Hindawi Publishing Corporation
Journal of Applied Mathematics

Volume 2012, Article ID 235120, 11 pages
doi:10.1155/2012/235120

Review Article

Three-Step Fixed Point Iteration for Generalized
Multivalued Mapping in Banach Spaces

Zhanfei Zuo

Department of Mathematics and Computer Science, Chongqing Three Gorges University,
Wanzhou 404000, China

Correspondence should be addressed to Zhanfei Zuo, zuozhanfei@163.com
Received 19 September 2011; Revised 2 December 2011; Accepted 8 December 2011
Academic Editor: Nazim I. Mahmudov

Copyright © 2012 Zhanfei Zuo. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The convergence of three-step fixed point iterative processes for generalized multivalued
nonexpansive mapping was considered in this paper. Under some different conditions, the
sequences of three-step fixed point iterates strongly or weakly converge to a fixed point of the
generalized multivalued nonexpansive mapping. Our results extend and improve some recent
results.

1. Introduction

Let X be a Banach space and K a nonempty subset of X. The set K is called proximinal if
for each x € X, there exists an element y € K such that ||x — y|| = d(x, K), where d(x,K) =
inf{|lx — z|| : z € K}. Let CB(K), C(K), P(K), F(T) denote the family of nonempty closed
bounded subsets, nonempty compact subsets, nonempty proximinal bounded subsets of K,
and the set of fixed points, respectively. A multivalued mapping T : K — CB(K) is said to
be nonexpansive (quasi-nonexpansive) if

H(Tx,Ty) <|lx-y|, xyeKkK, 1.1)
(H(Tx,Tp) < ||x-p|l, x €K, p € F(T)), '
where H(:,-) denotes the Hausdorff metric on CB(X) defined by
H(A, B) := max{sup inf||x - y||, supinf||x-y| {, A, BeCB(X). (1.2)
xeA YEB yeB x€EA
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A point x is called a fixed point of T if x € Tx. Since Banach’s Contraction Mapping Principle
was extended nicely to multivalued mappings by Nadler in 1969 (see [1]), many authors have
studied the fixed point theory for multivalued mappings (e.g., see [2]). For single-valued
nonexpansive mappings, Mann [3] and Ishikawa [4], respectively, introduced a new iteration
procedure for approximating its fixed point in a Banach space as follows:

Xp+1 = (1 - ‘Xn)xn + lanxn/ (1 3)
Xn+l = (1 - ‘xn)xn + XnlYn, Yn = (1 - bn)xn + bnTxnr '

where {a,} and {b,} are sequences in [0, 1]. Obviously, Mann iteration is a special case of
Ishikawa iteration. Recently Song and Wang in [5, 6] introduce the following algorithms for
multivalued nonexpansive mapping:

Xn1 = (1 = an) Xy + S, (1.4)
where s, € Txy, Y, € (0,+00) such that lim, . y» = 0 and ||sp+1 — Sull £ H(Txu41, TXn) + Yo,
X1 = (1= ay)x, + ayry, Yn = (1 =by)x, +bysy, (1.5)

where ||s, — 1|l < H(Txy, Tyn) + yn and ||sp1 — 7l < H(T X441, TYn) + ¥u for s, € Tx, and
7y € Ty,. They show some strong convergence results of the above iterates for multivalued
nonexpansive mapping T under some appropriate conditions. However, the iteration scheme
constructed by Song and Wang involves the following estimates,

”Sn - Tn” < H(Txnr Tyn) + Yn, ”Sn+1 - rn” < H(Tanr Tyn) + Yn, (16)

which are not easy to be computed and the scheme is more time consuming. It is observed
that Song and Wang [6] did not use the above estimates in their proofs and the assumption
on T, namely, T(p) = {p} for any p € F(T) is quite strong. It is noted that the domain of T is
compact, which is a strong condition. The aim of this paper is to construct an three iteration
scheme for a generalized multivalued mappings, which removes the restriction of T, namely,
T(p) = {p} for any p € F(T) and also relax compactness of the domain of T. The generalized
multivalued mappings was introduced in [7], if

%d(x,Tx) <||lx - y|| implies H(Tx,Ty) < ||x-y| VxyeK, (1.7)

where d is induced by the norm. Obviously, the condition is weaker than nonexpansiveness
and stronger than quasinonexpansiveness, furthermore, there are some examples of a
generalized nonexpansive multivalued mapping which is not a nonexpansive multivalued
mapping (see [7, 8]).
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Let T : K — P(K) be a generalized nonexpansive multivalued mapping and Pr(x) =
{y € T(x) : |lx -yl = d(x,T(x))}. The three-step mean multivalued iterative scheme is
defined by xg € K,

zy = (1= ay)x, + a,s,,
Yn=(1=bp—cp)xn + bpty + cpsp, (1.8)
Xn+l = (1 -0y — ﬂn - Yn)xn +anty + ﬂntn + YnSn,

where {a,}, (b}, {ca}, {bn + cu}, {an}, {Bn}, (v}, and {ay, + B, + 7.} are appropriate sequence

n [0,1], furthermore s, € PT(xn) t, € PT(zn) rn € Pr(yn). Ifa, = ¢, = By =y = 0 or
a, = by, = ¢, = P = yn = 0, then iterative scheme (1.8) reduces to the Ishikawa and Mann
multivalued iterative scheme. In factlety, =0orc, =, =y, =00rb, =c, =a, =y, =0, we
also have the other three algorithms.

The mapping T : K — CB(K) is called hemicompact if, for any sequence x, in K
such that d(x,, T(x,)) — 0asn — oo, there exists a subsequence x,, of x, such that x,, —
p € K. We note that if K is compact, then every multivalued mapping T : K — CB(K) is
hemicompact. The following definition was introduced in [9].

Definition 1.1. A multivalued mapping T : K — CB(K) is said to satisfy Condition (A) if
there is a nondecreasing function f : [0,00) — [0, 00) with f(0) =0, f(x) > 0 for x € (0, o)
such that

d(x,Tx) > f(d(x,F(T))) VYxeK. (1.9)

where F(T) #0 is the fixed point set of the multivalued mapping T. From now on, F(T) stands
for the fixed point set of the multivalued mapping T.

2. Preliminaries

A Banach space X is said to be satisfy Opial’s condition [10] if, for any sequence {x,} in X,
X, — x(n — oo) implies the following inequality:

lim supl|x, — x|| < limsup||x, - y]|, (2.1)

n—oo n— oo

for all y € X with y #x. It is known that Hilbert spaces and [,(1 < p < o) have the Opial’s
condition.

Lemma 2.1 (see [7, 11]). Let {x,}, {yn}, and {z,} be sequence in uniformly convex Banach space
X. Suppose that {a,}, { pn}, and {y,} are sequence in [0,1] with a, + B, + ¥, = 1, limsup, [|x,]| <
d, limsup, ||yl < d, limsup, ||z, < d, and lim,||a,X, + Buln + Ynzall = d. If liminf,a, > 0
and liminf,B, > O, then limy,||x, — y,|| = 0.
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Lemma 2.2 (see [7, 11]). Let X be a uniformly convex Banach space and B, := {x € X : ||x|| <
r},r > 0. Then there exists a continuous strictly increasing convex function g : [0,00) — [0,00)
with g(0) = 0 such that

|| + py + &z + Sw ||
1
<A + pllyll” + 2l + Sl - 38 (g (lbx - wl) + kg (ly - wll) + &8Iz - wl),
2.2)

forallx,y,z,w € Brand A\, p, ¢, 0 € [0, 1] with A+ p+¢é+0 =1

3. Main Results

Lemma 3.1. Let X be a real Banach space and K be a nonempty convex subset of X,T : K — P(K)
be a generalized multivalued nonexpansive mapping with F(T) # @ such that Pr is nonexpansive. Let
{xn} be a sequence in K defined by (1.8), then one has the following conclusion:

lim||x, — p|| exists for any p € F(T). (3.1)

Proof. Letp € F(T), then p € Pr(p) = {p}. Since T is quasi-nonexpansive, thus we obtain

20 = pll < (1= an)llx: = pll + anllsn - pll
< (1= an)|lxn = pl| + and(sn, Pr(p))
< (1= ay)||x, = p|| + anH (Pr(xa), Pr(p)) (3.2)
< (L=ap)||xn = pll + anllxn —pll
<|lxn=pll,

similarly ||y, — pl| < [[x» — p||, then we have

[ns = pll < (1= an = B =) [0 = Il + @allra =
+ Pulltn =pll + vallsn =P

< (L=an=Pu=vu)|xn =Pl + @nH (Pr(yn), Pr(p)) (33)
+ an(PT (zu), Pr (P)) + YnH(PT(xn)/ Pr (P))
)

Then {||x, — p||} is a decreasing sequence and hence lim,||x, — p|| exists for any p € F(T). O

Lemma 3.2. Let X be a uniformly convex Banach space and K be a nonempty convex subset of
X,T : K — P(K) be a generalized multivalued nonexpansive mapping with F(T) # @ such that

Pr is nonexpansive. Let {x,} be a sequence in K defined by (1.8), if the coefficient satisfy one of the
following control conditions:

(i) iminf,a, > 0 and one of the following holds:

(@) limsup,, (&, + B + yu) < 1and limsup,, (b, +c,) <1,
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(b) 0 < liminf,p, < limsup,(a, + f, +yn) < 1and limsup,c, <1,
(c) 0 <liminf,b, <limsup, (b, + c,) < 1and limsup,a, <1,

(d) 0 < liminf,c, < limsup, (b, +c,) < 1;

(ii) 0 < liminf,pB, <limsup, (&, + B, + ¥x) < 1and limsup,a, <1;
(iii) 0 < liminf,y, <limsup, (a, + fn +¥n) <1,

(iv) 0 < liminf, (a,b, + B,) and 0 < liminf,a, <limsup,a, <1;

then we have lim,d(x,, Tx,) = 0.

Proof. By Lemma 3.1, we know that lim,||x,, — p|| exists for any p € F(T), then it follows that
{sn —p}, {tn —p}, and {r, — p} are all bounded. We may assume that these sequences belong
to B, where r > 0. Note that p € Pr(p) = {p} for any fixed point p € F(T) and T is quasi-
nonexpansive. By Lemma 2.2, we get

Iz = plI* < (1= aw)||lxn = pl|* + aul|su - pl|”
< (1= an)|Jxn - p|* + @nH (Pr(xn), Pr(p))°
2
<lxw—p
Iy = pII* < (1= by = ca) [l = pII* + bullta = pII* + cullsn - p|I’
1
- g(l -b, - Cn)(bng(”tn - xn”) + Cng(”Sn - xn”)) (3'4)
<(1-b,- Cn)“xn - P“Z + an(PT(Zn)rPT(P))Z + CnH(PT(xn)/PT(p))Z

1
- 5(1 - b, - Cn)bng(”tn = xn|l)

7

1
<l = pI* = 51 = b = c)bug It = ),
and therefore we have

lner = plI* < (1= an = B =y lw = pII* + anllrw = pII* + Bulltn = pII” + yallsu — I
1
= 3 (1= = B =) [@ng (1 = rall) + Bug (U = tal) + ug s = 5ul)]

< (1=~ o= 1) |20 = p|I* + auH (Pr(ya), Pr(p))” + puH (Pr(z0), Pr (p))°

+YuH (Pr(xa), Pr(p))°

~ 5= = B =) [eng e =l + B tal) + 3 1 = sul)]
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a, 1
<l =pII” = 5= by = c)bug ltn = all) = 3 (1 = atu = fu = 72)

X [ang(”xn —1al|) + ﬁng(”xn —tal) + Yng(”xn - Sn“)]

(3.5)
Then
(1= = B = yu)ang(lxn = rall) <3 ([l = pIP = llxar = ), (3.6)
(1= = B = y)Bug(ln = tal) < 3([l20 = pII* = [|00e1 — pI*). (3.7)
(1= an =B = )18 U0 = 5al) < 3|0 = pII* = 2001 - pII%), (3.8)
(1= by = c)bug(lltn = 2all) < 3([l2n = pII” = |01 - pII*). (3.9)

Since limy,||x, — p|| exists for any p € F(T), it follows from (3.6) that lim,(1 — a, — f, —
Yn)ang(|xn — 14]|) = 0. From g is continuous strictly increasing with g(0) = 0 and 0 <
liminf,a, <limsup, (a, + fn +¥x) <1, then

lirl;n”xn =1l =0. (3.10)

Using a similarly method together with inequalities (3.7) and 0 < liminf,f, < limsup, (a;, +
Pn+7vn) <1, then

lim|x, = ]| = . (3.11)

Similarly, from (3.8) and 0 < liminf,y, < limsup, (a,+f,+y») <1, we have lim,||x, —s,| = 0,
since s, € Txy,, then 0 < lim,d(x,, Tx,) < lim,|/x, — s,|| = 0, thus we get (iii). In the sequence
we prove (i) (a). From iterative scheme (1.8), we have

llsn = xull < lIsn = 7all + |10 — xaul| < H(PT(xn)/ PT(yn)) + |7 = xal|
< 2w =yl + I = xall (3.12)

< bullxn = tall + cnllxn — sl + |lrn — xal|-

To show that lim,||x, — s,|| = 0, it suffices to show that there exist a subsequence {n;} of {n}
such that limy, ||x,; — s5,|| = 0. If lim inf;b,, > 0, it follows from (3.9) that

QXn; <1 - bn]- - Cn,->bn]-g< tnj = Xn; > < 3<| Xn; —P”z = |[*nj+1 —P”Z) (3.13)
Since lim,||x, — p|| exists for any p € F(T), we have
linI]_nanj <1 - bn/- - an>bn/-g< tnj — Xn; > =0. (314)
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From g is continuous strictly increasing with g(0) = 0,liminf;a,, > 0 and 0 < liminf,;b,; <
lim sup - (bn,; + cn;) <1, we have

lim||ty; — xp; || = 0. (3.15)
n;
This together with (3.10), (3.12), (3.15) gives
li§n(1 - c,,}.) Sn; = Xn; || = 0. (3.16)

Since liminf,, (1 - ¢;;) = 1 - limsup n,Cnj > 0, we have limj||s,; — x,,|| = 0. On the other hand,
if liminf;b,, = 0, then we may extract a subsequence {by, } of {by,} so that limyb,, = 0. This
together with (i) (a) and (3.10), (3.12) gives

lillcn(l = Cw)lISn, = Xn |l = 0, and so lil£11||snk — X || = 0. (3.17)

By Double Extract Subsequence Principle, we obtain the result.
If 0 < liminf,, < limsup,, (a, + Bn + y») <1and limsup,a, <1, we will prove (ii),

Isn = xull < [Isn = tall + It = xnll < H(Pr(xn), Pr(zn)) + [[tn — xul|
< lxn = zall + [|tn = xall (3.18)

< anl|xn = snll + [[tn — xull-
Since limsup, a, < 1, then

liminf(1 - a,) = 1 - limsupa, > 0. (3.19)

n

This together with (3.11), (3.18), we obtain the result.
We will prove (i) (b), let p € F(T). By Lemma 3.1, we let lim,||x, — p|| = d for some
d > 0. From iterative scheme (1.8), we know

d =lim|[xp1 = p|| = lim|| (1 - an = B = ) (Xn = p) + @n(rn = p) + Puta = ) + Yu(su = p) -
(3.20)

From Lemma 3.1, we have known that ||z, — p|| < ||x, — pll and |ly, — p|| < |lx» — p||, then
limsup|[r, - p|| < limsupH (Pr(yx), Pr(p)) < limsup|ly. - p|| < d,
limsup||t, — p|| < limsupH (Pr(z,), Pr(p)) <limsup||z, —p|| < 4, (3.21)

limsup||s, — p|| < limsupH (Pr(x,), Pr(p)) < limsup||x, - p|| < d.

From (3.20) and Lemma 2.1, we have

timlj, = ] = i, = ] = 0. (622)
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Notice that

”xn - Sn” < ”xn - Tn” + ”rn - sn” < ”xn - rn” + H(PT(yn)/PT(xn))
< lxn =yl + lloen =7l

(3.23)
< byllxn = tall + cullxn = snll + llxn = 72|

Since lim sup, ¢, < 1, we have lim,||s,,—x,|| = 0, therefore 0 < lim,,d(x,, Tx,) < lim,||x,—s,|| =
0.
We will prove (i) (c). From iterative scheme (1.8) and Lemma 3.1, we have

w1 =PIl < (V= an = P = ya) [ = pll + @nllyn = Pl + Ballzo = Pl + vall2n = |
< (L=an)[[xn = pll + anllyn = pl| (3.24)
which implies
ltwer = pll = = pll + @l =l < Ly = pl. (325)
Notice that lim inf,a, > 0 and lim, ||x,, — p|| exists. Hence from (3.25) we have

d = lim||x, - p[| < liminf[|y, - p|| <limsup||y, - p|| < d. (3.26)

Therefore, from iterative scheme (1.8) we have

d = lim||y, - p|| = im][|(1 - by = c) (xu = p) + bu(tn =) + cu(sn = p) |- (3.27)

From Lemma 2.1, we have

lim||xc, = t,]| = 0. (3.28)

Notice that

lsn = Xull < llsn = tull + [tn = xnll < H(Pr(xn), Pr(zn)) + [|ltn = xnll
< lxn = zall + [|tn = xall (3.29)

< anllxn = sull + |ltn = xn]-

Since limsup,a, < 1, then 0 < lim, d(x,, Tx,) < lim,|/x, — s,|| = 0.
By (3.27) and Lemma 2.1, we can similarly prove (i) (d).
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Finally, we will prove (iv). From iterative scheme (1.8) and Lemma 3.1, we have

12601 =PIl < (1= an = Bu = yu) |0 = Pl + @nllrn = Pl + Bullts =PIl + yullsn P
< (I =an=Bn—yu) X0 = Pl + @nl|yn = pl| + Bullzn =PIl + yul|xn = p|
< (1 =an=Bn) lxn = pll + an[(1 = ba)[[x0 = p| + bullza = pll] + Bullze —p

7

(3.30)
which implies
v =l =l + b+ B) 0 I < o+ B -pll G3)
Notice that
0< lin}qinf(anbn +Ba), lirrln“xn - p|| exists. (3.32)
Hence we have
d= 1i)11n||xn -p|l < lin}linf”zn —p|| <limsup||z, - p|| < d. (3.33)
Thus, we have
d = lim||z, - p|| = im(1 - ) ||xu = p|| + @[50 - p- (3.34)

By Lemma 2.1 and 0 < liminf,a, <limsup,a, <1, we have 0 < lim,d(x,, Tx,) < lim,||x, -
sull = 0. O

Theorem 3.3. Let X be a uniformly convex Banach space and K be a nonempty convex subset of
X, T : K — P(K) be a generalized multivalued nonexpansive mapping with F(T) #@ such that
Pr is nonexpansive. Let {x,} be a sequence in K defined by (1.8), the coefficient satisfy the control
conditions in Lemma 3.2 and T satisfies Condition (A) with respect to the sequence {x,}, then {x,}
converges strongly to a fixed point of T.

Proof. By Lemma 3.2, we have lim,d(x,,Tx,) = 0. Since T satisfies Condition (A) with
respect to {x, }. Then

f(d(xy, F(T))) < d(xn, Txn) — 0. (3.35)

Thus, we get lim,d(x,, F(T)) = 0. The remainder of the proof is the same as in [6, Theorem
2.4], we omit it. O

Theorem 3.4. Let X be a uniformly convex Banach space and K be a nonempty convex subset of
X, T : K — P(K) be a generalized multivalued nonexpansive mapping with F(T)#@ such that
Pr is nonexpansive. Let {x,} be a sequence in K defined by (1.8), the coefficient satisfy the control
conditions in Lemma 3.2 and T is hemicompact, then {x,} converges strongly to a fixed point of T.
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Proof. By Lemma 3.2, we have lim,d(x,, Tx,) = 0. Since T is hemicompact, then there exist a
subsequence {x,, } of {x,} such that limy_, . [|x,, —gl|| = 0 for some g € K. Thus,

d(q,Tq) < ||q - xn || + d(xn,, Txy,) + H(Txy,,Tq)
S 2”q — Xy ” + d(xnk/Txnk) — 0. (336)

Hence, g is a fixed point of T. Now on take on g in place of p, we get that lim,,_, .-||x, — g
exists. It follows that x, — gasn — oo. This completes the proof. O

Theorem 3.5. Let X, T and {x,} be the same as in Lemma 3.2. If K be a nonempty weakly compact
convex subset of a Banach space X and X satisfies Opial’s condition, then {x,} converges weakly to a
fixed point of T.

Proof. The proof of the Theorem is the same as in [6, Theorem 2.5], we omit it. O

Remark 3.6. From the definition of iterative scheme (1.8), Theorems 3.3, 3.4, and 3.5 extend
some results in [6, 12], and also give some new results are different from the [5]. In fact, we
can present an example of a multivalued map T for which Pr is nonexpansive. A multivalued
map T : D — CB(X) is *-nonexpansive [13] if for all x, y € D and u, € T(x) with d(x,u,) =
inf{d(x,z) : z € T(x)}, there exists u, € T(y) with d(y,u,) = inf{d(y,w) : w € T(y)} such
that

d(ux,uy) <d(x,y). (3.37)

It is clear that if T is *-nonexpansive, then Pr is nonexpansive. It is known that *-
nonexpansiveness is different from nonexpansiveness for multivalued maps. Let D = [0, c0)
and T be defined by Tx = [x,2x] for x € D [14]. Then Pr(x) = x for x € D and thus it is
nonexpansive. Note that T is *-nonexpansive but not nonexpansive (see [14]).
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