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Let C be a nonempty bounded closed convex subset of a complete CAT(0) space X. We prove
that the common fixed point set of any commuting family of asymptotic pointwise nonexpansive
mappings on C is nonempty closed and convex. We also show that, under some suitable
conditions, the sequence {xx}r,; defined by xk1 = (1 = tyi) Xk © Lok Tont Yim-1)kr Yom-1k = (1 —
tn-1)k) Xk © Ean1)k Tt Ym=2)ks Ym-2k = (1 = tan2)i) Xk © tam-2yk T o Ym=d)kes - - - Yok = (1 = to) Xpe @
tok Ty vk, vk = (1 = tik)xk ® tiT)*Yor, Yok = Xk, k € N, converges to a common fixed point
of Ty, Ty, ..., T, where they are asymptotic pointwise nonexpansive mappings on C, {ty}i2, are
sequences in [0,1] foralli = 1,2,...,m, and {nx} is an increasing sequence of natural numbers.
The related results for uniformly convex Banach spaces are also included.

1. Introduction

A mapping T on a subset C of a Banach space X is said to be asymptotic pointwise
nonexpansive if there exists a sequence of mappings a, : C — [0, o0) such that

IT"x =Ty || < an(x)[|x -y

, (1.1)

where limsup, ,_a,(x) <1, for all x,y € C. This class of mappings was introduced by Kirk
and Xu [1], where it was shown that if C is a bounded closed convex subset of a uniformly
convex Banach space X, then every asymptotic pointwise nonexpansive mapping T : C — C
always has a fixed point. In 2009, Hussain and Khamsi [2] extended Kirk-Xu's result to the
case of metric spaces, specifically to the so-called CAT(0) spaces. Recently, Kozlowski [3]
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defined an iterative sequence for an asymptotic pointwise nonexpansive mapping T : C — C
by x; € C and

X1 = (1= t)xx + 5 T™ yx, (1.2)
Yk = (1 -si)xp + s, T™x, k€N, .

where {t;} and {si} are sequences in [0,1] and {7y} is an increasing sequence of natural
numbers. He proved, under some suitable assumptions, that the sequence {xx} defined by
(1.2) converges weakly to a fixed point of T where X is a uniformly convex Banach space
which satisfies the Opial condition and {xx} converges strongly to a fixed point of T provided
T" is a compact mapping for some r € N. On the other hand, Khan et al. [4] studied the
iterative process defined by

Xn+1 = (1 - amn)xn + amnTrzy(m—l)nl
Yon-yn = (1= An-1)n) Xn + Am-1)n Ty 1 Yom-2yn,
Yom-2n = (1= An-2)n) Xn + An-2)nTpy oY (m-3)ns

(1.3)

Youn = (1 - aZn)xn + aZnTznyln/
Yin = (1—a1n)x, + alnTlnyOnr

Yon =Xn, NEN,

where T, ...,T,, are asymptotically quasi-nonexpansive mappings on C and {ai,},.; are
sequences in [0,1] foralli=1,2,...,m.

In this paper, motivated by the results mentioned above, we ensure the existence of
common fixed points for a family of asymptotic pointwise nonexpansive mappings in a
CAT(0) space. Furthermore, we obtain A and strong convergence theorems of a sequence
defined by

X1 = (1 = tyuk) Xk © bk T Ym-1)ks
Y-k = (1 = ton-1)) X ® Lom-1)k T Ym-2)ks
Y2k = (1 = tn-2)k) X © tom-2)k T oY (m-3)ks
(1.4)

Yo = (1 = tor) xk @ tok T, Y,
yix = (1 = tie) xx @ b T Yok,
Yok = Xk, ke Nr

where Ty, ..., T, are asymptotic pointwise nonexpansive mappings on a subset C of a
complete CAT(0) space and {ti};; are sequences in [0,1] foralli = 1,2, ..., m, and {n}
is an increasing sequence of natural numbers. We also note that our method can be used to

prove the analogous results for uniformly convex Banach spaces.
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2. Preliminaries

A metric space X is a CAT(0) space if it is geodesically connected and if every geodesic
triangle in X is at least as “thin” as its comparison triangle in the Euclidean plane. It is
well-known that any complete, simply connected Riemannian manifold having nonpositive
sectional curvature is a CAT(0) space. Other examples include Pre-Hilbert spaces (see [5]), R-
trees (see [6]), Euclidean buildings (see [7]), and the complex Hilbert ball with a hyperbolic
metric (see [8]). For a thorough discussion of these spaces and of the fundamental role they
play in geometry, we refer the reader to Bridson and Haefliger [5].

Fixed point theory in CAT(0) spaces was first studied by Kirk (see [9, 10]). He showed
that every nonexpansive (single-valued) mapping defined on a bounded closed convex
subset of a complete CAT(0) space always has a fixed point. Since then the fixed point theory
for single-valued and multivalued mappings in CAT(0) spaces has been rapidly developed,
and many papers have appeared (see, e.g., [2, 11-22] and the references therein). It is worth
mentioning that fixed point theorems in CAT(0) spaces (specially in R-trees) can be applied
to graph theory, biology, and computer science (see, e.g., [6, 23-26]).

Let (X, d) be a metric space. A geodesic path joining x € X to y € X (or, more briefly, a
geodesic from x to i) is a map c from a closed interval [0, /] C R to X such that ¢(0) = x, c¢(I) =
y, and d(c(t),c(t')) = |t — | for all £,#' € [0,1]. In particular, ¢ is an isometry and d(x,y) = 1.
The image a of c is called a geodesic (or metric) segment joining x and y. When it is unique,
this geodesic is denoted by [x, y]. The space (X, d) is said to be a geodesic space if every two
points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one
geodesic joining x and y for each x,y € X. A subset Y C X is said to be convex if Y includes
every geodesic segment joining any two of its points.

A geodesic triangle A(x1,x2,X3) in a geodesic space (X, d) consists of three points x,
X2,x3 in X (the vertices of A) and a geodesic segment between each pair of vertices (the
edges of A). A comparison triangle for geodesic triangle A(x1,x2,x3) in (X, d) is a triangle
Z(xl,xz,xg) == A(X1,X2,%3) in the Euclidean plane E? such that dg: (xi,x;) = d(x;,xj) for
i,je{1,2,3}.

A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the
following comparison axiom.

CAT(0): Let A be a geodesic triangle in X, and let A be a comparison triangle for A.
Then, A is said to satisfy the CAT(0) inequality if for all x,y € A and all comparison points
X, Y €A,

d(x,y) <de(X,7). (2.1)

Let x,y € X, by Lemma 2.1(iv) of [14] for each t € [0,1], there exists a unique point
z € [x,y] such that

d(x,z) =td(x,y), d(y,z) = (1 -t)d(x,y). (2.2)

We will use the notation (1 — f)x @ ty for the unique point z satisfying (2.2). We now collect
some elementary facts about CAT(0) spaces.
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Lemma 2.1. Let X be a complete CAT(0) space.

(i) [5, Proposition 2.4] If C is a nonempty closed convex subset of X, then, for every x € X,
there exists a unique point P(x) € C such that d(x,P(x)) = inf{d(x,y) : y € C}.
Moreover, the map x — P(x) is a nonexpansive retract from X onto C.

(ii) [14, Lemma 2.4] For x,y,z € X and t € [0,1], we have

d(1-txety,z) <(1-t)d(x,z)+td(y, z). (2.3)

(iii) [14, Lemma 2.5] For x,y,z € X and t € [0,1], we have

d((1-txety,z)’ <(1-bd(x,z)? +td(y,z)’ -t(1-td(x,y)*. (2.4)

We now give the concept of A-convergence and collect some of its basic properties. Let
{x,} be a bounded sequence in a CAT(0) space X. For x € X, we set

r(x, {x,}) = limsup d(x, x,). (2.5)

The asymptotic radius r({x,}) of {x,) is given by
r({xn}) = inf{r(x, {x,}) : x € X}, (2.6)
and the asymptotic center A({x,}) of {x,) is the set
A({xn}) = {x e X :r(x, {xn}) =r({xu}) }. (27)

It is known from Proposition 7 of [27] that, in a CAT(0) space, A({x,}) consists of
exactly one point.

Definition 2.2 (see [28, 29]). A sequence {x,} in a CAT(0) space X is said to A-converge to
x € X if x is the unique asymptotic center of {u,} for every subsequence {u,} of {x,}. In this

case, we write A-limx = x and call x the A-limit of {x,}.
n o n

Lemma 2.3. Let X be a complete CAT(0) space.

(i) [28, page 3690] Every bounded sequence in X has a A-convergent subsequence.

(ii) [30, Proposition 2.1] If C is a closed convex subset of a complete CAT(0) space and if {x,}
is a bounded sequence in C, then the asymptotic center of {x,} is in C.

(iii) [14, Lemma 2.8] If {x,} is a bounded sequence in a complete CAT(0) space with A({x,}) =
{x} and {u,} is a subsequence of {x,} with A({u,}) = {u} and the sequence {d(x,, u)}
converges, then x = u.

Recall that a mapping T : X — X is said to be nonexpansive [31] if

d(Tx,Ty) <d(x,y), Yx,yeX, (2.8)
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where T is called asymptotically nonexpansive [32] if there is a sequence {k,} of positive
numbers with the property lim,, ., k, = 1 and such that

d(T'x, T"y) < k,d(x,y), Vn>1, x,yeX, (2.9)

where T is called an asymptotic pointwise nonexpansive mapping [1] if there exists a sequence of
functions a,, : X — [0, o0) such that

d(T"x, T"y) < an(x)d(x,y), YVn>1, x,yeX, (2.10)

where limsup, _, _ a,(x) < 1. The following implications hold.

T is nonexpansive = T is asymptotically nonexpansive (2.11)
= T is asymptotic pointwise nonexpansive. '

A point x € X is called a fixed point of T if x = Tx. We shall denote by F(T) the set of fixed
points of T. The existence of fixed points for asymptotic pointwise nonexpansive mappings
in CAT(0) spaces was proved by Hussain and Khamsi [2] as the following result.

Theorem 2.4. Let C be a nonempty bounded closed convex subset of a complete CAT(0) space X.
Suppose that T : C — C is an asymptotic pointwise nonexpansive mapping. Then, F(T') is nonempty
closed and convex.

3. Existence Theorems

Let M be a metric space and ¥ a family of subsets of M. Then, we say that ¥ defines a con-
vexity structure on M if it contains the closed balls and is stable by intersection.

Definition 3.1 (see [2]). Let ¥ be a convexity structure on M. We will say that ¥ is compact if
any family {Ag} . of elements of ¥ has a nonempty intersection provided (,cp Ax #0 for
any finite subset F C I’.

Let X be a complete CAT(0) space. We denote by C(X) the family of all closed convex
subsets of X. Then, C(X) is a compact convexity structure on X (see, e.g., [2]).

The following theorem is an extension of Theorem 4.3 in [33]. For an analog of this
result in uniformly convex Banach spaces, see [34].

Theorem 3.2. Let C be a nonempty bounded closed and convex subset of a complete CAT(0) space
X. Then, for any commuting family S of asymptotic pointwise nonexpansive mappings on C, the set
F(S8) of common fixed points of S is nonempty closed and convex.

Proof. Let T be the family of all finite intersections of the fixed point sets of mappings in
the commutative family S. We first show that T has the finite intersection property. Let
T, Ty, ..., T, € S. By Theorem 2.4, F(T;) is a nonempty closed and convex subset of C. We
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assume that A := ﬂ;:ll F(T;) is nonempty closed and convex for some k € Nwith 1 < k < n.
For x € Aand j € Nwith 1< j <k, we have

Ty (x) = Tx o Tj (x) = Tj o T (x). (3.1)

Thus, Tk (x) is a fixed point of Tj, which implies that Ty (x) € A; therefore, A is invariant under
Tk. Again, by Theorem 2.4, T has a fixed point in A, that is,

k
(F(Tj) = F(Tx) (| A#0. (3.2)
j=1

By induction, (_; F(T;) #@. Hence, T has the finite intersection property. Since C(X) is
compact,

F(S) = (T#0. (33)

TeT

Obviously, the set is closed and convex. O

As a consequence of Lemma 2.1(i) and Theorem 3.2, we obtain an analog of Bruck’s
theorem [35].

Corollary 3.3. Let C be a nonempty bounded closed and convex subset of a complete CAT(0) space
X. Then, for any commuting family S of nonexpansive mappings on C, the set F(S) of common fixed
points of S is a nonempty nonexpansive retract of C.

4. Convergence Theorems

Throughout this section, X stands for a complete CAT(0) space. Let C be a closed convex
subset of X. We shall denote by T(C) the class of all asymptotic pointwise nonexpansive
mappings from Cinto C. Let Ty, ..., T;,, € T(C), without loss of generality, we can assume that
there exists a sequence of mappings a, : C — [0, ) such thatforallx,y € C,i=1,...,m,
and n € N, we have

A(T!'x, Tl'y) < an(x)d(x,y), lim sup a, (x) < 1. 4.1)

n— oo
Let a,(x) = max{a,(x),1}. Again, without loss of generality, we can assume that

d<Tln~xr T,ny) S ai’l (x)d(x, y)/ hm an(x) = 1/ an(x) Z 1/ (42)

forallx,y € C, i=1, ...,m,and n € N. We define b, (x) = a,(x) — 1, then, for each x € C, we
have lim,, , ,, b, (x) = 0.
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The following definition is a mild modification of [3, Definition 2.3].

Definition 4.1. Define T,(C) as a class of all T € T(C) such that

S supb(x) < oo, (43)

n=1xeC

a, is a bounded function for every n € N.

LetTy, ..., T € CT,(C), and let {ti };2, C (0,1) be bounded away from 0 and 1 for all
i=1,2, ...,m,and {ni} an increasing sequence of natural numbers. Let x; € C, and define a
sequence {xi}in C as

Xes1 = (1= tyk) X @ bk Tt Y(m-1)ks
Y-tk = (1 = ton-1)k) Xk @ b1k Tk Ym-2)ks
Y2k = (1 = ton-2)k) Xk & tm-2k T oY (m-3)ks
(4.4)

yox = (1 = tor) xx @ b Ty  ya,
yik = (1= ti)xk @ i T Yok,
Yok = Xk, k € N.

We say that the sequence {xx} in (4.4) is well defined if limsup, _, _ay,, (xx) = 1. Asin [3], we
observe that limy ., ax(x) = 1 for every x € C. Hence, we can always choose a subsequence
{an, } which makes {xi} well defined.

Lemma 4.2 (see [36, Lemma 2.2]). Let {a,} and {u,} be sequences of nonnegative real numbers

satisfying

a1 < (1+uy)a,, VYneN, Zun < 0. (4.5)

n=1

Then, (i) lim,, a, exists, (ii) if liminf, a, = 0, then lim,, a,, = 0.

Lemma 4.3 (see [37, 38]). Suppose {t,} is a sequence in [b, c] for some b, c € (0,1) and {u,}, {v,}
are sequences in X such that limsup, d(u,, w) <r, limsup, d(v,, w) <r,and lim, d((1-t,)u, ®
taUn, w) =t for some r > 0. Then,

lim d(u,,v,) = 0. (4.6)

Lemma 4.4. Let C be a nonempty closed convex subset of X and Ty, ..., T,, € T,(C). Let
{tic} g C [a,b] C (0,1) and {n} C N be such that {xi} in (4.4) is well defined. Assume that
F =N, F(T;) #0. Then,

(a) there exists a sequence {vy} in [0,00) such that Y, vx < oo and d(xxs,p) <
(1 +vk)"d(xxk,p), forallp € Fandall k € N,
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(b) there exists a constant M > 0 such that d(xi.,p) < Md(xk,p), for all p € F and
k,1eN.

Proof. (a) Let p € F and vy = sup, - by, (x) for all k € N. Since 3,2, sup, - by, (x) < o0, we
have /2, vk < 0. Now,

d(yix,p) < (1 =ti)d(xx, p) + tikd (T xx, p)
< (1 - tig)d(xk, p) + tik (1 + by, (p) ) d (xx, p)
= (1 + tibu, (p))d(xk, p)
< (1+vx)d(xx, p).

(4.7)

Suppose that d(yjx, p) < (1 + vx) d(xx, p) holds for some 1 < j < m —2. Then,

Ay p) < (1= tgaw) (e p) + iard (T i p)
< (1= tgk)d(xk, p) + ik (1+ bu (p))d (Y p)
< (1= tgew)d(xx, p) + b1+ ) d (2, p)

Ge1)j--(j+2-7
= [1 —t(j+1)k +t(]~+1)k (1 + Z (] )] (] )v,’(>]d(xk,p) (4.8)

!
= r!

Hj+1)j(j+2-

jrDj-(+2-r)

= [1+t(]'+1)kz o ’Uk d(xk,p)
r=1 :

< (1+ o)™ d(xk, p).

By induction, we have

d(yik,p) < M +vp)'d(xx,p), Vi=12,...,m-1. (4.9)
This implies

d(xi1,p) < (1 = tyi)d (xic, p) + tkd (T Yom-1)k, P)
< (1= tw)d (xk, p) + bk (1 + by, (p) ) A(Y -1k, P)
< (1= twi)d (xk, p) + by (1 + 0) (1 + 0)™ ' d (xk, p)
< (A = ty)d(xk, p) + bk (1 + 0)"d (xk, p)
_ [1 P <1 . im(m -1)---(m-r+ 1)v£>]d(xk,p) (4.10)

!
~ r!

_ |:1+tmkim(m—l)---(m—r+1) v,’(]d(xk,p)
r=1

r!

< (1+op)"d(xk, p).

This completes the proof of (a).
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(b) We observe that (1+a)" < e™ holds for all n € N and a > 0. Thus, by (a), for
k,1 € N, we have

d(xe1,p) < (1 + Vpir-1)"d (Xks1-1,p)

k+l-1
< exp{muv1}d(Xe1,p) <o <expim > v pd(x,p)
- (4.11)
<exp {mZUi } d(xk,p).
i=1
The proof is complete by setting M = exp{m X7, v;}. O

Theorem 4.5. Let C be a nonempty closed convex subset of X and Ty, ..., Ty € T,(C). Let {tix} 1oy C
[a,b] c (0,1) and {ni} C N be such that {xy} in (4.4) is well defined. Assume that F # (. Then, {xx}
converges to some point in F if and only if liminfy _, o, d(x, F) = 0, where d(x, F) = infyer d(x, p).

Proof. The necessity is obvious. Now, we prove the sufficiency. From Lemma 4.4(a), we have

d(xka,p) < A +oK)"d(xk,p), Vp€eF, YkeN. (4.12)

This implies

d(xm,F)s<1+vk>’"d<xk,F)=< Py mort Dy, >d<xk,F> (213)

r=1

Since 312, vk < oo, then 322, 3 (m(m —1) --- (m—r +1)/r!)v] < co. By Lemma 4.2(ii), we
get limy o, d(xi, F) = 0. Next, we show that {x,} is a Cauchy sequence. From Lemma 4.4(b),
there exists M > 0 such that

d(xks,p) < Md(xk,p), VpeF kileN. (4.14)
Since limy _, o, d(xx, F) = 0, for each € > 0, there exists k; € N such that

d(xe, F) < —— 2M Vk > k. (4.15)

Hence, there exists z; € F such that

d(xi,, z1) < ﬁ (4.16)
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By (4.14) and (4.16), for k > ki, we have

d(xks1, xx) < d(Xk41,21) + d(xk, 21)
< Md(xk,, z1) + Md(xx,, z1)

) 2M(ﬁ> (4.17)

=E.

This shows that {x} is a Cauchy sequence and so converges to some g € C. We next show
that g € F. Let L = sup{a;i(x) : x € C}. Then, for each € > 0, there exists k, € N such that

€
d(xk,q) < mr Vk > ko. (4.18)

Since limy _, o, d(x, F) = 0, there exists k3 > k; such that

€ Vk > ks. (4.19)

d(xk, F) < m, 2

Thus, there exists z, € F such that

d(xks, z2) < (4.20)

_€
2(1+L)
By (4.18) and (4.20), for eachi = 1,2,...,m, we have

d(Tiq,q) < d(Tiq, Tixk,) + d(Tixk,, z2) + d(z2, Xi,) + d(Xky, q)
< Ld(xk,,q) + Ld(xk,, z2) + d(xk,, 22) + d(Xks, )
< (1+L)d(xk,q) + (1 + L)d(xk,, z2)

(4.21)
€ €
1+L)———+(1+L)—/———
<U+Dagrny * A+ DagTp
=e€.
Since ¢ is arbitrary, we have Tig = g foralli=1,2,...,m. Hence, g € F. O

As an immediate consequence of Theorem 4.5, we obtain the following.

Corollary 4.6. Let C be a nonempty closed convex subset of X and Ty, ..., T,y € T,(C). Let {tix} 5oy C
[a,b] € (0,1) and {ni} C N be such that {xy} in (4.4) is well defined. Assume that F #@. Then, {x}
converges to a point p € F if and only if there exists a subsequence {xy;} of {xi} which converges to

p.

Definition 4.7. A strictly increasing sequence {ny} C N is called quasiperiodic [39] if the
sequence {nj41 — ni} is bounded or equivalently if there exists a number p € N such that
any block of p consecutive natural numbers must contain a term of the sequence {ny}. The
smallest of such numbers p will be called a quasiperiod of {ny}.



Journal of Applied Mathematics 11

Lemma 4.8. Let C be a nonempty closed convex subset of X and Ty, ..., Ty € T,(C). Let {ti}3q C
[6,1 - 8] for some & € (0,1/2) and {ny} C N be such that {xy} in (4.4) is well defined. Then,
(i) limy o d(xx, p) exists forall p € F,
(ii) limy _ o d(xk, T}”y(j_l)k) =0, forallj=1,2,...,m,
(iii) iftheset 2 = {k € N:ngy =1+ ny} is quasiperiodic, then limy ., o, d(x, Tjxx) = 0, for
alj=1,2,...,m.

Proof. (i) Follows from Lemmas 4.2(i) and 4.4(a).
(ii) Let p € F, then, by (i), we have limy_,, d(xx, p) exists. Let

l}ijr;od(xk,p) =c. (4.22)
By (4.9) and (4.22), we get that
limsupd(yjk,p) <c, forl1<j<m-1. (4.23)
k— oo
Note that
d(xka,p) < (A = tyr)d(xk, p) + tmkd (Tpf Y (m-1)k, P)
< (1 = tyr)d(xk, p) + tik (1 + 01) A (Y(m-1)k, P)
: (4.24)
< (1 =tttk - - - tgeny) (1 +0k)™ 7 d (xk, p)
+ tkt otk - - -tk (1 + o)™ 7 d (i, ).
Thus,
d(xx,p) d(xks1,p)
d(xg,p) < — — -+ d(Yik,p), 4.25
(o) o™ 6mi (1 + )™ +d(ypp) (42
so that
c< liin infd(yjk,p), forl<j<m-1. (4.26)
From (4.23) and (4.26), we have
klim d(yjk,p) =c, foreachj=12,...,m-1. (4.27)
That is
lim (1= t)xx @ LTy, p) = ¢, (4.28)

foreachj=1,2,...,m-1.
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We also obtain from (4.23) that

lim sup d<T]’.1ky(j_1)k,p> <¢, foreachj=1,2,...,m-1.

k— o0

By Lemma 4.3, we get that

klim d(T}”y(]-,Dk,xO =0, foreachj=1,2,..., m-1

For the case j = m, by (4.1), we have

ATt Ym-vrP) < (1+ b (p))AY -1y, p) < (14 b, (p)) (1 + 0,)" ' d (x1, p).

But since limy _, . d(xk, p) = ¢, then

lim sup d(To Ym-1yk, P) < c.

k—oo

Moreover,
kli_r)riod((l = tak) Xk © bk To Y(m-1)k, P) = kli_r)rgod(xkﬂ,p) =c.

Again, by Lemma 4.3, we get that

l}iilgod(T,ﬁky(m,l)k,xk) =0.
Thus, (4.30) and (4.34) imply that

klgd(Tfky(j,l)k,xk) =0, foreachj=12,...,m.
(iii) For j = 1, from (ii), we have
klijr;od(Tkak,xk) =0.

If j =2,3,...,m, then we have

d(T]."kxk,xk> < d<Tjnkxk,T;1ky(];1)k> + d(T].nky(]',l)k, xk>
< ap (xi)d (XK, Y(-1k) + d<T;1ky(j—1)k/xk>

< ank(Xk)fu—l)kd(xk/ T;l—kly(i—Z)k> + d<T}1 Y-k xk)-

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)
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By (ii) and limsup, _,  a,, (xx) =1, we get

limsup d(T7"x, x¢) =0, for j=2,3,...,m. (4.38)

k— o0

By (4.36) and (4.38), we have

lim d(T/"x, ) =0, ¥j=1,2,...,m. (4.39)

k— oo
By the construction of the sequence {xk}, we have from (4.35) that

khjrc}od(XkHIXk) =0. (4.40)

Next, we show that

klim d(Tjxk,xx) =0, Vj=1,2,...,m. (4.41)

It is enough to prove that d(Tjxk, xx) — 0ask — oo though 2. Indeed, let p be a quasiperiod
of 2, and let £ > 0 be given. Then, there exists N; € N such that

lim d(T;xg, x) < g Vk € 2 such that k > Nj. (4.42)

k— oo

By the quasiperiodicity of 2, for each | € N, there exists i; € 2 such that | - ij| < p. Without
loss of generality, we can assume that | < i; < I + p (the proof for the other case is identical).
Let M = sup{ai(x) : x € C}. Then, M > 1. Since lim; _, ,, d(x111, x1) = 0 by (4.40), there exists
N, € N such that

d(xps, %) < 3PLM, V> N,. (4.43)
This implies that
d(xi, x1) < d(xi, xi1) + -+ d(xis1, x1) < p<L) == (4.44)
3pM) ~ 3M
By the definition of T, we have
d(Tjx;, Tyxy) < Md(x;, x1) < M<ﬁ> - § (4.45)

Let N = max{N1, N,}. Then, for [ > N, we have from (4.42), (4.44), and (4.45) that

2

d(xl/zjl) <d(x,xi) + d(xierjxil) + d(foiI'Tixl) < 3M

£ €
—+ = <& .
+3+3_£ (4.46)
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To prove that d(Tjxx,xx) — 0as k — oo though 2. Since 2 = {k € N : njy1 = ng + 1} is
quasiperiodic, for each k € 2, we have

d(xx, Tixi) < d(xXi, Xi1) + d<xk+1,T]7-1k”xk+1> + d(Tfk”xku,TTk”xk) + d<T;Zk+1xk, zjk>

< d(xk, Xpe1) + d<xk+1,T7k”xk+1> + Ay (Xke1) A Xk, X5) + al(xk)d<T;kak/ xk>.
(4.47)

From this, together with (4.39) and (4.40), we can obtain that d(T;xx,xx) — Oask — o
through 2. O

The following lemmas can be found in [3] (see also [2]).

Lemma 4.9. Let C be a nonempty closed convex subset of X, and let T € T, (C). If
limy, o d(x, Tx,) = 0, then lim,,_, o, d(x,, T'x,,) = 0 for every I € N.

Lemma 4.10. Let C be a nonempty closed convex subset of X, and let T € T,(C). Suppose {x,} is a
bounded sequence in C such that lim,, d(x,, Tx,) = 0 and A-lim, x, = w. Then, Tw = w.

By using Lemmas 2.3 and 4.10, we can obtain the following result. We omit the proof
because it is similar to the one given in [38].

Lemma 4.11. Let C be a closed convex subset of X, and let T : C — C be an asymptotic pointwise
nonexpansive mapping. Suppose {x,} is a bounded sequence in C such that lim, d(x,, T(x,)) = 0
and d(x,,v) converges for each v € F(T), then wy,(x,) C F(T). Here, wq(x,) = U A({uy,}) where
the union is taken over all subsequences {u, } of {x,}. Moreover, wy,(x,) consists of exactly one point.

Now, we are ready to prove our A-convergence theorem.

Theorem 4.12. Let C be a nonempty closed convex subset of X and Ty,...,T,, € T.(C). Let
{tic}roq C [6,1 - 6] for some 6 € (0,1/2) and {ni} C N be such that {x;.} in (4.4) is well defined.
Suppose that F := (\y F(T;) #0 and the set 2 = {k € N : mj1 = 1 + ni} is quasiperiodic. Then,
{xx} A-converges to a common fixed point of the family {T; :i=1,2,...,m}.

Proof. Let p € F, by Lemma 4.8, lim _, o, d(xx, p) existsm and hence {x;} is bounded. Since
limy . o d(xx, Tjxx) = 0 for all j = 1,2,...,m, then by Lemma 4.11 wy,(xx) C F(T;) for all
j =1,2,...,m, and hence wy(xx) C ﬂ;"zl F(T;) = F. Since wy(x,) consists of exactly one
point, then {x; } A-converges to an element of F. O

Before proving our strong convergence theorem, we recall that a mapping T : C — C
is said to be semicompact if C is closed and, for any bounded sequence {x,} in C with
limy, o d(x,, Tx,) = 0, there exists a subsequence {xn].} of {x,} and x € C such that
limg o Xy, = X.

Theorem 4.13. Let C be a nonempty closed convex subset of X and Ty, ..., Ty, € T,(C) such that Tl.l
is semicompact for some i € {1,...,m} and 1 € N. Let {ti}3, C [6,1 — 6] for some 6 € (0,1/2)
and {nx} C N be such that {xy} in (4.4) is well defined. Suppose that F := (i, F(T;) # @ and the set
2= {k eN:mng =1+ ny} is quasiperiodic. Then, {xy} converges to a common fixed point of the
family {T; :i=1,2,...,m}.
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Proof. By Lemma 4.8, we have

klim d(xk,Tixg) =0, fori=1,...,m. (4.48)

Leti e {1,...,m} be such that Til is semicompact. Thus, by Lemma 4.9,

lim d<xk,T}xk) = 0. (4.49)

— oo

We can also find a subsequence {x,,} of {xi} such that lim;_,,, xx, = g € C. Hence, from
(4.48), we have

d(q,Tiq) = jlirgd <xk}.,Tixk].> =0, Vi=1,...,m. (4.50)
Thus, g € F, and, by Corollary 4.6, {x,} converges to g. This completes the proof. O

5. Concluding Remarks

One may observe that our method can be used to obtain the analogous results for uniformly
convex Banach spaces. Let C be a nonempty closed convex subset of a Banach space X and
fix x; € C. Define a sequence {xx} in C as

Xt = (1 = tyk) Xk + bk T Y m-1)ks
Y-k = (1= ton-1)i) Xk + Lm0k T Ym-2)ks
Yook = (1= tan2)) Xk + tan-2k T oY (m-3)ks
(5.1)

Yo = (1 = tor) xk + tok T, Y,
yix = (1 = tie)xx + b T Yok,
Yok = Xk, ke Nr

where Ty,..., Ty, € T (C), {ti}i, are sequencesin [0,1] foralli=1,2,...,m, and {n,} is an
increasing sequence of natural numbers.

Theorem 5.1. Let X be a uniformly convex Banach space with the Opial property, and let C be a
nonempty closed convex subset of X. Let T1,..., T,y € T,(C), {ti}roq C [6,1 — 6] for some 6 €
(0,1/2), and let {ny} C N be such that {xi} in (5.1) is well defined. Suppose that F := (", F(T;) #0
and the set 2 = {k € N : ngy1 = 1 + ny} is quasiperiodic. Then, {x} converges weakly to a common
fixed point of the family {T; :i=1,2,...,m}.

Theorem 5.2. Let C be a nonempty closed convex subset of a uniformly convex Banach space X and
Ti,..., Ty € T (C) such that Til is semicompact for some i € {1,...,m} and 1 € N. Let {ty}52q C
[6,1 - 6] for some & € (0,1/2), and let {nx} C N be such that {xy} in (5.1) is well defined. Suppose
that F := N, F(T;) #0 and the set 2 = {k € N : ngs1 = 1 + ny} is quasiperiodic. Then, {xj}
converges strongly to a common fixed point of the family {T; :i=1,2,...,m}.
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