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We introduce the new generalized mixed equilibrium problem with respect to relaxed semi-
monotone mappings. Using the KKM technique, we obtain the existence of solutions for the
generalizedmixed equilibriumproblem in Banach spaces. Furthermore, we also introduce a hybrid
projection algorithm for finding a common element in the solution set of a generalized mixed
equilibrium problem and the fixed point set of an asymptotically nonexpansive mapping. The
strong convergence theorem of the proposed sequence is obtained in a Banach space setting. The
main results extend various results existing in the current literature.

1. Introduction

Let E be a Banach space with the dual E∗ and let E∗∗ denote the dual space of E∗. If E =
E∗∗, then E is called reflexive. We denote by N and R the sets of positive integers and real
numbers, respectively. Also, we denote by J the normalized duality mapping from E to 2E

∗

defined by

Jx =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, ∀x ∈ E, (1.1)

where 〈·, ·〉 denotes the generalized duality pairing. Recall that if E is smooth, then J is
single-valued, and if E is uniformly smooth, then J is uniformly norm-to-norm continuous
on bounded subsets of E. We shall still denote by J the single-valued duality mapping.
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Let C be a nonempty subset of E∗∗, η : C ×C → E∗∗ be a mapping and let ξ : E∗∗ → R
a function with ξ(tz) = tpξ(z) for all t > 0 and z ∈ E∗∗, where p > 1 is a constant. A mapping
A : C×C → E∗ is said to be relaxed η-ξ semimonotone [1] if the following two conditions hold:

(i) for each fixed u ∈ C, A(u, ·) is relaxed η-ξ monotone; that is,

〈
A(u, v) −A(u,w), η(v,w)

〉 ≥ ξ(v −w), ∀v,w ∈ C; (1.2)

(ii) for each fixed v ∈ C, A(·, v) is completely continuous; that is, for any net {uj}
in C, uj → u0 in weak ∗ topology of E∗∗, then {A(uj, v)} has a subsequence
{A(ujk , v)} → A(u0, v) in norm topology of E∗.

In case η(x, y) = x − y for all x, y ∈ C and ξ ≡ 0, A is called semi-monotone [2]. The following
is an example of η-ξ semi-monotone mapping.

Example 1.1. Let C = (−∞,∞), A(x, y) = x + y, and

η
(
x, y

)
=

⎧
⎨
⎩
−c(x − y

)
, x ≥ y,

c
(
x − y

)
, x < y,

(1.3)

where c > 0 is a constant. Then, A is relaxed η-ξ semi-monotone with

ξ(z) =

⎧
⎨
⎩
−cz2, z ≥ 0,

cz2, z < 0.
(1.4)

Let f : C × C → R be a bifunction, η : C × C → E∗∗ a mapping, and ξ : E∗∗ → R,
ϕ : C → R two real-valued functions, and let A : C × C → E∗ be a η-ξ semi-monotone
mapping. We consider the problem of finding u ∈ C such that

f(u, v) +
〈
A(u, u), η(v, u)

〉
+ ϕ(v) ≥ ϕ(u), ∀ v ∈ C, (1.5)

which is called the generalized mixed equilibrium problem with respect to relaxed η-ξ semi-monotone
mapping (GMEP(f,A, η, ϕ)). The set of such u ∈ C is denoted by GMEP(f,A, η, ϕ), that is,

GMEP
(
f,A, η, ϕ

)
=
{
u ∈ C : f(u, v) +

〈
A(u, u), η(v, u)

〉
+ ϕ(v) ≥ ϕ(u), ∀v ∈ C

}
. (1.6)

Now, let us consider some special cases of the problem (1.5).

(a) In the case of f ≡ 0, (1.5) is deduced to the following variational-like inequality
problem:

find u ∈ C such that
〈
A(u, u), η(v, u)

〉
+ ϕ(v) − ϕ(u) ≥ 0, ∀v ∈ C. (1.7)



Journal of Applied Mathematics 3

The problem (1.7) was studied by Fang and Huang [1]. Using the KKM technique and η-ξ
monotonicity of the mapping ϕ, they [1] obtained the existence of solutions of the variational-
like inequality problem (1.7) in a real Banach space.

(b) In the case of f ≡ 0, ϕ ≡ 0 and η(v, u) = v − u for all v, u ∈ C, the problem (1.5) is
deduced to the following variational inequality problem:

Find u ∈ C such that 〈A(u, u), v − u〉 ≥ 0, ∀v ∈ C. (1.8)

The problem (1.8) was studied by Chen [2]. They obtained the existence results of solutions
in a real Banach space.

When E is a reflexive Banach space, we know E∗∗ = j(E), where j : E → E∗∗ is the
duality mapping defined by 〈jx, f〉 = 〈f, x〉, for all x ∈ E, f ∈ E∗, which is an isometric
mapping, so we may regard E = E∗∗ under an isometry. The following problems can be
derived as special cases of the problem (1.5).

(c) In case E is reflexive (i.e., E = E∗∗), f ≡ 0 and η(v, u) = v − u for all v, u ∈ C, the
problem (1.5) is deduced to the following variational inequality problem:

find u ∈ C such that 〈A(u, u), v − u〉 + ϕ(v) − ϕ(u) ≥ 0, ∀v ∈ C. (1.9)

The problem (1.9)was studied by Chen [2].

(d) If E is reflexive (i.e., E = E∗∗) and A ≡ 0, (1.5) is deduced to the mixed equilibrium
problem:

find u ∈ C such that f(u, v) + ϕ(v) ≥ ϕ(u), ∀v ∈ C. (1.10)

The problem (1.10)was considered and studied by Ceng and Yao [3]; Cholamjiak and Suantai
[4].

(e) In the case ofA ≡ 0 and ϕ ≡ 0, (1.5) is deduced to the following classical equilibrium
problem:

find u ∈ C such that f(u, v) ≥ 0, ∀v ∈ C. (1.11)

The set of all solution of (1.11) is denoted by EP(f), that is,

EP
(
f
)
=
{
u ∈ C : f(u, v) ≥ 0, ∀v ∈ C

}
. (1.12)

Numerous problems in physics, optimization, and economics can be reduced to find a
solution of the equilibrium problem, variational inequality problem, and related optimization
problems; see, for instance, [5–11]. Some methods have been proposed to solve the
equilibrium problem in a Hilbert space; see, for instance, Blum and Oettli [12]; Combettes
and Hirstoaga [13]; Moudafi [14].
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Let C be a nonempty, closed convex subset of E. A mapping S : C → E is called
nonexpansive if ‖Sx − Sy‖ ≤ ‖x − y‖ for all x, y ∈ C. Also a mapping S : C → C is
called asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with kn → 1 as
n → ∞ such that ‖Snx − Sny‖ ≤ kn‖x − y‖ for all x, y ∈ C and for each n ≥ 1. The class
of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [15] as an
important generalization of nonexpansive mappings. Denote by F(S) the set of fixed points
of S, that is, F(S) = {x ∈ C : Sx = x}. There are several methods for approximating fixed
points of a nonexpansive mapping; see, for instance, [16–21]. Furthermore, since 1972, a host
of authors have studied weak and strong convergence problems of the iterative processes
for the class of asymptotically nonexpansive mappings; see, for instance, [22–25]. In 1953,
Mann [16] introduced the following iterative procedure to approximate a fixed point of a
nonexpansive mapping S in a Hilbert space H:

xn+1 = αnxn + (1 − αn)Sxn, ∀n ∈ N, (1.13)

where the initial point x0 is taken inC arbitrarily and {αn} is a sequence in [0, 1]. However, we
note that Mann’s iteration process (1.13) has only weak convergence, in general; for instance,
see [26–28]. In 2003, Nakajo and Takahashi [29] introduced the following iterative algorithm
for the nonexpansive mapping S in the framework of Hilbert spaces:

x0 = x ∈ C,

yn = αnxn + (1 − αn)Sxn,

Cn =
{
z ∈ C :

∥∥z − yn

∥∥ ≤ ‖z − xn‖
}
,

Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn∩Qnx, n ≥ 0,

(1.14)

where {αn} ⊂ [0, α], α ∈ [0, 1], and PCn∩Qn is themetric projection from aHilbert spaceH onto
Cn ∩Qn. They proved that {xn} generated by (1.14) converges strongly to a fixed point of S.
Xu [30] extended Nakajo and Takahashi’s theorem to Banach spaces by using the generalized
projection.

Matsushita and Takahashi [17] introduced the following iterative algorithm in the
framework of Banach spaces:

x0 = x ∈ C,

Cn = co{z ∈ C : ‖z − Sz‖ ≤ tn‖xn − Sxn‖},
Dn = {z ∈ C : 〈xn − z, J(x − xn)〉 ≥ 0},

xn+1 = PCn∩Dnx, n ≥ 0,

(1.15)

where coD denoted the convex closure of the set D, {tn} is a sequence in (0, 1) with tn → 0,
and PCn∩Dn is the metric projection from E onto Cn ∩Dn.
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Very recently, Dehghan [24] introduced the following iterative algorithm for finding
fixed points of an asymptotically nonexpansivemapping S in a uniformly convex and smooth
Banach space:

x0 = x ∈ C, C0 = D0 = C,

Cn = co{z ∈ Cn−1 : ‖z − Snz‖ ≤ tn‖xn − Snxn‖},
Dn = {z ∈ Dn−1 : 〈xn − z, J(x − xn)〉 ≥ 0},

xn+1 = PCn∩Dnx, n ≥ 0,

(1.16)

where coD denotes the convex closure of the setD, J is the normalized duality mapping, {tn}
is a sequence in (0, 1) with tn → 0, and PCn∩Dn is the metric projection from E onto Cn ∩Dn.
The strong convergence theorem of the iterative sequence {xn} defined by (1.16) is obtained
in a uniformly convex and smooth Banach space.

In this paper, motivated and inspired by the above results, we first suggest and analyze
the new generalized mixed equilibrium problem with respect to relaxed η-ξ semi-monotone
mapping. Using the KKM technique, we obtain the existence of solutions for such problem in
a Banach space. Next, we also introduce a hybrid projection algorithm for finding a common
element in the solution set of a generalized mixed equilibrium problem and the fixed point
set of an asymptotically nonexpansive mapping. The strong convergence theorem of the
proposed sequence is obtained in a Banach space setting. The main results extend various
results existing in the current literature.

2. Preliminaries

Let E be a real Banach space, and let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. A Banach
space E is said to be strictly convex if for any x, y ∈ U,

x /=y implies
∥∥x + y

∥∥ < 2. (2.1)

It is also said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such that for any
x, y ∈ U,

∥∥x − y
∥∥ ≥ ε implies

∥∥x + y
∥∥ < 2(1 − δ). (2.2)

It is known that a uniformly convex Banach space is reflexive and strictly convex. Define a
function δ : [0, 2] → [0, 1] called the modulus of convexity of E as follows:

δ(ε) = inf
{
1 −

∥∥∥∥
x + y

2

∥∥∥∥ : x, y ∈ E, ‖x‖ =
∥∥y∥∥ = 1,

∥∥x − y
∥∥ ≥ ε

}
. (2.3)
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Then E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. A Banach space E is said
to be smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.4)

exists for all x, y ∈ U. Let C be a nonempty, closed, and convex subset of a reflexive, strictly
convex, and smooth Banach space E. Then for any x ∈ E, there exists a unique point x0 ∈ C
such that

‖x0 − x‖ ≤ min
y∈C

∥∥y − x
∥∥. (2.5)

The mapping PC : E → C defined by PCx = x0 is called the metric projection from E onto C.
The following theorem is wellknown.

Theorem 2.1 (see [31]). Let C be a nonempty, closed convex subset of a smooth Banach space E and
let x ∈ E, and y ∈ C. Then the following are equivalent:

(a) y is a best approximation to x : y = PCx.

(b) y is a solution of the variational inequality:

〈
y − z, J

(
x − y

)〉 ≥ 0, ∀z ∈ C, (2.6)

where J is a duality mapping and PC is the metric projection from E onto C.

It is wellknown that if PC is a metric projection from a real Hilbert space H onto a
nonempty, closed, and convex subset C, then PC is nonexpansive. But, in a general Banach
space, this fact is not true.

In the sequel, we will need the following lemmas.

Lemma 2.2 (see [32]). Let E be a uniformly convex Banach space, let {αn} be a sequence of real
numbers such that 0 < b ≤ αn ≤ c < 1 for all n ≥ 1, and let {xn} and {yn} be sequences in E such
that lim supn→∞‖xn‖ ≤ d, lim supn→∞‖yn‖ ≤ d, and limn→∞‖αnxn + (1 − αn)yn‖ = d. Then
limn→∞‖xn − yn‖ = 0.

Theorem 2.3 (see [33]). LetC be a bounded, closed, and convex subset of a uniformly convex Banach
space E. Then there exists a strictly increasing, convex, and continuous function γ : [0,∞) → [0,∞)
such that γ(0) = 0 and

γ

(∥∥∥∥∥S
(

n∑
i=1

λixi

)
−

n∑
i=1

λiSxi

∥∥∥∥∥

)
≤ max

1≤j≤k≤n
(∥∥xj − xk

∥∥ − ∥∥Sxj − Sxk

∥∥), (2.7)

for all n ∈ N, {x1, x2, . . . , xn} ⊂ C, {λ1, λ2, . . . , λn} ⊂ [0, 1] with
∑n

i=1 λi = 1 and nonexpansive
mapping S of C into E.
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Theorem 2.4 (see [24]). LetC be a bounded, closed, and convex subset of a uniformly convex Banach
space E. Then there exists a strictly increasing, convex, and continuous function γ : [0,∞) → [0,∞)
such that γ(0) = 0 and

γ

(
1
km

∥∥∥∥∥S
m

(
n∑
i=1

λixi

)
−

n∑
i=1

λiS
mxi

∥∥∥∥∥

)
≤ max

1≤j≤k≤n

(∥∥xj − xk

∥∥ − 1
km

∥∥Smxj − Smxk

∥∥
)
, (2.8)

for all n ∈ N, {x1, x2, . . . , xn} ⊂ C; {λ1, λ2, . . . , λn} ⊂ [0, 1] with
∑n

i=1 λi = 1 and an asymptotically
nonexpansive mapping S of C into E with the sequence {km}.

Now, let us recall the following well-known concepts and results.

Definition 2.5. Let B be a subset of topological vector space X. A mapping G : B → 2X is
called a KKM mapping if co{x1, x2, . . . , xm} ⊂ ⋃m

i=1 G(xi) for xi ∈ B and i = 1, 2, . . . , m, where
coA denotes the convex hull of the set A.

Lemma 2.6 (see [34]). Let B be a nonempty subset of a Hausdorff topological vector space X, and let
G : B → 2X be a KKM mapping. If G(x) is closed for all x ∈ B and is compact for at least one x ∈ B,
then

⋂
x∈B G(x)/= ∅.

Theorem 2.7 (see [35] (Kakutani-Fan-Glicksberg Fixed Point Theorem)). Let E be a locally
convex Hausdorff topological vector space and C a nonempty, convex, and compact subset of E.
Suppose T : C → 2C is a upper semi-continuous mapping with nonempty, closed, and convex values.
Then T has a fixed point in C.

Definition 2.8 (see [36]). Let C be a nonempty, closed convex of a Banach space E. Let T : C →
E∗ and let η : C × C → R be two mappings. T is said to be η-hemicontinuous if, for any fixed
x, y ∈ C, the mapping f : [0, 1] → (−∞,∞) defined by f(t) = 〈T(x + t(y − x)), η(y, x)〉 is
continuous at 0+.

For solving the mixed equilibrium problem, let us assume the following conditions for
a bifunction f : C × C → R:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for all y ∈ C, f(·, y) is weakly upper semicontinuous;

(A4) for all x ∈ C, f(x, ·) is convex.

The following lemmas can be found in [37].

Lemma 2.9 (see [37]). Let C be a nonempty, bounded, closed, and convex subset of a smooth, strictly
convex and reflexive Banach space E, let T : C → E∗ be an η-hemicontinuous and relaxed η-ξ
monotone mapping. Let f be a bifunction from C × C to R satisfying (A1) and (A4), and let ϕ be a
lower semicontinuous and convex function from C to R. Let r > 0 and z ∈ C. Assume that

(i) η(x, x) = 0, for all x ∈ C;

(ii) for any fixed u, v ∈ C, the mapping x �→ 〈Tv, η(x, u)〉 is convex.
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Then the following problems (2.9) and (2.10) are equivalent. Find x ∈ C such that:

f
(
x, y

)
+ ϕ

(
y
)
+
〈
Tx, η

(
y, x

)〉
+
1
r

〈
y − x, J(x − z)

〉 ≥ ϕ(x), ∀y ∈ C. (2.9)

Find x ∈ C such that

f
(
x, y

)
+
〈
Ty, η

(
y, x

)〉
+ ϕ

(
y
)
+
1
r

〈
y − x, J(x − z)

〉 ≥ ϕ(x) + ξ
(
y − x

)
, ∀y ∈ C.

(2.10)

Lemma 2.10 (see [37]). Let C be a nonempty, bounded, closed, and convex subset of a smooth,
strictly convex, and reflexive Banach space E, let T : C → E∗ be an η-hemicontinuous and relaxed
η-ξ monotone mapping. Let f be a bifunction from C × C to R satisfying (A1), (A3), and (A4), and
let ϕ be a lower semicontinuous and convex function from C to R. Let r > 0 and z ∈ C. Assume that

(i) η(x, y) + η(y, x) = 0 for all x, y ∈ C;

(ii) for any fixed u, v ∈ C, the mapping x �→ 〈Tv, η(x, u)〉 is convex and lower semicontinu-
ous;

(iii) ξ : E → R is weakly lower semicontinuous; that is, for any net {xβ}, {xβ} converges to x
in σ(E, E∗) implies that ξ(x) ≤ lim inf ξ(xβ).

Then, the solution set of the problem (2.9) is nonempty, that is, there exists x0 ∈ C such that

f
(
x0, y

)
+
〈
Tx0, η

(
y, x0

)〉
+ ϕ

(
y
)
+
1
r

〈
y − x0, J(x0 − z)

〉 ≥ ϕ(x0), ∀y ∈ C. (2.11)

3. Existence Results of Generalized Mixed Equilibrium Problem

In this section, we prove the following crucial lemma concerning the generalized mixed
equilibrium problemwith respect to relaxed η-ξ semi-monotone mapping (GMEP(f,A, η, ϕ))
in a real Banach space with the smooth and strictly convex second dual space.

Lemma 3.1. Let E be a real Banach space with the smooth and strictly convex second dual space E∗∗,
let C be a nonempty bounded closed convex subset of E∗∗, let A : C × C → E∗ be a relaxed η-ξ
semi-monotone mapping. Let f : C × C → R be a bifunction satisfying (A1), (A3), and (A4), and
let ϕ : C → R ∪ {+∞} be a proper lower semicontinuous and convex function. Let r > 0 and z ∈ C.
Assume that

(i) η(x, y) + η(y, x) = 0 for all x, y ∈ C;

(ii) for any fixed u, v,w ∈ C, the mapping x �→ 〈A(v,w), η(x, u)〉 is convex and lower
semicontinuous;

(iii) for each x ∈ C, A(x, ·) : C → E∗ is finite-dimensional continuous: that is, for any finite-
dimensional subspace F ⊂ E∗∗, A(x, ·) : C ∩ F → E∗ is continuous;

(iv) ξ : E∗∗ → R is convex lower semicontinuous.

Then there exists u0 ∈ C such that

f(u0, v) +
〈
A(u0, u0), η(v, u0)

〉
+ ϕ(v) +

1
r
〈v − u0, J(u0 − z)〉 ≥ ϕ(u0), ∀v ∈ C. (3.1)
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Proof. Let F ⊆ E∗∗ be a finite-dimensional subspace with CF := F ∩ C/= ∅. For each w ∈ C,
consider the following problem: find u0 ∈ CF such that

f(u0, v) +
〈
A(w,u0), η(v, u0)

〉
+ ϕ(v) +

1
r
〈v − u0, J(u0 − z)〉 − ϕ(u0) ≥ 0, ∀v ∈ CF.

(3.2)

Since CF ⊆ F is bounded closed and convex, A(w, ·) is continuous on CF and relaxed
η-ξ monotone for each fixed w ∈ C, from Lemma 2.10, we know that problem (3.2) has a
solution u0 ∈ CF .

Now, define a set-valued mapping G : CF → 2CF as follows:

Gw =
{
u ∈ CF : f(u, v)+

〈
A(w,u), η(v, u)

〉
+ϕ(v)+

1
r
〈v−u, J(u−z)〉−ϕ(u)≥0, ∀v ∈ CF

}
.

(3.3)

It follows from Lemma 2.9 that, for each fixed w ∈ CF :

{
u ∈ CF : f(u, v) +

〈
A(w,u), η(v, u)

〉
+ ϕ(v) +

1
r
〈v − u, J(u − z)〉 − ϕ(u) ≥ 0, ∀v ∈ KF

}

=
{
u∈CF :f(u, v)+

〈
A(w,v), η(v, u)

〉
+ϕ(v)+

1
r
〈v−u, J(u−z)〉−ϕ(u)≥ξ(v−u), ∀v∈KF

}
.

(3.4)

Since every convex lower semicontinuous function in Banach spaces is weakly lower
semicontinuous, the proper convex lower semicontinuity of ϕ and ξ, condition (ii), (A3) and
(A4) implies that G : CF → 2CF has nonempty bounded closed and convex values. Using
(A3) and the complete continuity ofA(·, u), we can conclude thatG is upper semicontinuous.
It follows from Theorem 2.7 that G has a fixed point w∗ ∈ CF , that is,

〈
f(w∗, v) + 〈A(w∗, w∗), η(v,w∗)

〉
+ ϕ(v) +

1
r
〈v −w∗, J(w∗ − z)〉 − ϕ(w∗) ≥ 0, ∀v ∈ CF.

(3.5)

Let

F = {F ⊂ E∗∗ : F is finite dimensional with F ∩ C/= ∅}, (3.6)

and let

WF =
{
u ∈ C : f(u, v) +

〈
A(u, v), η(v, u)

〉
+ ϕ(v)

+
1
r
〈v − u, J(u − z)〉 − ϕ(u) ≥ ξ(v − u), ∀v ∈ CF

}
, ∀F ∈ F.

(3.7)



10 Journal of Applied Mathematics

By (3.5) and Lemma 2.9, we know that WF is nonempty and bounded. Denote by W
∗
F the

weak∗-closure of WF in E∗∗. Then, W
∗
F is weak∗ compact in E∗∗.

For any Fi ∈ F, i = 1, 2, . . . ,N, we know that W⋂N
i=1 Fi

⊂ ⋂N
i=1 WFi , so {W∗

F : F ∈ F} has
the finite intersection property. Therefore, it follows that

⋂
F∈F

W
∗
F /= ∅. (3.8)

Let u0 ∈
⋂

F∈F W
∗
F . We claim that

f(u0, v) +
〈
A(u0, u0), η(v, u0)

〉
+ ϕ(v) +

1
r
〈v − u0, J(u0 − z)〉 − ϕ(u0) ≥ 0, ∀v ∈ C.

(3.9)

Indeed, for each v ∈ C, let F ∈ F be such that v ∈ CF and u0 ∈ CF . Then, there exists uj ∈ WF

such that uj ⇀ u0. The definition of WF implies that

f
(
uj, v

)
+
〈
A
(
uj, v

)
, η
(
v, uj

)〉
+ ϕ(v) +

1
r

〈
v − uj, J

(
uj − z

)〉 − ϕ
(
uj

) ≥ ξ
(
v − uj

)
,

(3.10)

that is

f
(
uj, v

)
+
〈
A
(
uj, v

)
, η
(
v, uj

)〉
+ ϕ(v) +

1
r

〈
v − z, J

(
uj − z

)〉 − 1
r

∥∥z − uj

∥∥2 − ϕ
(
uj

) ≥ ξ
(
v − uj

)
,

(3.11)

for all j = 1, 2, . . .. Using the complete continuity of A(·, u), (A3), (ii), the continuity of J , the
convex lower semicontinuity of ϕ, ξ, and ‖ · ‖2, and letting j → ∞, we get

f(u0, v) + 〈A(u0, v), η(v, u0)〉 + ϕ(v) +
1
r
〈v − u0, J(u0 − z)〉 − ϕ(u0) ≥ ξ(v − u0), ∀v ∈ C.

(3.12)

From Lemma 2.9, we have

f(u0, v) +
〈
A(u0, u0), η(v, u0)

〉
+ ϕ(v) +

1
r
〈v − u0, J(u0 − z)〉 − ϕ(u0) ≥ 0, ∀v ∈ C.

(3.13)

Hence, we complete the proof.

Setting A ≡ 0 and ϕ ≡ 0 in Lemma 3.1, we have the following result.
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Corollary 3.2. Let E be a real Banach space with the smooth and strictly convex second dual space
E∗∗, let C be a nonempty bounded closed convex subset of E∗∗. Let f : C × C → R be a bifunction
satisfying (A1), (A3), and (A4). Let r > 0 and z ∈ C. Then there exists u0 ∈ C such that

f(u0, v) +
1
r
〈v − u0, J(u0 − z)〉 ≥ 0, ∀v ∈ C. (3.14)

If E is reflexive (i.e., E = E∗∗) smooth and strictly convex real Banach space, then we
have the following result.

Corollary 3.3. Let E be a reflexive smooth and strictly convex Banach space, let C be a nonempty
bounded closed convex subset of E, letA : C ×C → E∗ be a relaxed η-ξ semi-monotone mapping. Let
f : C × C → R be a bifunction satisfying (A1), (A3), and (A4), and let ϕ : C → R ∪ {+∞} be a
proper lower semicontinuous and convex function. Let r > 0 and z ∈ C. Assume that

(i) η(x, y) + η(y, x) = 0 for all x, y ∈ C;

(ii) for any fixed u, v,w ∈ C, the mapping x �→ 〈A(v,w), η(x, u)〉 is convex and lower
semicontinuous;

(iii) for each x ∈ C, A(x, ·) : C → E∗ is finite-dimensional continuous.

(iv) ξ : E → R is convex lower semicontinuous.

Then, there exists u0 ∈ C such that

f(u0, v) +
〈
A(u0, u0), η(v, u0)

〉
+ ϕ(v) +

1
r
〈v − u0, J(u0 − z)〉 ≥ ϕ(u0), ∀v ∈ C. (3.15)

If E is reflexive (i.e., E = E∗∗) smooth and strictly convex, A is semi-monotone, then
we obtain the following result.

Corollary 3.4. Let E be a reflexive smooth and strictly convex Banach space, let C be a nonempty
bounded closed convex subset of E, let A : C × C → E∗ be a semi-monotone mapping. Let f :
C ×C → R be a bifunction satisfying (A1), (A3), and (A4), and let ϕ : C → R∪ {+∞} be a proper
lower semicontinuous and convex function. Assume that, for any r > 0 and z ∈ C,

(i) for any fixed u, v,w ∈ C, the mapping x �→ 〈A(v,w), x − u)〉 is convex and lower
semicontinuous;

(ii) for each x ∈ C, A(x, ·) : C → E∗ is finite-dimensional continuous.

Then, there exists u0 ∈ C such that

f(u0, v) + 〈A(u0, u0), v − u0〉 + ϕ(v) +
1
r
〈v − u0, J(u0 − z)〉 ≥ ϕ(u0), ∀v ∈ C. (3.16)

Theorem 3.5. Let E be a real Banach space with the smooth and strictly convex second dual space
E∗∗, let C be a nonempty, bounded, closed, and convex subset of E∗∗, let A : C ×C → E∗ be a relaxed
η-ξ semi-monotone mapping. Let f be a bifunction from C × C to R satisfying (A1)–(A4) and let
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ϕ be a lower semicontinuous and convex function from C to R. For any r > 0, define a mapping
Φr : E∗∗ → C as follows:

Φr(x) =
{
u ∈ C : f(u, v) +

〈
A(u, u), η(v, u)

〉
+ ϕ(v) +

1
r
〈v − u, J(u − x)〉 ≥ ϕ(u), ∀v ∈ C

}
,

(3.17)

for all x ∈ E. Assume that

(i) η(x, y) + η(y, x) = 0 for all x, y ∈ C;

(ii) for any fixed u, v,w ∈ C, the mapping x �→ 〈A(v,w), η(x, u)〉 is convex and lower
semicontinuous;

(iii) for each x ∈ C, A(x, ·) : C → E∗ is finite-dimensional continuous: that is, for any finite-
dimensional subspace F ⊂ E∗∗, A(x, ·) : C ∩ F → E∗ is continuous;

(iv) ξ : E∗∗ → R is convex lower semicontinuous;

(v) for any x, y ∈ C, ξ(x − y) + ξ(y − x) ≥ 0;

(vi) for any x, y ∈ C, A(x, y) = A(y, x).

Then, the following holds:

(1) Φr is single-valued;

(2) 〈Φrx −Φry, J(Φrx − x)〉 ≤ 〈Φrx −Φry, J(Φry − y)〉 for all x, y ∈ E;

(3) F(Φr) = GMEP(f,A, η, ϕ);

(4) GMEP(f,A, η, ϕ) is nonempty, closed, and convex.

Proof. For each x ∈ E∗∗, by Lemma 2.10, we conclude that Φr(x) is nonempty.

(1) We prove that Φr is single-valued. Indeed, for x ∈ E∗∗ and r > 0, let z1, z2 ∈ Φr(x).
Then,

f(z1, v) +
〈
A(z1, z1), η(v, z1)

〉
+ ϕ(v) +

1
r
〈v − z1, J(z1 − x)〉 ≥ ϕ(z1), ∀v ∈ C,

f(z2, v) +
〈
A(z2, z2), η(v, z2)

〉
+ ϕ(v) +

1
r
〈v − z2, J(z2 − x)〉 ≥ ϕ(z2), ∀v ∈ C.

(3.18)

Hence,

f(z1, z2) +
〈
A(z1, z1), η(z2, z1)

〉
+ ϕ(z2) +

1
r
〈z2 − z1, J(z1 − x)〉 ≥ ϕ(z1),

f(z2, z1) +
〈
A(z2, z2), η(z1, z2)

〉
+ ϕ(z1) +

1
r
〈z1 − z2, J(z2 − x)〉 ≥ ϕ(z2).

(3.19)

Adding the two inequalities, from (i)we have

f(z2, z1) + f(z1, z2) +
〈
A(z1, z1) −A(z2, z2), η(z2, z1)

〉
+
1
r
〈z2 − z1, J(z1 − x) − J(z2 − x)〉 ≥ 0.

(3.20)
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From (A2), we have

〈
A(z1, z1) −A(z2, z2), η(z2, z1)

〉
+
1
r
〈z2 − z1, J(z1 − x) − J(z2 − x)〉 ≥ 0. (3.21)

That is,

1
r
〈z2 − z1, J(z1 − x) − J(z2 − x)〉 ≥ 〈A(z2, z2) −A(z1, z1), η(z2, z1)

〉
. (3.22)

Calculating the right-hand side of (3.22), we have

〈
A(z2, z2) −A(z1, z1), η(z2, z1)

〉

=
〈
A(z2, z2) −A(z2, z1) +A(z2, z1) −A(z1, z2) +A(z1, z2) −A(z1, z1), η(z2, z1)

〉

=
〈
A(z2, z2) −A(z2, z1), η(z2, z1)

〉
+
〈
A(z2, z1) −A(z1, z2), η(z2, z1)

〉

+
〈
A(z1, z2) −A(z1, z1), η(z2, z1)

〉

≥ 2ξ(z2 − z1) +
〈
A(z2, z1) −A(z1, z2), η(z2, z1)

〉
,

(3.23)

and so,

1
r
〈z2 − z1, J(z1 − x) − J(z2 − x)〉 ≥ 2ξ(z2 − z1) +

〈
A(z2, z1) −A(z1, z2), η(z2, z1)

〉
. (3.24)

In (3.24) exchanging the position of z1 and z2, we get

1
r
〈z1 − z2, J(z2 − x) − J(z1 − x)〉 ≥ 2ξ(z1 − z2) +

〈
A(z1, z2) −A(z2, z1), η(z1, z2)

〉
. (3.25)

Adding the inequalities (3.24) and (3.25) and using (v) and (vi), we have

〈z2 − z1, J(z1 − x) − J(z2 − x)〉 ≥ r(ξ(z2 − z1) + ξ(z1 − z2)) ≥ 0. (3.26)

Hence,

0 ≤ 〈z2 − z1, J(z1 − x) − J(z2 − x)〉 = 〈(z2 − x) − (z1 − x), J(z1 − x) − J(z2 − x)〉. (3.27)

Since J is monotone and E∗∗ is strictly convex, we obtain that z1−x = z2−x and hence z1 = z2.
Therefore, Φr is single-valued.
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(2) For x, y ∈ C, we have

f
(
Φrx,Φry

)
+
〈
A(Φrx,Φrx), η

(
Φry,Φrx

)〉
+ϕ
(
Φry

)−ϕ(Φrx)+
1
r

〈
Φry−Φrx, J(Φrx−x)

〉 ≥ 0,

f
(
Φry,Φrx

)
+
〈
A
(
Φry,Φry

)
, η
(
Φrx,Φry

)〉
+ϕ(Φrx)−ϕ

(
Φry

)
+
1
r

〈
Φrx−Φry, J

(
Φry−y

)〉 ≥ 0.

(3.28)

Adding the above two inequalities and by (i) and (A2), we get

〈
A(Φrx,Φrx) −A

(
Φry,Φry

)
, η
(
Φry,Φrx

)〉
+
1
r

〈
Φry −Φrx, J(Φrx − x) − J

(
Φry − y

)〉 ≥ 0,

(3.29)

that is

1
r

〈
Φry −Φrx, J(Φrx − x) − J

(
Φry − y

)〉 ≥ 〈A(Φry,Φry
) −A(Φrx,Φrx), η

(
Φry,Φrx

)〉
.

(3.30)

After calculating (3.30), we have

1
r

〈
Φry −Φrx, J(Φrx − x) − J

(
Φry − y

)〉 ≥ 2ξ
(
Φry,Φrx

)

+
〈
A
(
Φry,Φrx

) −A
(
Φrx,Φry

)
, η
(
Φry,Φrx

)〉
.

(3.31)

In (3.30), exchanging the position of Φrx and Φry, we get

1
r
〈Φrx −Φry, J

(
Φry − y

) − J(Φrx − x)〉 ≥ 2ξ
(
Φrx,Φry

)

+
〈
A
(
Φrx,Φry

) −A
(
Φry,Φrx

)
, η
(
Φrx,Φry

)〉
.

(3.32)

Adding the inequalities (3.31) and (3.32), use (i) and (vi), we have

〈
Φry −Φrx, J(Φrx − x) − J

(
Φry − y

)〉 ≥ r
(
ξ
(
Φrx,Φry

)
+ ξ
(
Φry,Φrx

))
. (3.33)

It follows from (iv) that

〈
Φry −Φrx, J(Φrx − x) − J

(
Φry − y

)〉 ≥ 0. (3.34)
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Hence,

〈Φrx −Φry, J(Φrx − x)〉 ≤ 〈Φrx −Φry, J
(
Φry − y

)〉. (3.35)

(3) Next, we show that F(Φr) = GMEP(f,A, η, ϕ). Indeed, we have the following:

u ∈ F(Φr) ⇐⇒ u = Φru

⇐⇒ f(u, v) +
〈
A(u, u), η(v, u)

〉
+ ϕ(v) +

1
r
〈v − u, J(u − u)〉 ≥ ϕ(u), ∀v ∈ C

⇐⇒ f(u, v) +
〈
A(u, u), η(v, u)

〉
+ ϕ(v) ≥ ϕ(u), ∀v ∈ C

⇐⇒ u ∈ GMEP
(
f,A, η, ϕ

)
.

(3.36)

Hence, F(Φr) = GMEP(f,A, η, ϕ).

(4) Finally, we prove that GMEP(f,A, η, ϕ) is nonempty, closed, and convex. For each
v ∈ C, we define the multivalued mapping G : C → 2E

∗∗
by

G(v) =
{
u ∈ C : f(u, v) +

〈
A(u, u), η(v, u)

〉
+ ϕ(v) ≥ ϕ(u)

}
. (3.37)

Since v ∈ G(v), we have G(v)/= ∅. We prove that G is a KKM mapping on C. Suppose that
there exists a finite subset {z1, z2, . . . , zm} of C, and αi > 0 with

∑m
i=1 αi = 1 such that ẑ =∑m

i=1 αizi /∈ G(zi) for all i = 1, 2, . . . , m. Then

f(ẑ, zi) +
〈
A(ẑ, ẑ), η(zi, ẑ)

〉
+ ϕ(zi) − ϕ(ẑ) < 0, i = 1, 2, . . . , m. (3.38)

From (A1), (A4), (ii), and the convexity of ϕ, we have

0 = f(ẑ, ẑ) +
〈
A(ẑ, ẑ), η(ẑ, ẑ)

〉
+ ϕ(ẑ) − ϕ(ẑ)

= f

(
ẑ,

m∑
i=1

αizi

)
+

〈
A(ẑ, ẑ), η

(
m∑
i=1

αizi, ẑ

)〉
+ ϕ

(
m∑
i=1

αizi

)
− ϕ(ẑ)

≤
m∑
i=1

αi

(
f(ẑ, zi) +

〈
A(ẑ, ẑ), η(zi, ẑ)

〉
+ ϕ(zi) − ϕ(ẑ)

)

< 0,

(3.39)

which is a contradiction. Thus, G is a KKM mapping on C.
Next, we prove that G(y) is closed for each y ∈ C. For any y ∈ C, let {xn} be any

sequence in G(y) such that xn → x0. We claim that x0 ∈ G(y). Then, for each y ∈ C, we have

f
(
xn, y

)
+
〈
A(xn, xn), η

(
y, xn

)〉
+ ϕ

(
y
) ≥ ϕ(xn). (3.40)
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By monotonicity of A, we obtain that

f
(
xn, y

)
+
〈
A
(
xn, y

)
, η
(
y, xn

)〉
+ ϕ

(
y
) ≥ ϕ(xn) + ξ

(
y − xn

)
. (3.41)

By (A3), (i), (ii), (iv), lower semicontinuity of ϕ, and the complete continuity ofA, we obtain
the following

ϕ(x0) +
〈
A
(
x0, y

)
, η
(
x0, y

)〉 ≤ lim inf
n→∞

ϕ(xn) + lim inf
n→∞

〈
A
(
xn, y

)
, η
(
xn, y

)〉

≤ lim inf
n→∞

(
ϕ(xn) +

〈
A
(
xn, y

)
, η
(
xn, y

)〉)

= lim inf
n→∞

(
ϕ(xn) −

〈
A
(
xn, y

)
, η
(
y, xn

)〉)

≤ lim sup
n→∞

(
ϕ(xn) −

〈
A
(
xn, y

)
, η
(
y, xn

)〉)

≤ lim sup
n→∞

(
f
(
xn, y

)
+ ϕ

(
y
) − ξ

(
y − xn

))

≤ f
(
x0, y

)
+ ϕ

(
y
) − ξ

(
y − x0

)
.

(3.42)

Hence,

f
(
x0, y

)
+
〈
A
(
x0, y

)
, η
(
y, x0

)〉
+ ϕ

(
y
) ≥ ϕ(x0) + ξ

(
y − x0

)
, ∀y ∈ C. (3.43)

From Lemma 2.9, we have

f
(
x0, y

)
+
〈
A(x0, x0), η

(
y, x0

)〉
+ ϕ

(
y
) ≥ ϕ(x0), ∀y ∈ C. (3.44)

This shows that x0 ∈ G(y), and henceG(y) is closed for each y ∈ C. Thus, GMEP(f,A, η, ϕ) =⋂
y∈C G(y) is also closed.

Next, we observe thatG(y) is weakly compact. In fact, since C is bounded, closed, and
convex, we also have G(y), which is weakly compact in the weak topology. By Lemma 2.6,
we can conclude that

⋂
y∈C G(y) = GMEP(f,A, η, ϕ)/= ∅.

Finally, we prove that GMEP(f,A, η, ϕ) is convex. In fact, let u, v ∈ F(Φr), and zt =
tu + (1 − t)v for t ∈ (0, 1). From (2), we know that

〈Φru −Φrzt, J(Φrzt − zt) − J(Φru − u)〉 ≥ 0. (3.45)

This yields that

〈u −Φrzt, J(Φrzt − zt)〉 ≥ 0. (3.46)

Similarly, we also have

〈v −Φrzt, J(Φrzt − zt)〉 ≥ 0. (3.47)
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It follows from (3.46) and (3.47) that

‖zt −Φrzt‖2 = 〈zt −Φrzt, J(zt −Φrzt)〉
= t〈u −Φrzt, J(zt −Φrzt)〉 + (1 − t)〈v −Φrzt, J(zt −Φrzt)〉
≤ 0.

(3.48)

Hence, zt ∈ F(Φr) = GMEP(f,A, η, ϕ) and hence GMEP(f,A, η, ϕ) is convex. This completes
the proof.

If E is reflexive (i.e., E = E∗∗) smooth and strictly convex, then the following result can
be derived as a corollary of Theorem 3.5

Corollary 3.6. Let E be a reflexive smooth and strictly convex Banach space, let C be a nonempty,
bounded, closed, and convex subset of E, and let A : C × C → E∗ be a relaxed η-ξ semi-
monotone mapping. Let f be a bifunction from C × C to R satisfying (A1)–(A4) and let ϕ be a
lower semicontinuous and convex function from C to R. Let r > 0 and z ∈ C and define a mapping
Φr : E → C as follows:

Φr(x) =
{
u ∈ C : f(u, v) +

〈
A(u, u), η(v, u)

〉
+ ϕ(v) +

1
r
〈v − u, J(u − x)〉 ≥ ϕ(u), ∀v ∈ C

}
,

(3.49)

for all x ∈ E. Assume that

(i) η(x, y) + η(y, x) = 0 for all x, y ∈ C;

(ii) for any fixed u, v,w ∈ C, the mapping x �→ 〈A(v,w), η(x, u)〉 is convex and lower
semicontinuous;

(iii) for each x ∈ C,A(x, ·) : C → E∗ is finite-dimensional continuous;

(iv) ξ : E → R is convex lower semicontinuous;

(v) for any x, y ∈ C, ξ(x − y) + ξ(y − x) ≥ 0;

(vi) for any x, y ∈ C, A(x, y) = A(y, x).

Then, the following holds:

(1) Φr is single-valued;

(2) 〈Φrx −Φry, J(Φrx − x)〉 ≤ 〈Φrx −Φry, J(Φry − y)〉 for all x, y ∈ E;

(3) F(Φr) = GMEP(f,A, η, ϕ);

(4) GMEP(f,A, η, ϕ) is nonempty, closed, and convex.

4. Strong Convergence Theorems

In this section, we prove a strong convergence theorem by using a hybrid projection algorithm
for an asymptotically nonexpansive mapping in a uniformly convex and smooth Banach
space.
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Theorem 4.1. Let E be a real Banach space with the smooth and uniformly convex second dual space
E∗∗, let C be a nonempty, bounded, closed, and convex subset of E∗∗. Let f be a bifunction from C ×C
to R satisfying (A1)–(A4), and let ϕ be a lower semicontinuous and convex function from C to R.
Let A : C × C → E∗ be a relaxed η-ξ semi-monotone and let S : C → C be an asymptotically
nonexpansive mapping with a sequence {kn} ⊂ [1,∞) such that kn → 1 as n → ∞. Assume that
Ω := F(S) ∩GMEP(f,A, η, ϕ)/= ∅. Let {xn} be a sequence in C generated by

x0 ∈ C, D0 = C0 = C,

Cn = co{z ∈ Cn−1 : ‖z − Snz‖ ≤ tn‖xn − Snxn‖}, n ≥ 1,

un ∈ C such that

f
(
un, y

)
+ ϕ

(
y
)
+
〈
A(un, un), η

(
y, un

)〉
+

1
rn

〈
y − un, J(un − xn)

〉 ≥ ϕ(un), ∀y ∈ C, n ≥ 0,

Dn = {z ∈ Dn−1 : 〈un − z, J(xn − un)〉 ≥ 0}, n ≥ 1,

xn+1 = PCn∩Dnx0, n ≥ 0,
(4.1)

where {tn} and {rn} are real sequences in (0, 1) such that limn→∞tn = 0, and lim infn→∞rn > 0.
Then {xn} converges strongly, as n → ∞, to PΩx0.

Proof. Firstly, we rewrite the (4.1) as follows:

x0 ∈ C, D0 = C0 = C,

Cn = co{z ∈ Cn−1 : ‖z − Snz‖ ≤ tn‖xn − Snxn‖}, n ≥ 0,

Dn = {z ∈ Dn−1 : 〈Φrnxn − z, J(xn −Φrnxn)〉 ≥ 0}, n ≥ 1,

xn+1 = PCn∩Dnx0, n ≥ 0,

(4.2)

where Φr is the mapping defined by

Φr(x) =
{
z ∈ C : f

(
z, y

)
+
〈
A(z, z), η

(
y, z

)〉
+ ϕ

(
y
)
+
1
r

〈
y − z, J(z − x)

〉 ≥ ϕ(z), ∀y ∈ C

}
.

(4.3)

We first show that the sequence {xn} is well defined. It is easy to verify that Cn ∩Dn is closed
and convex and Ω ⊂ Cn for all n ≥ 0. Next, we prove that Ω ⊂ Cn ∩Dn. Since D0 = C, we also
have Ω ⊂ C0 ∩ D0. Suppose that Ω ⊂ Ck−1 ∩ Dk−1 for k ≥ 2. It follows from Theorem 3.5 (2)
that

〈Φrkxk −Φrku, J(Φrku − u) − J(Φrkxk − xk)〉 ≥ 0, (4.4)
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for all u ∈ Ω. This implies that

〈Φrkxk − u, J(xk −Φrkxk)〉 ≥ 0, (4.5)

for all u ∈ Ω. HenceΩ ⊂ Dk. By the mathematical induction, we get thatΩ ⊂ Cn ∩Dn for each
n ≥ 0, and hence {xn} is welldefined. Putw = PΩx0. Since Ω ⊂ Cn ∩Dn and xn+1 = PCn∩Dn , we
have

‖xn+1 − x0‖ ≤ ‖w − x0‖, n ≥ 0. (4.6)

Since xn+2 ∈ Dn+1 ⊂ Dn and xn+1 = PCn∩Dnx0, we have

‖xn+1 − x0‖ ≤ ‖xn+2 − x0‖. (4.7)

Since {‖xn −x0‖} is bounded, we have limn→∞‖xn −x0‖ = d for some a constant d. Moreover,
by the convexity of Dn, we also have (1/2)(xn+1 + xn+2) ∈ Dn and hence

‖x0 − xn+1‖ ≤
∥∥∥x0 − xn+1 + xn+2

2

∥∥∥ ≤ 1
2
(‖x0 − xn+1‖ + ‖x0 − xn+2‖). (4.8)

This implies that

lim
n→∞

∥∥∥∥
1
2
(x0 − xn+1) +

1
2
(x0 − xn+2)

∥∥∥∥ = lim
n→∞

∥∥∥x0 − xn+1 + xn+2

2

∥∥∥ = d. (4.9)

By Lemma 2.2, we have

lim
n→∞

‖xn − xn+1‖ = 0. (4.10)

Next, we show that

lim
n→∞

‖xn − Sxn‖ = 0. (4.11)

To obtain (4.11), we need to show that limn→∞‖xn − Sn−kxn‖ = 0, for all k ∈ N.
Fix k ∈ N and putm = n−k. Since xn = PCn−1∩Dn−1x, we have xn ∈ Cn−1 ⊆ · · · ⊆ Cm. Since

tm > 0, there exist y1, . . . , yN ∈ C and nonnegative numbers λ1, . . . , λN with λ1 + · · · + λN = 1
such that

∥∥∥∥∥xn −
N∑
i=1

λiyi

∥∥∥∥∥ < tm, (4.12)
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and ‖yi − Smyi‖ ≤ tm‖xm − Smxm‖ for all i ∈ {1, . . . ,N}. Put M = supx∈C‖x‖, u = PF(S)x and
r0 = supn≥1(1 + kn)‖xn − u‖. Since C and {km} are bounded, (4.12) implies

∥∥∥∥∥xn − 1
km

N∑
i=1

λiyi

∥∥∥∥∥ ≤
(
1 − 1

km

)
‖x‖ + 1

km

∥∥∥∥∥xn −
N∑
i=1

λiyi

∥∥∥∥∥ ≤
(
1 − 1

km

)
M + tm, (4.13)

and ‖yi −Smyi‖ ≤ tm‖xm −Smxm‖ ≤ tm(1+km)‖xm −u‖ ≤ r0tm for all i ∈ {1, . . . ,N}. Therefore,
∥∥∥∥yi − 1

km
Smyi

∥∥∥∥ ≤
(
1 − 1

km

)
M + r0tm, (4.14)

for all i ∈ {1, . . . ,N}. Moreover, asymptotically nonexpansiveness of S and (4.6) give that

∥∥∥∥∥
1
km

Sm

(
N∑
i=1

λiyi

)
− Smxn

∥∥∥∥∥ ≤
(
1 − 1

km

)
M + tm. (4.15)

It follows from Theorem 2.4, (4.13)–(4.15) that

‖xn − Smxn‖ ≤
∥∥∥∥∥xn − 1

km

N∑
i=1

λiyi

∥∥∥∥∥ +
1
km

∥∥∥∥∥
N∑
i=1

λi
(
yi − Smyi

)
∥∥∥∥∥

+
1
km

∥∥∥∥∥
N∑
i=1

λiS
myi − Sm

(
N∑
i=1

λiyi

)∥∥∥∥∥ +

∥∥∥∥∥
1
km

Sm

(
N∑
i=1

λiyi

)
− Smxn

∥∥∥∥∥

≤ 2
(
1 − 1

km

)
M + 2tm +

r0tm
km

+ γ−1
(

max
1≤i≤j≤N

(∥∥∥∥yi − yj‖ − 1
km

‖Smyi − Smyj

∥∥∥∥
))

≤ 2
(
1− 1

km

)
M+2tm+

r0tm
km

+γ−1
(

max
1≤i≤j≤N

(∥∥∥∥yi− 1
km

Smyi

∥∥∥∥+
∥∥∥∥yj− 1

km
Smyj

∥∥∥∥
))

≤ 2
(
1 − 1

km

)
M + 2tm +

r0tm
km

+ γ−1
(
2
(
1 − 1

km

)
M + 2r0tm

)
.

(4.16)

Since limn→∞kn = 1 and limn→∞tn = 0, it follows from the last inequality that limn→∞‖xn −
Smxn‖ = 0. We have that

‖xn − Sxn‖ =
∥∥∥xn − Sn−1xn

∥∥∥ +
∥∥∥Sn−1xn − Sxn

∥∥∥

≤
∥∥∥xn − Sn−1xn

∥∥∥ + k1
∥∥∥Sn−2xn − xn

∥∥∥ −→ 0 as n −→ ∞.

(4.17)

Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ x̃ ∈ C.
Therefore, we obtain x̃ ∈ F(S). Next, we show that x̃ ∈ GMEP(f,A, η, ϕ). By the construction
of Dn, we see from Theorem 2.1 that Φrnxn = PDnxn. Since xn+1 ∈ Dn, we get

‖xn −Φrnxn‖ ≤ ‖xn − xn+1‖ −→ 0. (4.18)
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From (C2), we also have

1
rn
‖J(xn −Φrnxn)‖ =

1
rn
‖xn −Φrnxn‖ −→ 0, (4.19)

as n → ∞. By (4.19), we also have Φrni
xni ⇀ x̃. By the definition of Φrni

, for each y ∈ C, we
obtain

f
(
Φrni

xni , y
)
+
〈
A
(
Φrni

xni ,Φrni
xni

)
, η
(
y,Φrni

xni

)〉
+ ϕ

(
y
)

+
1
rni

〈
y −Φrni

xni , J
(
Φrni

xni − xni

)〉
≥ ϕ

(
Φrni

xni

)
.

(4.20)

By (A3), (4.19), (ii), the weakly lower semicontinuity of ϕ and complete continuity of A we
have

ϕ(x̃) ≤ lim inf
i→∞

ϕ
(
Φrni

xni

)

≤ lim inf
i→∞

f
(
Φrni

xni , y
)
+ lim inf

i→∞

〈
A
(
Φrni

xni ,Φrni
xni

)
, η
(
y,Φrni

xni

)〉

+ ϕ
(
y
)
+ lim inf

i→∞
1
rni

〈
y −Φrni

xni , J
(
Φrni

xni − xni

)〉

≤ f
(
x̃, y

)
+ ϕ

(
y
)
+
〈
A(x̃, x̃), η

(
y, x̃

)〉
.

(4.21)

Hence,

f
(
x̃, y

)
+ ϕ

(
y
)
+
〈
A(x̃, x̃), η

(
y, x̃

)〉 ≥ ϕ(x̃). (4.22)

This shows that x̃ ∈ GMEP(f,A, η, ϕ), and hence x̃ ∈ Ω := F(S) ∩GMEP(f,A, η, ϕ).
Finally, we show that xn → w as n → ∞, where w := PΩx0. By the weakly lower

semicontinuity of the norm, it follows from (4.6) that

‖x0 −w‖ ≤ ‖x0 − x̃‖ ≤ lim inf
i→∞

‖x0 − xni‖ ≤ lim sup
i→∞

‖x0 − xni‖ ≤ ‖x0 −w‖. (4.23)

This shows that

lim
i→∞

‖x0 − xni‖ = ‖x0 −w‖ = ‖x0 − x̃‖, (4.24)

and x̃ = w. Since E∗∗ is uniformly convex, we obtain that x0 − xni → x0 − w. It follows that
xni → w. So, we have xn → w as n → ∞. This completes the proof.

If S is a nonexpansive mapping in Theorem 4.1, then we obtain the following result
concerning the problem of finding a common element of GMEP(f,A, η, ϕ) and the fixed point
set of a nonexpansive mapping in a Banach space setting.
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Theorem 4.2. Let E be a real Banach space with the smooth and uniformly convex second dual space
E∗∗, let C be a nonempty, bounded, closed, and convex subset of E∗∗. Let f be a bifunction from C ×C
to R satisfying (A1)–(A4) and let ϕ be a lower semicontinuous and convex function from C to R. Let
A : C × C → E∗ be a relaxed η-ξ semi-monotone and let S : C → C be a nonexpansive mapping
such that Ω := F(S) ∩GMEP(f,A, η, ϕ)/= ∅. Let {xn} be a sequence in C generated by

x0 ∈ C, D0 = C0 = C,

Cn = co{z ∈ Cn−1 : ‖z − Sz‖ ≤ tn‖xn − Sxn‖}, n ≥ 1,

un ∈ C such that

f
(
un, y

)
+ ϕ

(
y
)
+
〈
A(un, un), η

(
y, un

)〉
+

1
rn

〈
y − un, J(un − xn)

〉 ≥ ϕ(un), ∀y ∈ C, n ≥ 0,

Dn = {z ∈ Dn−1 : 〈un − z, J(xn − un)〉 ≥ 0}, n ≥ 1,

xn+1 = PCn∩Dnx0, n ≥ 0,
(4.25)

where {tn} and {rn} are real sequences in (0, 1) such that limn→∞tn = 0, and lim infn→∞rn > 0.
Then, {xn} converges strongly, as n → ∞, to PΩx0.

PuttingA ≡ 0 and ϕ ≡ 0 in Theorem 4.1, then we have the following result in a Banach
space.

Theorem 4.3. Let E be a real Banach space with the smooth and uniformly convex second dual space
E∗∗ and let C be a nonempty, bounded, closed, and convex subset of E∗∗. Let f be a bifunction from
C × C to R satisfying (A1)–(A4). Let S : C → C be an asymptotically nonexpansive mapping with
a sequence {kn} ⊂ [1,∞) such thatΩ := F(S) ∩ EP(f)/= ∅. Let {xn} be a sequence in C generated by

x0 ∈ C, D0 = C0 = C,

Cn = co{z ∈ Cn−1 : ‖z − Snz‖ ≤ tn‖xn − Snxn‖}, n ≥ 1,

un ∈ C such that

f
(
un, y

)
+

1
rn

〈
y − un, J(un − xn)

〉 ≥ 0, ∀y ∈ C, n ≥ 0,

Dn = {z ∈ Dn−1 : 〈un − z, J(xn − un)〉 ≥ 0}, n ≥ 1,

xn+1 = PCn∩Dnx0, n ≥ 0,

(4.26)

where {tn} and {rn} are real sequences in (0, 1) such that limn→∞tn = 0, and lim infn→∞rn > 0.
Then, {xn} converges strongly, as n → ∞, to PΩx0.

Putting f ≡ 0, A ≡ 0, ϕ ≡ 0, and rn ≡ 1 in Theorem 4.1 and applying Theorem 2.1, we
get xn = un. Then, we have the following new approximationmethod concerning the problem
of finding a fixed of an asymptotically nonexpansive mapping in a Banach space.
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Theorem 4.4. Let E be a real Banach space with the smooth and uniformly convex second dual
space E∗∗, let C be a nonempty, bounded, closed, and convex subset of E∗∗. Let S : C → C be an
asymptotically nonexpansive mapping with a sequence {kn} ⊂ [1,∞) such that F(S)/= ∅. Let {xn} be
a sequence in C generated by

x0 ∈ C, C0 = C,

Cn = co{z ∈ Cn−1 : ‖z − Snz‖ ≤ tn‖xn − Snxn‖}, n ≥ 1,

xn+1 = PCnx0, n ≥ 0,

(4.27)

where {tn} and {rn} is a real sequence in (0, 1) such that limn→∞tn = 0. Then {xn} converges
strongly, as n → ∞, to PF(S)x0.

If E is reflexive (i.e., E = E∗∗) smooth and uniformly convex, then the following results
can be derived as a corollary of Theorem 4.4.

Corollary 4.5. Let E be a reflexive smooth and uniformly convex real Banach space, let C be a
nonempty, bounded, closed, and convex subset ofE. Let S : C → C be an asymptotically nonexpansive
mapping with a sequence {kn} ⊂ [1,∞] such that F(S)/= ∅. Let {xn} be a sequence in C generated by

x0 ∈ C, C0 = C,

Cn = co{z ∈ Cn−1 : ‖z − Snz‖ ≤ tn‖xn − Snxn‖}, n ≥ 1,

xn+1 = PCnx0, n ≥ 0,

(4.28)

where {tn} and {rn} is a real sequence in (0, 1) such that limn→∞tn = 0. Then, {xn} converges
strongly, as n → ∞, to PF(S)x0.
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