows that the perturbation function at zero point is lower semi-continuous if and only
if the algorithm forces the sequence of objective function convergence to the optimal value of SIP.
Finally, numerical results are given.

1. Introduction

We consider the semi-infinite programming (SIP):

inf
{
f(x) | x ∈ X

}
, (1.1)

whereX = {x ∈ Rn | g(x, s) ≤ 0, for all s ∈ Ω}, the functions f : Rn → R and g : Rn×Rm → R
are continuously differentiable. Ω ⊂ Rm is a nonempty bounded and closed domain. In this
paper, we assume that

inf
x∈Rn

f(x) > −∞. (1.2)

This assumption is very mild, because the objective function f(x) can be replaced by ef(x) if
the assumption is not satisfied.
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Semi-infinite programming has wide applications such as engineering technology,
optimal control, characteristic value calculation, and statistical design. Many methods have
been proposed to solve semi-infinite programming (see [1–4]). As we know, the main
difficulty for solving SIP is that it has infinite constraints. If transforming the infinite
constraints into an integral function, SIP (1.1) is equivalent to a nonlinear programming with
finite constraints.

For any given x ∈ Rn and s ∈ Ω, let

[
g(x, s)

]
+ = max

{
g(x, s), 0

}
. (1.3)

Define ϕ : Rn → R by

ϕ(x) =
∫

Ω

[
g(x, s)

]
+dμ(s), (1.4)

where μ ≥ 0 is a given probability measure on Ω, that is,
∫
Ω dμ(s) = μ(Ω) = 1. Thus SIP

(1.1) can be reformulated as the following nonlinear programming (NP) with one equality
constraint:

inf
x∈Rn

{
f(x) | ϕ(x) = 0

}
. (1.5)

Then nonlinear programming (1.5) has the same optimal solution and optimal value with SIP
(1.1).

For nonlinear programming with finite equality constraints, Hestenes [5] and Powell
[6] independently proposed an augmented Lagrangian function by incorporating a quadratic
penalty term in the conventional Lagrangian function. This augmented Lagrangian function
avoids the shortcoming that the conventional Lagrangian function is only suitable for convex
function. So the augmented Lagrangian function can be applied to nonconvex optimization
problem. Later, the augmented Lagrangian function was extended to inequality constrained
optimization problems and thoroughly investigated by Rockafellar [7]. Recently, Yang and
Teo [8] and Rückmann and Shapiro [9] introduced the augmented Lagrangian function
for SIP (1.1). In [9], necessary and sufficient conditions for the existence of corresponding
augmented Lagrange multipliers were presented. [8] proposed a nonlinear Lagrangian
method and established that the sequence of optimal values of nonlinear penalty problems
converges to that of SIP (1.1), under the assumption that the level set of objective function is
bounded. In this paper, using the equivalent relation of semi-infinite programming (1.1) and
nonlinear programming (1.5), without any boundness condition, we present an augmented
Lagrangian algorithm for SIP (1.1).

We notice that although the constraints of NP (1.5) are finite, but the constraint
function is nonsmooth. Therefore, existing gradient-based optimization methods cannot be
used to solve NP (1.5) directly. To overcome this inconvenience, we have to smooth the
constraint function. For SIP (1.1), [10–13] presented semismooth Newton methods and
smoothing Newton methods. They proved that each accumulation point is a generalized
stationary point of SIP (1.1). However, at each iteration of these methods, a Hessian matrix
needs to be computed. When the size of the problem is large, computing a Hessian matrix
is very expensive. Based on exact l1 penalty function that is approximated by a family of
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smoothing functions, a smoothed-penalty algorithm for solving NP (1.5) was proposed by
[14]. They proved that if the constrained set is bounded or the objective function is coercive,
the algorithm generates a sequence whose accumulation points are solutions of SIP (1.1).

In this paper, for SIP (1.1), we present a smooth augmented Lagrangian algorithm
by smoothing the classical augmented Lagrangian function [7]. In this algorithm, we need
not have to get an exact global optimal solution of unconstraint subproblem at each
iteration. It is sufficient to search an inexact solution. It is not difficult to obtain an inexact
solution, whenever the evaluation of the integral function is not very expensive. For this
algorithm, we establish a perturbation theorem under mild conditions. As a corollary of the
perturbation theorem, we obtain the global convergence result, that is, any accumulation
point of the sequence generated by the algorithm is the solution of SIP (1.1). We get this
global convergence result without any boundedness condition or coercive condition. It is
noteworthy that the boundedness of the multiplier sequence is a sufficient condition in many
literatures about Lagrangian method (see [15–17]). However, in our algorithm, the multiplier
sequence can be unbounded. Another corollary of the perturbation theorem shows that the
perturbation function at zero point is lower semi-continuous if and only if the algorithm
forces the sequence of objective function convergence to the optimal value of SIP (1.1).

The paper is organized as follows. In the next section, we present a smooth augmented
Lagrangian algorithm. In Section 3, we establish the perturbation theorem of the algorithm.
By this theorem, we obtain a global convergence property and a sufficient and necessary
condition in which the algorithm forces the sequence of objective functions convergence to
the optimal value of SIP (1.1). Finally, we give some numerical results in Section 4.

2. Smooth Augmented Lagrangian Algorithm

Before we introduce the algorithm, some definitions and symbols need to be given. For ε ≥ 0,
we define the relaxed feasible set of SIP (1.1) as follows:

Rε =
{
x ∈ Rn |

∫

Ω

[
g(x, s)

]
+dμ(s) ≤ ε

}
. (2.1)

Then R0 is the feasible set of SIP (1.1). Let R∗
0 be the set of optimal solutions of SIP (1.1). We

assume that R∗
0 /= ∅ in this paper.

The perturbation function is defined as follows:

θf(ε) = inf
x∈Rε

f(x). (2.2)

Thus the optimal value of SIP (1.1) is

θf(0) = inf
x∈R0

f(x). (2.3)

It is easy to show that θf(·) is upper semi-continuous at the point ε = 0.
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For problem (1.5), the corresponding classical augmented Lagrangian function [7] is

L
(
x, λ, ρ

)
= f(x) +

ρ

2

[
ϕ(x) +

λ

ρ

]2
− λ2

2ρ
, (2.4)

where λ is the Lagrangian multiplier and ρ is the penalty parameter. On base of it, we
introduce a class of smooth augmented Lagrangian function:

fr
(
x, λ, ρ

)
= f(x) +

ρ

2

[
r

∫

Ω
φ

(
g(x, s)

r

)
dμ(s) +

λ

ρ

]2
− λ2

2ρ
. (2.5)

Here r is the approximate parameter.
In the following, we suppose that the continuously differentiable function φ : R → R

satisfies

(a) φ(·) is nonnegative and monotone increasing;

(b) for any t > 0, φ(t) ≥ t;

(c) limt→+∞(φ(t)/t) = 1.

It is easy to check that there are many continuously differentiable functions satisfying
conditions (a), (b), and (c). For example,

φ1(t) = log
(
1 + et

)
.

φ2(t) =

{
2et, t < 0,
t + log(1 + t) + 2, t ≥ 0.

φ3(t) =

{
et, t < 0,
t + 1, t ≥ 0.

φ4(t) =
1
2

(
t +

√
t2 + 4

)
.

(2.6)

Using conditions (a) and (c), for any t ∈ R, we have

lim
r→ 0+

rφ

(
t

r

)
= max{0, t}. (2.7)

From the above equation, under conditions (a)–(c), the smooth function fr(x, λ, ρ) approxi-
mates to the classical augmented Lagrangian function L(x, λ, ρ) as r approaches to zero, that
is,

lim
r→ 0+

fr
(
x, λ, ρ

)
= L

(
x, λ, ρ

)
= f(x) +

ρ

2

[
ϕ(x) +

λ

ρ

]2
− λ2

2ρ
. (2.8)

Based on the smooth augmented Lagrangian function fρ(x, β, r), we present the
following smooth augmented Lagrangian algorithm.
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Algorithm 2.1. Set x0 ∈ Rn, r0 > 0, ε0 > 0, ρ0 > 0, λ0 ∈ (0,min{1/√r0, 1/
√
ε0}], k := 0.

Step 1. Compute

xk ∈ argmin
x∈Rn

frk
(
x, λk, ρk

)
. (2.9)

Otherwise, seek on inexact global optimal solution xk satisfying

frk
(
xk, λk, ρk

) ≤ inf
x∈Rn

frk
(
x, λk, ρk

)
+ εk. (2.10)

Step 2. Set rk+1 = (1/2)rk, εk+1 = (1/2)εk,

ρk+1 =

{
ρk, xk ∈ Rεk ;
2ρk, xk /∈ Rεk ,

λk+1 ∈
(
0,min

{
1√
rk+1

,
1√
εk+1

}]
.

(2.11)

Step 3. Set k := k + 1, go back step 1.

Since f(x) is bounded below and φ(·) is nonnegative, an inexact solution satisfying
(2.10) always exists. Thus Algorithm 2.1 is feasible.

3. Convergence Properties

In this section, by using a perturbation theorem of Algorithm 2.1, we will obtain a global
convergence property, a sufficient and necessary condition that Algorithm 2.1 forces the
sequence of objective functions convergence to the optimal value of SIP (1.1). To prove the
perturbation theorem, we first give the following two lemmas.

Let Ω+(x) = {s ∈ Ω | g(x, s) > 0}, Ω0(x) = {s ∈ Ω | g(x, s) = 0}, Ω−(x) = {s ∈ Ω |
g(x, s) < 0}.

Lemma 3.1. Suppose that the point sequence {xk} is generated by Algorithm 2.1. Then for any ε > 0,
there exists a positive integer k0 such that xk ∈ Rε, for all k > k0.

Proof.

Case 1. When k → +∞, ρk tends to a finite number. FromAlgorithm 2.1, there exists a positive
integer N1 such that xk ∈ Rεk for all k > N1. Notice that εk → 0, so for any ε > 0, there exists
a positive integer N2 such that εk < ε for all k > N2. Therefore, when k > max{N1,N2}, we
have xk ∈ Rεk ⊆ Rε.

Case 2. When k → +∞, ρk → +∞. We suppose that the conclusion does not hold. Then for
ε > 0, there exists an infinite subsequenceK ⊆ N = {1, 2, 3, . . .} such that xk /∈ Rε for all k ∈ K,
that is,

∫

Ω

[
g(xk, s)

]
+dμ(s) > ε. (3.1)
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Since εk → 0, for the above ε > 0, there exists a positive integer N3 such that εk < ε for all
k > N3. Then using (2.10) in Algorithm 2.1, we have

frk
(
xk, λk, ρk

) ≤ inf
x∈Rn

frk
(
x, λk, ρk

)
+ ε. (3.2)

Therefore by (3.1), (3.2), and φ(t) satisfying (a)-(b), for any k ∈ K, k > N3, we derive that

inf
x∈Rn

frk
(
x, λk, ρk

)
+ ε ≥ frk

(
xk, λk, ρk

)

= f(xk) +
ρk
2

[
rk

∫

Ω
φ

(
g(xk, s)

rk

)
dμ(s) +

λk
ρk

]2
− λ2

k

2ρk

≥ f(xk) +
ρk
2

[

rk

∫

Ω+(xk)
φ

(
g(xk, s)

rk

)
dμ(s) +

λk
ρk

]2

− λ2
k

2ρk

≥ f(xk) +
ρk
2

[∫

Ω+(xk)
g(xk, s)dμ(s) +

λk
ρk

]2

− λ2k
2ρk

≥ f(xk) +
ρk
2

[
ε +

λk
ρk

]2
− λ2

k

2ρk

≥ f(xk) +
ρk
2
ε2.

(3.3)

Note that {f(xk)} is bounded below and ρk → +∞(k → +∞), then we can obtain that

f(xk) +
ρk
2
ε2 −→ +∞, (k ∈ K, k −→ +∞), (3.4)

that is, infx∈Rnfrk(x, λk, ρk) → +∞(k ∈ K, k → +∞). However, on the other hand, since
R0 /= ∅, we can choose x ∈ R0; by the choice of rk, ρk, λk in Algorithm 2.1 and the properties of
φ, we obtain that

inf
x∈Rn

frk
(
x, λk, ρk

) ≤ frk
(
x, λk, ρk

)

= f(x) +
ρk
2

[
rk

∫

Ω
φ

(
g(x, s)

rk

)
dμ(s) +

λk
ρk

]2
− λ2k
2ρk

≤ f(x) +
ρk
2

[
rk

∫

Ω
φ(0)dμ(s) +

λk
ρk

]2
− λ2

k

2ρk

= f(x) +
ρk
2
r2k
(
φ(0)μ(Ω)

)2 + λkrkφ(0)μ(Ω)

≤ f(x) + ρ0r
2
0
(
φ(0)μ(Ω)

)2 +
√
r0φ(0)μ(Ω).

(3.5)

This indicates that infx∈Rnfrk(x, λk, ρk) has an upper bound. It is in contradiction with
infx∈Rnfrk(x, λk, ρk) → +∞(k ∈ K, k → +∞).

By using Lemma 3.1, we have the following Lemma 3.2.
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Lemma 3.2. Suppose that the point sequence {xk} is generated by Algorithm 2.1. Then for every
accumulation point x∗ of {xk}, one has x∗ ∈ R0.

Theorem 3.3. Suppose that the sequence {xk} is generated by Algorithm 2.1, then

(i) limk→∞f(xk) = limε→ 0+θf(ε);

(ii) limk→∞frk(xk, λk, ρk) = limε→ 0+θf(ε);

(iii) limk→∞(ρk/2)[rk
∫
Ω φ(g(xk, s)/rk)dμ(s) + λk/ρk]

2 − λ2k/2ρk = 0.

Proof. Since θf(ε) is monotonically decreasing with respect to ε > 0 and has below bound,
we know limε→ 0+θf(ε) exists and is finite. By Algorithm 2.1, we have εk ↓ 0. Then

lim
k→+∞

θf(εk) = lim
ε→ 0+

θf(ε). (3.6)

Taking δk > 0 and δk → 0(k → +∞), by the definition of infimum, there exists zk ∈ Rεk such
that

f(zk) ≤ θf(εk) + δk. (3.7)

Since zk ∈ Rεk , that is,
∫
Ω[g(zk, s)]+dμ(s) ≤ εk.

On the other hand, by Lemma 3.1, for any ε > 0, when k is sufficiently large, we have

xk ∈ Rε. (3.8)

Since φ(t) satisfies conditions (a) and (c), we obtain

lim
t→+∞

φ(t) − φ(0)
t

= lim
t→+∞

φ(t)
t

= 1, lim
t→ 0+

φ(t) − φ(0)
t

= lim
t→ 0+

φ′(t) = φ′(0). (3.9)

Therefore, there exists M > 0 such that

φ(t) ≤ Mt + φ(0), (3.10)
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for any t ≥ 0. As stated previously, by the choice of rk, εk, ρk, and λk in Algorithm 2.1, (3.7),
(3.8), and (3.10) derive that for any ε > 0,

θf(ε) ≤ f(xk)

≤ f(xk) +
ρk
2

[
rk

∫

Ω
φ

(
g(xk, s)

rk

)
dμ(s) +

λk
ρk

]2
− λ2

k

2ρk

≤ inf
x∈Rn

frk
(
x, λk, ρk

)
+ εk

≤ f(zk) +
ρk
2

[
rk

∫

Ω
φ

(
g(zk, s)

rk

)
dμ(s) +

λk
ρk

]2
− λ2

k

2ρk
+ εk

≤ θf(εk) + δk +
ρk
2

[
rk

∫

Ω
φ

(
g(zk, s)

rk

)
dμ(s) +

λk
ρk

]2
− λ2

k

2ρk
+ εk

≤ θf(εk) + δk +
ρk
2

[
Mεk + rkφ(0)μ(Ω) +

λk
ρk

]2
− λ2k
2ρk

+ εk

≤ θf(εk) + δk +
ρk
2
(
max{rk, εk}

(
M + φ(0)μ(Ω)

))2

+ λk max{rk, εk}
(
M + φ(0)μ(Ω)

)
+ εk

≤ θf(εk) + δk +
ρ0
2

max{r0, ε0}
(
M + φ(0)μ(Ω)

)2 max{rk, εk}

+
(
M + φ(0)μ(Ω)

)
max{√rk,

√
εk} + εk.

(3.11)

From the above inequalities and (3.6), noticing that rkεk → 0(k → ∞), for any ε > 0, we
have

θf(ε) ≤ lim inf
k→+∞

f(xk)

≤ lim sup
k→+∞

f(xk)

≤ lim sup
k→+∞

{

f(xk) +
ρk
2

[
rk

∫

Ω
φ

(
g(xk, s)

rk

)
dμ(s) +

λk
ρk

]2
− λ2k
2ρk

}

≤ lim
k→+∞

θf(εk)

= lim
ε→ 0+

θf(ε).

(3.12)

Then limε→ 0+θf(ε) = limk→+∞f(xk) = lim supk→+∞{f(xk) +
ρk
2
[rk

∫
Ω φ(g(xk, s)/rk)dμ(s) +

λk/ρk]
2 − λ2

k
/2ρk}. So the conclusions (i)–(iii) hold.

Now, we prove the global convergence of Algorithm 2.1.
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Corollary 3.4. Suppose that the point sequence {xk} is generated by Algorithm 2.1. Then every
accumulation point of {xk} is the optimal solution of the problem (1.1).

Proof. Let x∗ be an accumulation point of {xk}; from Lemma 3.2, we have

x∗ ∈ R0. (3.13)

By the conclusion (i) of Theorem 3.3 and (3.13), we obtain

lim
ε→ 0+

θf(ε) = lim
k→∞

f(xk) = f(x∗) ≥ θf(0). (3.14)

Then we get f(x∗) = θf(0), because (3.14) and θf(ε) are upper semi-continuous at the point
ε = 0.

By using Theorem 3.3, we have the following Corollary 3.5.

Corollary 3.5. limk→∞f(xk) = θf(0) if and only if θf(ε) is lower semi-continuous at the point
ε = 0.

4. Numerical Results

To give some insight into the behavior of the algorithm presented in this paper. It is imple-
mented in Matlab 7.0.4 and runs are made on AMD Athlon(tm) 64 × 2 Dual Core Processor
4800+ with CPU 2.50 GHz and 1.87GB memory. Tables 1 and 2 show the computational
results of the corresponding problems with the following items:

k : number of iterations;

x0: starting point;

φ(t): smoothing function;

xk: the final iteration point;

λk: the final Lagrangian multiplier;

f(xk): the function value of f(x) at the final xk.

The parameters used in the Algorithm 2.1 are specified as follows:

r0 = 1, ε0 = 1, ρ0 = 1, λ0 = 1,

λk+1 = min
{
λk + ρkrk

∫

Ω
φ

(
g(xk, s)

rk

)
dμ(s), 103

}
.

(4.1)

Example 4.1 (see [18]). Consider the following:

min 1.21 exp(x1) + exp(x2)

s.t. s − exp(x1 + x2) ≤ 0, ∀s ∈ [0, 1].
(4.2)
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Table 1: Numerical results of Example 4.1.

k φ(t) xk λk f(xk)
26 log (1 + et) (−0.0968, 0.0938) 367.2453 2.1982
30 (1/2)(t +

√
t2 + 4) (−0.0959, 0.0947) 923.9.40 2.1993

19 et (−0.0953, 0.0953) 6.1129 2.1999

Table 2: Numerical results of Example 4.2.

n k φ(t) xk λk f(xk)

3 17 log (1 + et) (0.0839, 0.4494, 1.0105) 18.5016 0.6472
3 16 (1/2)(t +

√
t2 + 4) (0.0839, 0.4494, 1.0108) 18.5869 0.6472

3 16 et (0.0873, 0.4248, 1.0460) 12.3942 0.6484

6 16 log (1 + et) (0.00, 1.03, −0.25, 1.24,
−1.39, 0.94) 5.3234 0.6161

6 17 (1/2)(t +
√
t2 + 4) (−0.00, 1.03, −0.25, 1.23,

−1.39, 0.94) 7.5705 0.6161

6 16 et
(−0.00, 1.02, −0.25, 1.24,

−1.41, 0.95) 4.1742 0.6161

8 17 log (1 + et) (−0.00, 1.00, −0.06, 0.77,
−1.49, 2.77, −2.41, 0.96) 4.3033 0.6157

8 18 (1/2)(t +
√
t2 + 4) (−0.00, 1.00, −0.06, 0.77,

−1.47, 2.78, −2.40, 0.96) 7.0902 0.6157

8 16 et
(0.00, 1.00, −0.06, 0.78,
−1.49, 2.78, −2.42, 0.97) 3.3116 0.6158

We choose the starting point x0 = (0, 0). This example has the optimal solution x∗ =
(− ln 1.1, ln 1.1).

Example 4.2 (see [18]). Consider the following:

min
n∑

i=1

xi/i

s.t. tan s −
n∑

i=1

xis
i−1 ≤ 0, ∀s ∈ [0, 1],

(4.3)

for n = 3, 6, and 8. We choose zero vectors as the starting points.

Throughout the computational experiments, we use trust region method for solving
an unconstrained optimization subproblem at each step. For the corresponding trust region
subproblem, we directly use the trust function in Matlab toolbox. The test results of
Example 4.1 are summarized in Table 1. We test the three cases for φ(t) = log(1 + et),
φ(t) = (1/2)(t +

√
t2 + 4) and φ(t) = et, which are, respectively, used as the smoothing

approximation functions. k denotes the number of the iteration, λk denotes the approximate
Lagrangian multiplier at the final iteration, and xk and f(xk) are the approximate solution
and the objective function at the final iteration. For Example 4.2, we test the results when
n = 3, n = 6, and n = 8 in Table 2. Numerical results demonstrate that augmented Lagrangian
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algorithm established in this paper is a practical and effective method for solving semi-
infinite programming problem.
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