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The aim of this paper is to prove some best proximity point theorems for new classes of cyclic mappings, called pointwise cyclic
orbital contractions and asymptotic pointwise cyclic orbital contractions. We also prove a convergence theorem of best proximity
point for relatively nonexpansive mappings in uniformly convex Banach spaces.

1. Introduction and Preliminaries

Let (𝑋, 𝑑) be a metric space, and let 𝐴, 𝐵 be subsets of 𝑋. A
mapping 𝑇 : 𝐴∪𝐵 → 𝐴∪𝐵 is said to be cyclic provided that
𝑇(𝐴) ⊆ 𝐵 and 𝑇(𝐵) ⊆ 𝐴. In 2003, Kirk et al. [1] proved the
following generalization of Banach contraction principle.

Theorem 1 (see [1]). Let 𝐴 and 𝐵 be nonempty closed subsets
of a complete metric space (𝑋, 𝑑). Suppose that 𝑇 is a cyclic
mapping such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑑 (𝑥, 𝑦) , (1)

for some 𝛼 ∈ (0, 1) and for all 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵. Then 𝑇 has a
unique fixed point in 𝐴 ∩ 𝐵.

In [2] Eldred and Veeramani introduced the class of cyclic
contractions as follows.

Definition 2 (see [2]). Let 𝐴 and 𝐵 be nonempty subsets of a
metric space 𝑋. A mapping 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 is said to be
a cyclic contraction if 𝑇 is cyclic and

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑑 (𝑥, 𝑦) + (1 − 𝛼) dist (𝐴, 𝐵) , (2)

for some 𝛼 ∈ (0, 1) and for all 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵.

Let𝑇 be a cyclic mapping. A point 𝑥 ∈ 𝐴∪𝐵 is said to be a
best proximity point for𝑇 provided that 𝑑(𝑥, 𝑇𝑥) = dist(𝐴, 𝐵),
where

dist (𝐴, 𝐵) := inf {𝑑 (𝑥, 𝑦) : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} . (3)

Note that if dist(𝐴, 𝐵) = 0, then the best proximity point is
nothing but a fixed point of 𝑇.

The next theorem ensures existence, uniqueness, and
convergence of best proximity point for cyclic contractions
in uniformly convex Banach spaces.

Theorem 3 (see [2]). Let 𝐴 and 𝐵 be nonempty closed convex
subsets of a uniformly convex Banach space 𝑋 and let 𝑇 : 𝐴 ∪

𝐵 → 𝐴 ∪ 𝐵 be a cyclic contraction map. For 𝑥
0
∈ 𝐴, define

𝑥
𝑛+1

:= 𝑇𝑥
𝑛
for each 𝑛 ≥ 0. Then there exists a unique 𝑥 ∈ 𝐴

such that 𝑥
2𝑛

→ 𝑥 and ‖𝑥 − 𝑇𝑥‖ = dist(𝐴, 𝐵).

Recently, Suzuki et al. in [3] introduced the notion of
propertyUCwhich is a kind of geometric property for subsets
of a metric space𝑋.

Definition 4 (see [3]). Let 𝐴 and 𝐵 be nonempty subsets of a
metric space (𝑋, 𝑑).Then (𝐴, 𝐵) is said to satisfy property UC
if the following holds.
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If {𝑥
𝑛
} and {𝑧

𝑛
} are sequences in 𝐴 and {𝑦

𝑛
} is a sequence in

𝐵 such that lim
𝑛
𝑑(𝑥
𝑛
, 𝑦
𝑛
) = dist(𝐴, 𝐵) and lim

𝑛
𝑑(𝑧
𝑛
, 𝑦
𝑛
) =

dist(𝐴, 𝐵), then we have lim
𝑛
𝑑(𝑥
𝑛
, 𝑧
𝑛
) = 0.

We mention that if 𝐴 and 𝐵 are nonempty subsets of a
uniformly convex Banach space 𝑋 such that 𝐴 is convex,
then (𝐴, 𝐵) satisfies the property UC. Other examples of pairs
having the propertyUC can be found in [3]. Here, we state the
following two lemmas of [3].

Lemma 5 (see [3]). Let 𝐴 and 𝐵 be nonempty subsets of a
metric space (𝑋, 𝑑). Assume that (𝐴, 𝐵) satisfies the property
UC. Let {𝑥

𝑛
} and {𝑦

𝑛
} be sequences in 𝐴 and 𝐵, respectively,

such that either of the following holds:

lim
𝑚→∞

sup
𝑛≥𝑚

𝑑 (𝑥
𝑚
, 𝑦
𝑛
) = 𝑑 (𝐴, 𝐵)

𝑜𝑟 lim
𝑛→∞

sup
𝑚≥𝑛

𝑑 (𝑥
𝑚
, 𝑦
𝑛
) = 𝑑 (𝐴, 𝐵) .

(4)

Then {𝑥
𝑛
} is a Cauchy sequence.

Lemma 6 (see [3]). Let (𝑋, 𝑑) be a metric space and let 𝐴
and 𝐵 be nonempty subsets of 𝑋 such that (𝐴, 𝐵) satisfies the
property UC. Let 𝑇 : 𝐴∪𝐵 → 𝐴∪𝐵 be a cyclic map such that

𝑑 (𝑇
2
𝑥, 𝑇𝑥) ≤ 𝑑 (𝑥, 𝑇𝑥) ∀𝑥 ∈ 𝐴,

𝑑 (𝑇
2
𝑥, 𝑇𝑥) < 𝑑 (𝑥, 𝑇𝑥) ∀𝑥 ∈ 𝐴

𝑤𝑖𝑡ℎ dist (𝐴, 𝐵) < 𝑑 (𝑥, 𝑇𝑥) .

(5)

For a point 𝑧 ∈ 𝐴, the following are equivalent:

(i) 𝑧 is a best proximity point of 𝑇;
(ii) 𝑧 is a fixed point of 𝑇2.

Throughout this paper, (𝐴, 𝐵) stands for a nonempty pair
in a metric space (𝑋, 𝑑). When we say that a pair (𝐴, 𝐵)

satisfies a specific property, wemean that both𝐴 and𝐵 satisfy
the mentioned property. Also, we define (𝐴, 𝐵) ⊆ (𝐶,𝐷) ⇔

𝐴 ⊆ 𝐶 and 𝐵 ⊆ 𝐷. Moreover, we use the following notations:

𝛿
𝑥 (𝐴) = sup {𝑑 (𝑥, 𝑦) : 𝑦 ∈ 𝐴} ∀𝑥 ∈ 𝑋,

𝛿 (𝐴, 𝐵) = sup {𝑑 (𝑥, 𝑦) : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} ,

diam (𝐴) = 𝛿 (𝐴, 𝐴) .

(6)

For a cyclic mapping 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 and 𝑥 ∈ 𝐴 ∪ 𝐵, we
define the orbit setting at 𝑥 by

O
𝑇
2𝑥 := {𝑥, 𝑇

2
𝑥, 𝑇
4
𝑥, . . . , 𝑇

2𝑛
𝑥, . . .} , (7)

where 𝑇2𝑛𝑥 = 𝑇(𝑇2𝑛−1𝑥) for 𝑛 ≥ 1 and 𝑇0𝑥 = 𝑥. We set

O
𝑇
2 (𝑥, 𝑦) := O

𝑇
2 (𝑥) ∪ O

𝑇
2 (𝑦) , (8)

for all 𝑥, 𝑦 ∈ 𝐴∪𝐵. Note that if (𝑥, 𝑦) ∈ 𝐴×𝐵, thenO
𝑇
2𝑥 ⊆ 𝐴

and O
𝑇
2𝑦 ⊆ 𝐵. Also, the set of all best proximity points of the

mapping 𝑇 in 𝐴 will be denoted by B.P.P(𝑇) ∩ 𝐴.

We mention that a mapping 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 is
said to be relatively nonexpansive provided that𝑇 is cyclic and
satisfies the condition ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖ for each (𝑥, 𝑦) ∈

𝐴 × 𝐵. Note that a relatively nonexpansive mapping need not
be a continuous mapping. Also every nonexpansive self-map
can be considered as a relatively nonexpansive mapping.

In 2005 Eldred et al. in [4] introduced a geometric
concept called proximal normal structure. Using this notion
they proved that if (𝐴, 𝐵) is a nonempty weakly compact
convex pair in a Banach space 𝑋 and 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 is
a relatively nonexpansive mapping, then there exists (𝑥, 𝑦) ∈
𝐴 × 𝐵 such that ‖ 𝑥 − 𝑇𝑥 ‖=‖ 𝑇𝑦 − 𝑦 ‖= dist(𝐴, 𝐵). For more
details on this subject, we refer the reader to [5–10].

2. Pointwise Cyclic Orbital Contractions

In [11], the notion of pointwise cyclic contractions was intro-
duced as follows.

Definition 7 (see [11]). Let (𝐴, 𝐵) be a pair of subsets of a
metric space (𝑋, 𝑑). Let 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 be a cyclic
mapping. 𝑇 is said to be a pointwise cyclic contraction if for
each (𝑥, 𝑦) ∈ 𝐴 × 𝐵 there exist 0 ≤ 𝛼(𝑥) < 1, 0 ≤ 𝛼(𝑦) < 1

such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑥) 𝑑 (𝑥, 𝑦) + (1 − 𝛼 (𝑥)) dist (𝐴, 𝐵)

∀𝑦 ∈ 𝐵,

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑦) 𝑑 (𝑥, 𝑦) + (1 − 𝛼 (𝑦)) dist (𝐴, 𝐵)

∀𝑥 ∈ 𝐴.

(9)

The following result was proved in [11].

Theorem 8 (see [11]). Let (𝐴, 𝐵) be a nonempty weakly
compact convex pair in a Banach space 𝑋 and suppose that
𝑇 is a pointwise cyclic contraction mapping. Then there exists
(𝑥, 𝑦) ∈ 𝐴 × 𝐵 such that ‖𝑥 − 𝑇𝑥‖ = ‖𝑦 − 𝑇𝑦‖ = dist(𝐴, 𝐵).

In this section, we introduce a new class of cyclic
mappings, called pointwise cyclic orbital contractions, which
contains the pointwise cyclic contractions as a subclass. For
such mappings, we study the existence of best proximity
points in Banach spaces.

Definition 9. Let (𝐴, 𝐵) be a pair of subsets of a metric space
(𝑋, 𝑑). A cyclic mapping 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 is said to be
a pointwise cyclic orbital contraction if there exists 𝛼 : 𝐴 ∪

𝐵 → [0, 1) such that for each (𝑥, 𝑦) ∈ 𝐴 × 𝐵

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑥) 𝛿𝑥 (O𝑇2𝑦) + (1 − 𝛼 (𝑥)) dist (𝐴, 𝐵)

∀𝑦 ∈ 𝐵,
(10)

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑦) 𝛿
𝑦
(O
𝑇
2𝑥) + (1 − 𝛼 (𝑦)) dist (𝐴, 𝐵)

∀𝑥 ∈ 𝐴.
(11)

It is clear that the class of pointwise cyclic orbital contrac-
tions contains the class of pointwise cyclic contractions as a
subclass.The following example shows that the converse need
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not be true.Moreover, it is interesting to note that a pointwise
cyclic orbital contractionmay not be relatively nonexpansive.

Example 10. Let 𝑋 := R with the usual metric. For 𝐴 = 𝐵 =

[0, 1/2], define 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 by

𝑇𝑥 =

{{

{{

{

1

8
𝑥 if 0 ≤ 𝑥 ≤

1

4
,

0 if 1
4
< 𝑥 ≤

1

2
.

(12)

Then𝑇 is pointwise cyclic orbital contraction with 𝛼(𝑥) =
7/8 for all 𝑥 ∈ 𝐴.

Proof. If either 0 ≤ 𝑥, 𝑦 ≤ 1/4 or 1/4 < 𝑥, 𝑦 ≤ 1/2, then it
is easy to see that relations (10) and (11) hold. Suppose that
0 ≤ 𝑥 ≤ 1/4 and 1/4 < 𝑦 ≤ 1/2. Thus,

𝑑 (𝑇𝑥, 𝑇𝑦) =
1

8
𝑥,

𝛿
𝑥
(O
𝑇
2𝑦) = sup

𝑛≥0

󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑇
2𝑛
𝑦
󵄨󵄨󵄨󵄨󵄨
= max {𝑥, 𝑦 − 𝑥} .

(13)

Hence,

𝑑 (𝑇𝑥, 𝑇𝑦) =
1

8
𝑥 ≤

7

8
max {𝑥, 𝑦 − 𝑥} = 𝛼 (𝑥) 𝛿𝑥 (O𝑇2𝑦) ,

(14)

that is, (10) holds. Also, by the fact that 𝛿
𝑦
(O
𝑇
2𝑥) = sup

𝑛≥0
|𝑦−

𝑇2𝑛𝑥| = 𝑦 then

𝑑 (𝑇𝑥, 𝑇𝑦) =
1

8
𝑥 ≤

7

8
𝑦 = 𝛼 (𝑦) 𝛿

𝑥
(O
𝑇
2𝑥) , (15)

which implies that (10) and (11) hold. Thus, 𝑇 is a pointwise
cyclic orbital contraction. Now, we show that 𝑇 is not
pointwise cyclic contraction. Indeed, if there exists a function
𝛼 : 𝐴 ∪ 𝐵 → [0, 1) such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛼(𝑥)𝑑(𝑥, 𝑦) for all
(𝑥, 𝑦) ∈ 𝐴 × 𝐵, then for 𝑥 = 1/4 and 𝑦 = 26/100 we must
have

1

8
×

25

100
= 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑥) 𝑑 (𝑥, 𝑦) = 𝛼 (

25

100
) ×

1

100
,

(16)

and hence 25/8 ≤ 𝛼(1/4), which is a contradiction.Therefore,
𝑇 is not pointwise cyclic contraction. Moreover, we note that
since 𝑇 is not continuous, 𝑇 is not relatively nonexpansive.

Let us state our main result of this section.

Theorem 11. Let (𝐴, 𝐵) be a nonempty weakly compact convex
pair in a Banach space𝑋. If 𝑇 : 𝐴∪𝐵 → 𝐴∪𝐵 is a pointwise
cyclic orbital contraction, then the set of best proximity points
of 𝑇 is nonempty.

Proof. Let Σ denote the collection of all nonempty weakly
compact convex pairs (𝐸, 𝐹) which are subsets of (𝐴, 𝐵) and
such that 𝑇 is cyclic on 𝐸 ∪ 𝐹. Then Σ is nonempty, since
(𝐴, 𝐵) ∈ Σ. Σ is partially ordered by reverse inclusion; that

is, (𝐴, 𝐵) ≤ (𝐶,𝐷) ⇔ (𝐶,𝐷) ⊆ (𝐴, 𝐵). It is easy to check
that every increasing chain in Σ is bounded above. Hence by
Zorn’s lemma we can get a minimal element say (𝐾

1
, 𝐾
2
) ∈ Σ.

We have

(𝑐𝑜 (𝑇 (𝐾
2
)) , 𝑐𝑜 (𝑇 (𝐾

1
))) ⊆ (𝐾

1
, 𝐾
2
) . (17)

Moreover

𝑇 (𝑐𝑜 (𝑇 (𝐾
2
))) ⊆ 𝑇 (𝐾

1
) ⊆ 𝑐𝑜 (𝑇 (𝐾

1
)) , (18)

and also

𝑇 (𝑐𝑜 (𝑇 (𝐾
1
))) ⊆ 𝑐𝑜 (𝑇 (𝐾

2
)) . (19)

Now, by the minimality of (𝐾
1
, 𝐾
2
), we have 𝑐𝑜(𝑇(𝐾

2
)) =

𝐾
1
, 𝑐𝑜(𝑇(𝐾

1
)) = 𝐾

2
. Suppose that 𝑎 ∈ 𝐾

1
. Then for each

𝑦 ∈ 𝐾
2
we have

󵄩󵄩󵄩󵄩𝑇𝑎 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤ 𝛼 (𝑎) 𝛿𝑎 (O𝑇2𝑦) + (1 − 𝛼 (𝑎)) dist (𝐴, 𝐵)

≤ 𝛼 (𝑎) 𝛿
𝑎
(𝐾
2
) + (1 − 𝛼 (𝑎)) dist (𝐴, 𝐵) ,

(20)

which implies that 𝑇(𝐾
2
) ⊆ B(𝑇𝑎; 𝛼(𝑎)𝛿

𝑎
(𝐾
2
) + (1 − 𝛼(𝑎))

dist(𝐴, 𝐵)). Hence,

𝐾
1
= 𝑐𝑜 (𝑇 (𝐾

2
))

⊆ B (𝑇𝑎; 𝛼 (𝑎) 𝛿
𝑎
(𝐾
2
) + (1 − 𝛼 (𝑎)) dist (𝐴, 𝐵)) .

(21)

Thus, for each 𝑥 ∈ 𝐾
1
we must have

‖𝑥 − 𝑇𝑎‖ ≤ 𝛼 (𝑎) 𝛿
𝑎
(𝐾
2
) + (1 − 𝛼 (𝑎)) dist (𝐴, 𝐵) , (22)

which ensures that

𝛿
𝑇𝑎
(𝐾
1
) ≤ 𝛼 (𝑎) 𝛿

𝑎
(𝐾
2
) + (1 − 𝛼 (𝑎)) dist (𝐴, 𝐵) . (23)

Similarly, we can see that if 𝑏 ∈ 𝐾
2
, then

𝛿
𝑇𝑏
(𝐾
2
) ≤ 𝛼 (𝑏) 𝛿

𝑏
(𝐾
1
) + (1 − 𝛼 (𝑏)) dist (𝐴, 𝐵) . (24)

Assume that (𝑝, 𝑞) is a fixed element in 𝐾
1
× 𝐾
2
. Let

𝛿
𝑝
(𝐾
2
) ≤ 𝛿
𝑞
(𝐾
1
). Set 𝑟 := 𝛿

𝑝
(𝐾
2
) and

𝐸 := {𝑦 ∈ 𝐾
2
: 𝛿
𝑦
(𝐾
1
) ≤ 𝑟} ,

𝐹 := {𝑥 ∈ 𝐾
1
: 𝛿
𝑥
(𝐾
2
) ≤ 𝑟} .

(25)

Obviously, 𝑝 ∈ 𝐹. Also, from (23) 𝑇𝑝 ∈ 𝐸 and then (𝐸, 𝐹)

is a nonempty pair. Besides, it is easy to see that

𝐸 := ⋂
𝑎∈𝐾
1

B (𝑎; 𝑟) ∩ 𝐾
2
,

𝐹 := ⋂
𝑏∈𝐾
2

B (𝑏; 𝑟) ∩ 𝐾
1
.

(26)

Now, let 𝑦 ∈ 𝐸. Then 𝑦 ∈ 𝐾
2
and by (24), 𝛿

𝑇𝑦
(𝐾
2
) ≤

𝛿
𝑦
(𝐾
1
) ≤ 𝑟 which implies that 𝑇𝑦 ∈ 𝐹. Hence, 𝑇(𝐸) ⊆ 𝐹.

Similarly, by relation (23) we conclude that 𝑇(𝐹) ⊆ 𝐸. That is,
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𝑇 is cyclic on 𝐸 ∪ 𝐹. By the minimality of (𝐾
1
, 𝐾
2
) we must

have 𝐹 = 𝐾
1
and 𝐸 = 𝐾

2
. Therefore,

𝛿
𝑥
(𝐾
2
) ≤ 𝑟, 𝛿

𝑦
(𝐾
1
) ≤ 𝑟, (27)

for each (𝑥, 𝑦) ∈ 𝐴 × 𝐵. Then for all (𝑥, 𝑦) ∈ 𝐴 × 𝐵 we have

𝛿
𝑥
(𝐾
2
) ≤ 𝛿
𝑞
(𝐾
1
) , 𝛿

𝑦
(𝐾
1
) ≤ 𝛿
𝑝
(𝐾
2
) . (28)

Particularly, 𝛿
𝑝
(𝐾
2
) ≤ 𝛿
𝑞
(𝐾
1
) ≤ 𝛿
𝑝
(𝐾
2
). Thus,

𝛿
𝑝
(𝐾
2
) = 𝛿
𝑞
(𝐾
1
) . (29)

Similar argument implies that if 𝛿
𝑞
(𝐾
1
) ≤ 𝛿

𝑝
(𝐾
2
), then

relation (29) is to be achieved. Therefore, (29) holds for all
(𝑝, 𝑞) ∈ 𝐾

1
× 𝐾
2
. To complete the proof of the theorem, we

consider the following cases.
Case 1. If 𝛿

𝑝
(𝐾
2
) = dist(𝐴, 𝐵), then we have

󵄩󵄩󵄩󵄩𝑝 − 𝑇𝑝
󵄩󵄩󵄩󵄩 ≤ 𝛿
𝑝
(𝐾
2
) = dist (𝐴, 𝐵) , (30)

that is, 𝑝 is a best proximity point of 𝑇.

Case 2. If 𝛿
𝑝
(𝐾
2
) > dist(𝐴, 𝐵), it now follows from (23) and

(29) that

𝛿
𝑝
(𝐾
2
) = 𝛿
𝑇𝑝
(𝐾
1
)

≤ 𝛼 (𝑝) 𝛿
𝑝
(𝐾
2
) + (1 − 𝛼 (𝑝)) dist (𝐴, 𝐵)

< 𝛿
𝑝
(𝐾
2
) ,

(31)

which is a contradiction. Hence, each point of 𝐾
1
is a best

proximity point of 𝑇 and so 𝐾
1
⊆ B.P.P(𝑇) ∩ 𝐴. Similarly,

we can see that 𝐾
2
⊆ B.P.P(𝑇) ∩ 𝐵. Thus, for each (𝑥, 𝑦) ∈

𝐾
1
× 𝐾
2
we must have

‖𝑥 − 𝑇𝑥‖ =
󵄩󵄩󵄩󵄩𝑇𝑦 − 𝑦

󵄩󵄩󵄩󵄩 = dist (𝐴, 𝐵) . (32)

3. Asymptotic Pointwise Cyclic
Orbital Contractions

Definition 12. Let (𝐴, 𝐵) be a pair of subsets of a metric space
(𝑋, 𝑑). A cyclic mapping 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 is said to be
an asymptotic pointwise cyclic orbital contraction if for each
(𝑥, 𝑦) ∈ 𝐴 × 𝐵,

𝑑 (𝑇
2𝑛
𝑥, 𝑇
2𝑛
𝑦) ≤ 𝛼

𝑛
(𝑥) diamO

𝑇
2 (𝑥, 𝑦)

+ (1 − 𝛼
𝑛
(𝑥)) dist (𝐴, 𝐵) ∀𝑦 ∈ 𝐵,

𝑑 (𝑇
2𝑛
𝑥, 𝑇
2𝑛
𝑦) ≤ 𝛼

𝑛
(𝑦) diamO

𝑇
2 (𝑥, 𝑦)

+ (1 − 𝛼
𝑛
(𝑦)) dist (𝐴, 𝐵) ∀𝑥 ∈ 𝐴,

(33)

where for each 𝑛 ∈ N, 𝛼
𝑛

: 𝐴 ∪ 𝐵 → R+ and
lim sup

𝑛→∞
𝛼
𝑛
(𝑥) ≤ 𝜂 for some 0 < 𝜂 < 1 and for all 𝑥 ∈

𝐴 ∪ 𝐵.

The following theorem establishes existence and conver-
gence of a best proximity point for asymptotic pointwise
cyclic orbital contractions in metric spaces with the property
UC.

Theorem 13. Let (𝐴, 𝐵) be a nonempty closed pair in a
complete metric space (𝑋, 𝑑) such that (𝐴, 𝐵) satisfies the
property UC. Assume that𝑇 : 𝐴∪𝐵 → 𝐴∪𝐵 is an asymptotic
pointwise cyclic orbital contraction such that𝑇 is continuous on
𝐴. If there exists 𝑥 ∈ 𝐴 such that the orbit of 𝑇 at 𝑥 is bounded,
then𝑇 has a best proximity point in𝐴. Moreover, if 𝑥

0
∈ 𝐴 and

𝑥
𝑛+1

= 𝑇𝑥
𝑛
, then {𝑥

2𝑛
} converges to the best proximity point of

𝑇.

Proof. Let 𝑥 ∈ 𝐴. We note that the sequence
{diam[O

𝑇
2(𝑇
2𝑛
𝑥, 𝑇
2𝑛+1

𝑥)]} is decreasing and bounded
below by dist(𝐴, 𝐵). Let diam[O

𝑇
2(𝑇2𝑛𝑥, 𝑇2𝑛+1𝑥)] → 𝑟

𝑥
≥

dist(𝐴, 𝐵). We claim that 𝑟
𝑥
= dist(𝐴, 𝐵). For all 𝑘

1
, 𝑘
2
∈ N

with 𝑘
1
≤ 𝑘
2
we have

𝑑 (𝑇
2(𝑛+𝑘

1
)
𝑥, 𝑇
2(𝑛+𝑘

2
)
(𝑇𝑥))

≤ 𝛼
𝑛+𝑘
1
(𝑥) diam [O

𝑇
2 (𝑥, 𝑇𝑥)]

+ (1 − 𝛼
𝑛+𝑘
1
(𝑥)) dist (𝐴, 𝐵) .

(34)

Taking the supremum with respect to 𝑘
1
and 𝑘
2
and then

letting 𝑛 → ∞ we obtain

𝑟
𝑥
≤ 𝜂 diam [O

𝑇
2 (𝑥, 𝑇𝑥)] + (1 − 𝜂) dist (𝐴, 𝐵) . (35)

Besides, for each𝑚 ∈ N we have

𝑟
𝑥
= lim
𝑛→∞

diam [O
𝑇
2 (𝑇
2𝑛
(𝑇
2𝑚
𝑥) , 𝑇
2𝑛
(𝑇
2𝑚

(𝑇𝑥)))]

≤ 𝜂 diamO
𝑇
2 (𝑇
2𝑚
𝑥, 𝑇
2𝑚

(𝑇𝑥)) + (1 − 𝜂) dist (𝐴, 𝐵) .
(36)

Now, if𝑚 → ∞ we obtain

𝑟
𝑥
≤ 𝜂𝑟
𝑥
+ (1 − 𝜂) dist (𝐴, 𝐵) , (37)

and hence 𝑟
𝑥
= dist(𝐴, 𝐵). We now conclude that

lim
𝑛→∞

sup
𝑚≥𝑛

𝑑 (𝑇
2𝑛
𝑥, 𝑇
2𝑚+1

𝑥) = dist (𝐴, 𝐵) . (38)

Since (𝐴, 𝐵) has the property UC, by Lemma 5 {𝑇2𝑛𝑥} is
a Cauchy sequence. Suppose that 𝑥

2𝑛
→ 𝑝. Continuity of 𝑇

on 𝐴 implies that 𝑥
2𝑛+1

→ 𝑇𝑝. Thus, 𝑑(𝑝, 𝑇𝑝) = dist(𝐴, 𝐵).
That is, 𝑝 is a best proximity point of themapping𝑇 in𝐴.

The next corollary is a direct result of Theorem 13.

Corollary 14 (compare to Theorem 3). Let (𝐴, 𝐵) be a
nonempty closed pair in a uniformly convex Banach space 𝑋
such that 𝐴 is convex. Assume that 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 is
an asymptotic pointwise cyclic orbital contraction such that 𝑇
is continuous on 𝐴. If there exists 𝑥 ∈ 𝐴 such that the orbit
of 𝑇 at 𝑥 is bounded, then 𝑇 has a best proximity point in 𝐴.
Moreover, if 𝑥

0
∈ 𝐴 and 𝑥

𝑛+1
= 𝑇𝑥
𝑛
, then {𝑥

2𝑛
} converges to

the best proximity point of 𝑇.
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4. A Convergence Theorem

In this section, we give a convergence theorem of best
proximity point for cyclic mappings which is derived from
Ishikawa’s convergence theorem ([12]). We begin with the
following proposition which is an inequality characterization
of uniformly convex Banach spaces.

Proposition 15 (see [13]). Let𝑋 be a uniformly convex Banach
space. Then for each 𝑟 > 0, there exists a strictly increasing,
continuous and convex function 𝜑 : [0, 1) → [0, 1) such that
𝜑(0) = 0 and
󵄩󵄩󵄩󵄩𝜆𝑥+(1 − 𝜆) 𝑦

󵄩󵄩󵄩󵄩
2
≤𝜆‖𝑥‖

2
+(1 − 𝜆)

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
2
−𝜆 (1−𝜆) 𝜑 (

󵄩󵄩󵄩󵄩𝑥−𝑦
󵄩󵄩󵄩󵄩) ,

(39)

for all 𝜆 ∈ [0, 1] and all 𝑥, 𝑦 ∈ 𝑋 such that ‖𝑥‖ ≤ 𝑟 and
‖𝑦‖ ≤ 𝑟.

Definition 16. Let (𝐴, 𝐵) be a nonempty pair of subsets of a
normed linear space𝑋. Suppose that 𝑇 : 𝐴 ∪ 𝐵 → 𝐴∪𝐵 is a
cyclicmapping on𝐴∪𝐵.We say that𝑇 is hemicompactness on
𝐴 provided that each sequence {𝑥

𝑛
} in𝐴with ‖𝑥

𝑛
−𝑇2𝑥

𝑛
‖ →

0 has a convergent subsequence.

It is clear that if 𝐴 is compact set, then each cyclic
mapping defined on 𝐴 ∪ 𝐵 is hemicompactness, where 𝐵 is
a nonempty subset of𝑋.

Theorem 17. Let (𝐴, 𝐵) be a nonempty, bounded, closed, and
convex pair in a uniformly convex Banach space 𝑋. Assume
that 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 is a cyclic relatively nonexpansive
mapping such that 𝑇 is hemicompactness on 𝐴 and 𝑇

2 is
continuous and satisfies the condition

󵄩󵄩󵄩󵄩󵄩
𝑇
2
𝑥 − 𝑇𝑥

󵄩󵄩󵄩󵄩󵄩
< ‖𝑇𝑥 − 𝑥‖ , (40)

for all 𝑥 ∈ 𝐴∪𝐵with ‖𝑥−𝑇𝑥‖ > dist(𝐴, 𝐵). Define a sequence
{𝑥
𝑛
} in 𝐴 by 𝑥

1
∈ 𝐴 and

𝑥
𝑛+1

= 𝛼𝑥
𝑛
+ (1 − 𝛼) 𝑇

2
𝑥
𝑛
, (41)

for 𝑛 ∈ N, where 𝛼 is a real number belonging to (0, 1). Then
{𝑥
𝑛
} converges strongly to a best proximity point of 𝑇 in 𝐴.

Proof. Since (𝐴, 𝐵) is a bounded, closed, and convex pair in a
uniformly convex Banach space 𝑋, the relatively nonexpan-
sive mapping𝑇 has a best proximity point in 𝐵 ([4]). Also, we
note that both of the (𝐴, 𝐵) and (𝐵, 𝐴) have the property UC.
So, by Lemma 6 a point 𝑝 ∈ 𝐵 is a best proximity point of
the mapping 𝑇 if and only if 𝑝 is a fixed point of the mapping
𝑇
2|
𝐵
. We now have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝛼𝑥
𝑛
+ (1 − 𝛼) 𝑇

2
𝑥
𝑛
− 𝑇
2
𝑝
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝛼𝑥
𝑛
+ (1 − 𝛼) 𝑇

2
𝑥
𝑛
− 𝛼𝑇
2
𝑝 − (1 − 𝛼) 𝑇

2
𝑝
󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + (1 − 𝛼)
󵄩󵄩󵄩󵄩󵄩
𝑇
2
𝑥
𝑛
− 𝑇
2
𝑝
󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + (1 − 𝛼)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(42)

Therefore, {‖𝑥
𝑛
− 𝑝‖} is a decreasing sequence and hence

{‖𝑥
𝑛
− 𝑝‖} is convergent. So {𝑥

𝑛
} is bounded. From the

uniform convexity of a Banach space𝑋 and byProposition 15,
there exists a strictly increasing, continuous and convex
function 𝜑 : [0, 1) → [0, 1) such that 𝜑(0) = 0 and

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩󵄩
𝛼 (𝑥
𝑛
− 𝑝) + (1 − 𝛼) (𝑇

2
𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛼
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
+ (1 − 𝛼)

󵄩󵄩󵄩󵄩󵄩
𝑇
2
𝑥
𝑛
− 𝑇
2
𝑝
󵄩󵄩󵄩󵄩󵄩

2

− 𝛼 (1 − 𝛼) 𝜑 (
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑇
2
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
− 𝛼 (1 − 𝛼) 𝜑 (

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑇
2
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
) .

(43)

Thus

𝛼 (1 − 𝛼) 𝜑 (
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑇
2
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
) ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩
2
,

(44)

which implies that 𝜑(‖𝑥
𝑛
− 𝑇
2
𝑥
𝑛
‖) → 0. Since 𝜑 is strictly

increasing and continuous at 0, it follows that ‖𝑥
𝑛
−𝑇2𝑥

𝑛
‖ →

0.
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑇
2
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0. (45)

On the other hand, since 𝑇2 is hemicompactness on 𝐴,
there exists a subsequence {𝑥

𝑛
𝑗

} of the sequence {𝑥
𝑛
} such that

𝑥
𝑛
𝑗

→ 𝑞 ∈ 𝐴. By the continuity of the mapping 𝑇2 on 𝐴, we
have 𝑇2𝑥

𝑛
𝑗

→ 𝑇2𝑞. Since ‖𝑥
𝑛
𝑗

− 𝑇2𝑥
𝑛
𝑗

‖ → 0, we obtain 𝑞 =

𝑇2𝑞. Hence 𝑞 ∈ 𝐴 is a fixed point of the mapping 𝑇2 in𝐴 and
again by Lemma 6, 𝑞 is a best proximity point of 𝑇 in 𝐴 and
𝑥
𝑛
→ 𝑞 ∈ 𝐴 strongly.
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