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Harmony search (HS) method is an emerging metaheuristic optimization algorithm. In this
paper, an improved harmony search method based on differential mutation operator (IHSDE)
is proposed to deal with the optimization problems. Since the population diversity plays an
important role in the behavior of evolution algorithm, the aim of this paper is to calculate the
expected population mean and variance of IHSDE from theoretical viewpoint. Numerical results,
compared with the HSDE, NGHS, show that the IHSDE method has good convergence property
over a test-suite of well-known benchmark functions.

1. Introduction

Most optimization algorithms are based on numerical linear and nonlinear programming
methods that require substantial gradient information and usually seek to improve the
solution in the neighborhood of an initial point. These algorithms, however, reveal a limited
approach to complicated real-world optimization problems because gradient is often difficult
to find out or does not exist. What is more, if there is more than one local optimum in
the problem, the result may depend on the selection of the starting point, and the obtained
optimal solution may not necessarily be the global optimum.
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Recently, a new class of metaheuristics, named harmony search (HS), has been
developed. The HS algorithm proposed in [1] has been developed in an analogy with music
improvisation process where musicians in an ensemble continue to polish their pitches in
order to obtain better harmony. Jazz improvisation seeks to find musically pleasing harmony
similar to the optimum design process which seeks to find optimum solution. The pitch of
each musical instrument determines the aesthetic quality, just as the objective function value
is determined by the set of values assigned to each decision variable [2]. In addition, HS
uses a stochastic random search instead of a gradient search so that derivative information is
unnecessary.

HSmay be viewed as a simple real-coded genetic algorithm (GA), since it incorporates
many important features of GA like mutation, recombination, and selection. HS has
been successfully applied to a wide variety of practical optimization problems like
designing controller [3], economic dispatch problem [4, 5], optimal power flow problem
[6], neural networks [7], medical diagnosis [8], broadcast scheduling in packet radio
networks [9], university course timetabling [10], and other engineering optimization field
[11].

Similar to the GA and particle swarm algorithms, the HS method is a random search
technique. It does not require any prior domain knowledge, such as the gradient information
of the objective functions. Unfortunately, empirical study has shown that the original HS
method sometimes suffers from a slow search speed, and it is not suitable for handling the
multimodal problems [2].

Recently, Omran and Mahdavi tried to improve the performance of HS by incor-
porating some techniques from swarm intelligence. The new variant called by them as
global best harmony search (GHS) [12] reportedly outperformed three other HS variants
over the benchmark problems. Chakraborty et al. proposed an improved harmony search
algorithm with differential mutation operator [13]. Gao et al. proposed modified harmony
search methods for unimodal and multimodal optimization [14]. Wang et al. proposed self-
adaptive harmony search algorithm for optimization [15]. Pan et al. proposed a self-adaptive
global best harmony search algorithm for continuous optimization problems [16]. Zou et al.
proposed a novel global harmony search algorithm (NGHS, [17]). More latest HS algorithm
can be found in [18, 19].

To overcome the shortcoming of premature convergence and stagnation, in this paper,
we replace the pitch adjustment operation in classical HS (CHS) with a mutation strategy
borrowed from the realm of the differential evolution (DE) algorithms, and we use

xnew
i = x

j

i + F × (xr1
i − xr2

i

)
, (1.1)

where F is chosen to be a uniformly distributed random variable between 0.6 and 1.0,
F ∼ U[0.6, 1] instead of F ∼ U[0, 1] in [13], and j, r1, r2 are randomly selected with uniform
distribution from the set {1, 2, . . . ,HMS}, j /= r1 /= r2. The new mutation strategy is inspired by
Chakraborty’s [13], and S. Das’s [19]work, especially in Chakraborty’s work [13], where the
author theoretically showed that the harmony search based on differential mutation scheme
(HSDE) has greater explorative power than the classical HS with pitch adjustment operation.

The new algorithm proposed in this paper, called IHSDE (improved harmony search
methods based on differential mutation operator), has been extensively compared with the
HSDE, and the classical HS. Mathematical analysis will show that the IHSDE, under certain
conditions, possesses an increasing population variance (with generation) as compared to
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HSDE. The numerical experiments show that the proposed algorithm is effective in dealing
with a test suite of well-known benchmark functions.

The rest of the paper is organized in the following way. Section 2 briefly outlines
the classical HS. Section 3 presents IHSDE method based on differential mutation operator
and analyzes the expected population mean and variance of IHSDE in terms of theory.
Effectiveness of IHSDE method is demonstrated in Section 4 by solving well-known
benchmarks. Section 5 concludes the paper.

2. Classical Harmony Search Algorithm

2.1. Harmony Search Algorithm Principles

Current metaheuristic algorithms imitate natural phenomena, and evolution in evolutionary
algorithms. HS algorithm was conceptualized using the musical process of searching for
a perfect state of harmony. In music improvisation, each player sounds any pitch within
the possible range, together making one harmony vector. If all the pitches make a good
harmony, that experience is stored in each player’s memory, and the possibility to make a
good harmony is increased next time. Similarly, in engineering optimization, each decision
variable initially chooses any value within the possible range, together making one solution
vector. If all the values of decision variables make a good solution, that experience is stored
in each variable’s memory, and the possibility to make a good solution is also increased next
time. Figure 1 shows the details of the analogy betweenmusic improvisation and engineering
optimization.

The HS algorithm does not require initial values for the decision variables.
Furthermore, instead of a gradient search, the HS algorithm uses a stochastic random search
that is based on the harmony memory considering rate and the pitch-adjusting rate so
that derivative information is unnecessary. Compared to earlier metaheuristic optimization
algorithms, the HS algorithm imposes fewer mathematical requirements and can be easily
adopted for various types of engineering optimization problems.

2.2. Steps for Classical Harmony Search Algorithm

The steps in the procedure of standard harmony search algorithm are as follows:
Step 1 (Initialize the problem and algorithm parameters). The optimization problem is
specified as follows.

Minimize f(x) subject to xi ∈ Xi, i = 1, 2, . . . ,N, (2.1)

where f(x) is an objective function; x is the set of each decision variable xi; N is the number
of decision variables; Xi is the set of the possible range of values for each decision variable,
Xi : xi

L ≤ Xi ≤ xi
U. The HS algorithm parameters are also specified in this step. These are the

harmony memory size (HMS), or the number of solution vectors in the harmony memory;
the harmony memory (HM); harmony memory considering rate (HMCR); pitch-adjusting
rate (PAR); the number of improvisations (Tmax).

The harmony memory (HM) is a memory location where all the solution vectors (sets
of decision variables) are stored. HMCR and PAR are parameters that are used to improve
the solution vector.
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Figure 1: Analogy between music improvisation and engineering optimization.

Step 2 (Initialize the harmony memory). In Step 2, the HM matrix is filled with as many
randomly generated solution vectors as the HMS:
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. (2.2)

Step 3 (Improvise a new harmony). A new harmony vector, x′ = (x′
1, x

′
2, . . . , x

′
N), is generated

based on three rules: (a) memory consideration, (b) pitch adjustment, and (c) random
selection. Generating a new harmony is called “improvisation.” In thememory consideration,
the value of the first decision variable x′

1 for the new vector is chosen from any of the values
in the specified HM with a probability HMCR. The HMCR is the rate of choosing one value
from the historical values stored in the HM, while (1-HMCR) is the rate of randomly selecting
one value from the possible range of values:

x′
i =

⎧
⎨

⎩
x′
i ∈
(
x1
i , x

2
i , . . . , x

HMS
i

)
, if rand < HMCR,

x′
i ∈ Xi, otherwise,

(2.3)

where rand is a uniformly distributed random variable between 0 and 1.
Every component obtained by the memory consideration is examined to determine

whether it should be pitch adjusted. This operation uses the PAR parameter, which is the rate
of pitch adjustment as follows.

Pitch adjusting decision for x′
i:

x′
i =

{
x′
i ± rand × bw, if rand < PAR,

x′
i, otherwise,

(2.4)

where bw is an arbitrary distance bandwidth.
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In Step 3, HM consideration, pitch adjustment, or random selection is applied to each
variable of the new harmony vector in turn.
Step 4 (Update harmony memory). If the new harmony vector x′ = (x′

1, x
′
2, . . . , x

′
N) is better

than the worst harmony in the HM, the new harmony is included in the HM and the existing
worst harmony is excluded from the HM.
Step 5 (Check stopping criterion). If the stopping criterion (Tmax) is satisfied, computation is
terminated. Otherwise, Steps 3 and 4 are repeated.

In the next section, we employ the differential mutation operator to improve the fitness
of all the members in the HS memory so that the overall convergence speed of the original
HS method can be accelerated.

3. The Improved HS Based on Differential Mutation Operator

Experiments with the CHS algorithm over the standard numerical benchmarks show that
the algorithm suffers from the problem of premature and/or false convergence, slow
convergence especially over multimodal fitness landscape.

To circumvent these problems of premature, Chakraborty et al. proposed har-
mony search algorithm with differential mutation operator (HSDE). They replaced the
pitch adjustment operation (2.4) in classical HS with a mutation strategy borrowed
from the realm of the DE algorithms [20]. The mutation strategy has been presented
as

xnew
i = x

j

i + F × (xr1
i − xr2

i

)
, (3.1)

where j, r1, r2 ∈ U{1, 2, . . . ,HMS}, j /= r1 /= r2, and the scale factor F is chosen
to be a uniformly distributed random variable between 0 and 1, that is, F ∼
U[0, 1].

In what follows, we reset F is chosen to be a uniformly distributed random variable
between 0.6 and 1.0, F ∼ U[0.6, 1]. This improved harmony search algorithmwith differential
mutation operator will be referred to as IHSDE. In the following, wewill show that the IHSDE
gives better performance than the HSDE algorithm in theory and experiment.

3.1. IHSDE Algorithm

The pseudocode of IHSDE is described in Algorithm 1. Every variable in the HM needs to go
through the above DE mutation refinement procedure. Thus, the resulting HM members are
expected to have better fitness than that of the original ones. This strategy can also overcome
the premature shortcoming of the regular HS method.

3.2. Theoretical Analyses of the Expected Population Variance

Theoretical analyses of the properties of HS algorithms are very important to understand
their search behaviors and to develop more efficient algorithms [13, 19]. Compared to the
plethora of works concerning the empirical study of parameter selection and tuning process
in HS [14–18], not much research has so far been devoted to theoretically analyze the
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Procedure IHSDE algorithm
Initiate parameters
Initialize HM
While (not termination)

For i = 1 to Ndo //N denotes the number of decision variables
if ( rand < HMCR) //memory consideration
Select one harmony from HM randomly: xnew = xj , j ∈ U{1, 2, . . . ,HMS};
Execute difference variation operation for the selected harmony:
xnew
i = x

j

i + F × (xr1
i − xr2

i ), where F ∼ U[0.6, 1], r1, r2 ∈ U{1, 2, . . . ,HMS}, j /= r1 /= r2.
else
xnew
i = xi

L + rand × (xi
U − xi

L) //random selection
end if

End for
Update harmony memory HM // if applicable
End while

End procedure

Algorithm 1: Pseudocode of the IHSDE Algorithm.

search mechanism and convergence properties of HS, and this area remains largely open
to prospective future research.

The evolution of the expected population variance over generations provides a
measure of the explorative power of the algorithm. In the following, we will estimate
the expected mean and variance of the population obtained by applying mutation
operator.

Our ideas are as follows, firstly we find an analytical expression for the pop-
ulation expected variance, and then we compare the expected population variance of
IHSDE with HSDE to show that the IHSDE algorithm possesses greater explorative
power.

In HS type algorithms, since each dimension is perturbed independently, without loss
of generality, we can make our analysis for single-dimensional population members.

Let us consider a population of scalars x = {x1, x2, . . . , xm} with elements xk ∈ R,
k = 1, 2, . . . , m. The variance of this population is given by

Var(x) =
1
m

m∑

i=1

(xi − x)2 = x2 − x2, (3.2)

where x = (1/m)
∑m

i=1 xi is population mean and x2 = (1/m)
∑m

i=1 xi
2 is quadratic population

mean.
If the elements of the population are perturbed with some random numbers or

variables, Var(x) will be a random variable, and E[Var(x)] will be a measure of the
explorative power. In the following discussion, we always suppose Var(x) > 0.

Lemma 3.1. Let x = {x1, x2, . . . , xm} be the current population of HS, y be an intermediate vector
obtained after random selection with harmony memory consideration, and z the vector obtained after
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y by replacing the pitch adjustment operation with a mutation operator (3.1) borrowed from DE
algorithms in classical HS. Let w = {w1, w2, . . . , wm} be the final population after selection. If we let

p = harmonic memory consideration probability (HMCR) , (3.3)

the allowable range for the new values of x is {xmin, xmax} where xmin = −a, xmax = a, and the
required random numbers are continuously uniformly distributed random variable between 0 and 1
except for random variables F, then

E[Var(w)] =
2
m
F2 Var(x) +

m − 1
3m2

a2(1 − p
)

+
1
m2

[
(m − 1)p + (m − 1)2

]
x2 − m − 1

m

(
1
m
px +

m − 1
m

x

)2

,

(3.4)

where F2 = E(F2).

Proof. Since x = {x1, x2, . . . , xm}=HM is the current population of HS and y is an intermediate
vector obtained after random selection with harmony memory consideration, that is,

y =

{
xl, with probability p from current population {x1, x2, . . . , xm},
xr , with probability

(
1 − p

)
allowable range{xmin, xmax},

(3.5)

where l ∈ {1, 2, . . . , m} and xr is a new random variable in allowable range {xmin, xmax}.
So,

E(xl) = x, E
(
xl

2
)
= x2. (3.6)

According to [13, 19], we have

E(xr) = 0, E
(
xr

2
)
=

a2

3
. (3.7)

Using (3.6), we can obtain the following relations:

E
(
y
)
= E(xl)p + E(xr)

(
1 − p

)
= px;

E
(
y2
)
= E
(
xl

2
)
p + E

(
xr

2
)(

1 − p
)
= px2 +

a2

3
(
1 − p

)
.

(3.8)

Now, z is the vector obtained after mutating y. It has the following structure:

z = y + F × (xr1 − xr2). (3.9)
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Let F = E(F),F2 = E(F2), xr1 and xr2 , are two randomly chosen members from x =
{x1, x2, . . . , xm} such that r1, r2 ∈ {1, 2, . . . , m}, r1 /= r2.

Thus,

E(xr1) = E(xr2) = x; E
(
x2
r1

)
= E
(
x2
r2

)
= x2. (3.10)

According to [13], we have

E(xr1xr2) =
1

m(m − 1)

[
(mx)2 −mx2

]
. (3.11)

Therefore,

E(z) = E
(
y
)
+ E(F) × E(xr1 − xr2) = E

(
y
)
+ F × [E(xr1) − E(xr2)] = E

(
y
)
= px,

E
(
z2
)
= E
(
y + F × (xr1 − xr2)

)2

= E
[
y2 + F2 ×

(
x2
r1 + x2

r2 − 2xr1xr2

)
+ 2F × y(xr1 − xr2)

]

= E
[
y2
]
+ F2 ×

(
E
[
x2
r1

]
+ E
[
x2
r2

]
− 2E[xr1xr2]

)
+ 2F × E

[
y
]
(E[xr1] − E[xr2])

= E
[
y2
]
+ 2F2 m

m − 1

(
x2 − x2

)
.

(3.12)

Now, w = {w1, w2, . . . , wm} is the final population. Each element wk of the final
population may be represented by the following:

wk =

⎧
⎪⎪⎨

⎪⎪⎩

z, with probability
1
m
,

xk, with probability
(
1 − 1

m

)
.

(3.13)

Thus,

E(wk) = E(z)
1
m

+ E(xk)
(
1 − 1

m

)
=

1
m
px +

m − 1
m

x,

E
(
wk

2
)
= E
(
z2
) 1
m

+ E
(
xk

2
)(

1 − 1
m

)
.

(3.14)
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Let w = 1/m
∑m

k=1 wk and w2 = 1/m
∑m

k=1 wk
2 represent the population mean and

quadratic population mean of the final target population, respectively. Then,

E
(
w2
)
= E

(
1
m

m∑

k=1

wk

)2

=
1
m2

[
mE
(
wk

2
)
+m(m − 1)E2(wk)

]
;

E
(
w2
)
= E

(
1
m

m∑

k=1

wk
2

)

=
1
m

(
m∑

k=1

E
(
wk

2
))

=
1
m

(
mE
(
wk

2
))

= E
(
wk

2
)
.

(3.15)

Therefore, the variance of final population w = {w1, w2, . . . , wm} is given as

Var(w) = w2 −w2, (3.16)

and its expected population variance

E[Var(w)]

= E
[
w2 −w2

]
= E
[
w2
]
− E
(
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)

= E
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2
)
− 1
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2
)
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m
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2
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E
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(3.17)
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Remark 3.2. The conclusion in [13] (Theorem 1) is incorrect. In this paper, we give the correct
expression for the population expected variance.

The main analytical result is expressed in the form of the following theorem.

Theorem 3.3. Let x = {x1, x2, . . . , xm}, be the current population of HS. Giving the same values
m, p, here m and p represent the harmony memory size (HMS) and harmony memory considering
rate (HMCR), respectively. The intergeneration population expected variance of IHSDE algorithm is
greater than HSDE.

Proof. In HSDE, F is chosen to be a uniformly distributed random variable between 0 and 1,
and in IHSDE, F is chosen to be a uniformly distributed random variable between 0.6 and
1. For convenience, let F1 ∼ U[0, 1], and the intergeneration expected variance of HSDE is
EHSDE[Var(w)]. Let F2 ∼ U[0.6, 1], and the intergeneration expected variance of IHSDE is
EIHSDE[Var(w)].

Since

F1
2 = E

(
F1

2
)
= F1

2
+ Var(F1) = 0.52 +

(1 − 0)2

12
=

1
3
= 0.3333,

F2
2 = E

(
F2

2
)
= F2

2
+ Var(F2) = 0.82 +

(1 − 0.6)2

12
= 0.6533.

(3.18)

Thus,

EIHSDE[Var(w)] − EHSDE[Var(w)] =
2
m

(
F2

2 − F1
2
)
Var(x) > 0. (3.19)

Remark 3.4. Improper parameters F can lead to problem of premature and/or false
convergence. Usually, F ∈ [0, 2]. If F is chosen too small, it gets more difficult to escape local
optima. A larger F (or F2) increases the probability (or the population expected variance of
IHSDE) for escaping a local optimum. However, for F > 1, the convergence speed decreases.
It is more difficult to converge for a population when the perturbation is larger than the
distance between two members. Thus, though standard Gaussian distribution N(0, 1) has
much larger F2 = E(F2) = 1 than that of F2 ∼ U[0.6, 1], it cannot get better convergence. In
[21], Mperle et al. suggest that a good initial choice for the amplification factor should be
F = 0.6. If one suspects that with this setting only a local optimum is found, then F should be
increased. This fully shows that our choosing F2 ∼ U[0.6, 1] is appropriate.

The above mathematical analysis show that the IHSDE possesses an increasing
population variance as compared to HSDE. This ensures that the explorative power of
IHSDE is on average greater than that of HSDE, which in turn results into better accuracy
of theIHSDE algorithm.
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In the following section, we give some numerical experiments over standard test
functions.

4. Computational Results

The effectiveness of the IHSDE algorithm has been evaluated on a test suite of well-
known benchmark functions (Table 1) [14–16, 22, 23]. In Table 1, n represents the number
of dimensions. Here, n = 5, except for function F12 ∼ F16, where n = 2. The global minima of
all the above functions are at F(x∗) = 0, except for F4, F10, F13 and F14. Table 1 summarizes
the initialization and search ranges used for these functions.

All the experiments were performed on Windows XP 64 System running on an Hp
desktop with Intel(R) Xeon(R) 4 × 2.4GHz and 6GB RAM, and the codes were written in
MATLAB R2008a. Simulations were carried out to compare the optimization (minimization)
capabilities of the proposed method (IHSDE) with respect to (a) HSDE [13], (b) classical
HS (CHS) [1, 2], (c) NGHS [17]. To make the comparison fair, the populations for all the
competitor algorithms (for all problems tested) were initialized using the same random
seeds. TheHS-variant algorithm parameters were set the same parameters: harmonymemory
size HMS = 10, harmony memory consideration rate HMCR = 0.8, and the number of
improvisations Tmax = 10000. In HSDE, F is chosen to be a uniformly distributed random
variable between 0 and 1, and in IHSDE F is chosen to be a uniformly distributed random
variable between 0.6 and 1, F = 0.6 + 0.4∗rand, here rand is a uniformly distributed
random variable between 0 and 1. In classical HS, we set pitch-adjusting rate PAR =
0.4.

To judge the accuracy of different algorithms, 50 independent runs of each of the
four algorithms were carried out and the best, the mean, the worst fitness values, and the
standard deviation (Std) were recorded. Table 2 compares the algorithms on the quality of
the optimum solution.

Figure 2 shows the convergence and its boxplot of the best fitness in the population
for the different algorithms (CHS, HSDE, IHSDE, NGHS) for all benchmark functions. The
values plotted for every generation are averaged over 50 independent runs. The boxplot is the
best fitness in the final population for the different algorithms (CHS, HSDE, IHSDE, NGHS)
over 50 independent runs. We can see that the behavior of the two former algorithms (CHS
and HSDE) is similar for all benchmark functions. From the graphical point of view, the
classical HS algorithm is clearly the worst algorithm for most benchmark problems, while
the IHSDE outperforms HSDE in most cases except for F2 and F7. Compared with the two
former algorithms (CHS, HSDE), for most test functions, IHSDE can achieve much better
optimization results within the same iterations, and IHSDE can reach or exceed the advanced
level of the NGHS in most cases.

In order to accurately give search process of each algorithm, we set the same
parameters, and run CHS, HSDE, IHSDE method, respectively, for multimodal function F16.
Figure 3 shows iterations for three methods.

Remark 4.1. We omitted plots for all the other functions (F12-F15) to save space and also in
consideration of the fact that they display more or less the same trend.

Experimental results on benchmark functions show that the IHSDE method can
outperform the other methods. From Figure 3, we confirm that the IHSDE method has better
ability of global search, and not easily fall in local optimum.
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Table 2: The statistical results for 50 runs tested on sixteen benchmark functions.

Function name Algorithm Best Mean Worst Std

F1
Ackley function

CHS 2.8576E − 02 1.5581E − 01 3.9193E − 01 7.6256E − 02

HSDE 8.8818E − 16 2.5301E − 03 2.8793E − 02 6.2847E − 03

IHSDE 9.0683E − 13 6.7733E − 11 1.0303E − 09 1.5937E − 10

NGHS 4.4409E − 15 6.3594E − 15 1.5099E − 14 2.6087E − 15

F2
Dixon and price function

CHS 8.8618E − 06 1.2597E − 01 6.1434E − 01 1.5982E − 01

HSDE 2.5471E − 08 2.3591E − 01 6.6820E − 01 2.7753E − 01

IHSDE 1.6000E − 13 1.8755E − 01 6.6667E − 01 3.0089E − 01

NGHS 5.0758E − 18 1.8658E − 01 6.6667E − 01 3.0222E − 01

F3
Levy function

CHS 6.8353E − 07 3.2798E − 04 2.2443E − 03 4.5606E − 04

HSDE 1.4998E − 32 1.0481E − 06 2.3110E − 05 3.8915E − 06

IHSDE 2.2192E − 27 8.1646E − 22 1.2126E − 20 2.2009E − 21

NGHS 1.4998E − 32 1.4998E − 32 1.4998E − 32 1.3823E − 47

F4
Michalewics function

CHS −4.6877E+00 −4.6859E+00 −4.6745E+00 2.4486E − 03

HSDE −4.6877E+00 −4.6873E+00 −4.6778E+00 1.4840E − 03

IHSDE −4.6877E+00 −4.6877E+00 −4.6876E+00 3.1708E − 06

NGHS −4.6877E+00 −4.6615E+00 −4.4959E+00 4.4690E − 02

F5
Perm function

CHS 3.8305E − 01 3.0003E + 02 2.7696E + 03 5.6432E + 02

HSDE 1.1911E − 02 1.3767E + 02 4.9112E + 03 6.9678E + 02

IHSDE 7.7908E − 02 1.1573E + 02 1.1205E + 03 1.8330E + 02

NGHS 2.5956E − 02 3.0299E + 01 3.0618E + 02 6.7526E + 01

F6
Powell function

CHS 4.9848E − 06 1.5997E − 02 1.1282E − 01 1.8387E − 02

HSDE 2.3029E − 07 5.6853E − 03 3.3194E − 02 7.9504E − 03

IHSDE 2.7878E − 07 9.6453E − 06 5.0805E − 05 1.2526E − 05

NGHS 3.4739E − 08 1.3536E − 06 3.0482E − 06 6.9536E − 07

F7
Rastrigin function

CHS 1.2141E − 03 3.8574E − 02 3.1431E − 01 5.0927E − 02

HSDE 0.0000E + 00 4.0904E − 03 8.3710E − 02 1.3816E − 02

IHSDE 4.2633E − 14 2.5944E + 00 8.1800E + 00 2.6713E + 00

NGHS 0.0000E + 00 9.9496E − 02 9.9496E − 01 3.0152E − 01

F8
Rosenbrock function

CHS 4.3234E − 03 1.7703E + 00 7.2601E + 00 1.9667E + 00

HSDE 2.2513E − 04 1.9541E + 00 3.3526E + 00 1.0636E + 00

IHSDE 9.5471E − 03 1.1625E + 00 2.1110E + 00 3.9876E − 01

NGHS 1.0784E − 03 9.3133E − 01 3.5246E + 00 6.5434E − 01

F9
Sphere function

CHS 3.9500E − 06 2.2513E − 04 1.3357E − 03 2.6271E − 04

HSDE 1.2298E − 48 1.1425E − 06 1.7339E − 05 3.5860E − 06

IHSDE 4.9171E − 28 2.5756E − 23 5.8627E − 22 9.2448E − 23

NGHS 8.0887E − 67 1.2697E − 54 6.1078E − 53 8.6366E − 54

F10
Trid Function

CHS −3.0000E+01 −2.9875E+01 −2.9156E+01 2.3411E − 01

HSDE −3.0000E+01 −2.9962E+01 −2.9826E+01 4.7768E − 02

IHSDE −3.0000E+01 −3.0000E+01 −3.0000E+01 1.4565E − 10

NGHS −3.0000E+01 −3.0000E+01 −3.0000E+01 9.1416E − 08
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Table 2: Continued.

Function name Algorithm Best Mean Worst Std

F11
Zakharov Function

CHS 2.3830E − 05 1.9843E − 02 1.4567E − 01 3.0974E − 02

HSDE 2.2372E − 22 4.1294E − 03 1.2299E − 01 1.8304E − 02

IHSDE 2.1141E − 15 6.1236E − 10 2.9812E − 08 4.2138E − 09

NGHS 2.5239E − 29 1.0790E − 18 3.7173E − 17 5.3803E − 18

F12
Beale function

CHS 4.3647E − 10 5.9406E − 03 9.3633E − 02 1.7594E − 02

HSDE 1.4369E − 12 3.6930E − 03 3.9410E − 02 6.6767E − 03

IHSDE 0.0000E + 00 9.5965E − 05 3.5321E − 03 5.0902E − 04

NGHS 0.0000E + 00 4.3172E − 01 9.3929E + 00 1.3416E + 00

F13
Easom function

CHS −9.9999E−01 −6.3682E−01 −7.6526E−05 4.7875E − 01

HSDE −1.0000E+00 −9.5984E−01 −7.9071E−05 1.9790E − 01

IHSDE −1.0000E+00 −1.0000E+00 −1.0000E+00 0.0000E + 00

NGHS −1.0000E+00 −7.8001E−01 0.0000E + 00 4.1842E − 01

F14
Goldstein and Price function

CHS 3.0000E + 00 3.0016E + 00 3.0277E + 00 4.1190E − 03

HSDE 3.0000E + 00 3.0003E + 00 3.0063E + 00 1.1281E − 03

IHSDE 3.0000E + 00 3.0000E + 00 3.0000E + 00 1.6324E − 07

NGHS 3.0000E + 00 1.5420E + 01 8.4000E + 01 2.5122E + 01

F15
Hump function

CHS 4.6668E − 08 2.8159E − 05 3.5591E − 04 5.9106E − 05

HSDE 4.6510E − 08 1.7936E − 06 4.2616E − 05 8.1164E − 06

IHSDE 4.6510E − 08 3.3050E − 07 1.3125E − 05 1.8532E − 06

NGHS 4.6510E − 08 4.6510E − 08 4.6510E − 08 1.0318E − 16

F16
My function

CHS 1.3297E − 08 4.7659E − 01 3.4872E + 00 7.9292E − 01

HSDE 0.0000E + 00 1.5107E − 01 1.5166E + 00 4.5650E − 01

IHSDE 0.0000E + 00 1.4701E − 07 7.1040E − 06 1.0045E − 06

NGHS 0.0000E + 00 2.1788E + 00 7.3673E + 00 2.5506E + 00

5. Conclusion

This paper has presented an improved harmony search algorithm by blending with it
a different vector-based mutation operator borrowed from the DE algorithms. The HM
members are fine tuned by the DE’s mutation operator to improve their affinities so that
enhanced optimization performances can be achieved. Mathematical analysis indicates that
the IHSDE posses an increasing population variance as compared to HSDE. This ensures
that the explorative power of IHSDE is on average greater than that of HSDE, which in
turn results in better accuracy of the IHSDE algorithm. Several simulation examples of
the unimodal and multimodal functions have been used to verify the effectiveness of the
proposed methods. Compared with the HSDE and CHS, better optimization results are
obtained using IHSDE approaches in most cases. Checking the effect of variation of the
scale factor F of the differential mutation operator may be a worthy issue for preventing the
premature convergence in future investigations. Future works will also focus on studying the
applications of IHSDE on engineering optimization problems.
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Figure 3: Show search processes of CHS, HSDE, and IHSDE methods for F16.
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