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The main object of this paper is to study Fekete-Szeg6 problem for the class of p-valent functions. Fekete-Szeg6 inequality of several
classes is obtained as special cases from our results. Applications of the results are also obtained on the class defined by convolution.

1. Introduction and Preliminaries

Let A, denote the class of functions f(z) of the form

flz)=2"+ Zanz") (peN={1,2,3,...}), (O

n=p+1

which are analytic in the open unit disk E. Also, A, = A, the
usual class of analytic functions defined in the open unit disk
E = {z : |z|] < 1}. Let f(z) and g(z) be analytic in E. We say
that the function f is subordinate to the function g and write
f(z) < g(z), if and only if there exists Schwarz function w,
analytic in E such that w(0) = 0, lw(z)| < 1 for z € E, and
f(z) = glw(z)). In particular, if g is univalent in E, then we
have the following equivalence:

f(@)<g(@) e f(0)=g0), f(E)cgE). (2

For any two analytic functions f(z) of the form (1) and
g(z) with

g@=2"+ ) b7, z¢E, 3)
n=p+1
the convolution (Hadamard product) is given by

(f*9)(2)=2"+ 020: a,b,z", z¢€kE. (4)

n=p+1

Let ¢(z) be an analytic function with positive real part on E
with ¢(0) = 1, ¢'(0) > 0, which maps the unit disk E onto
a region starlike with respect to 1 which is symmetric with
respect to the real axis. Denote by S; (¢) the class of functions

f analytic in E for which

zf' (2)
rf (2)

The class S; (¢) was defined and studied by Ali et al. [1]. They
obtained the Fekete-Szeg6 inequality for functions in the class
S; (). The class S; (¢) coincides with the class S*(¢) discussed
by Ma and Minda [2]. Owa [3] introduced a subclass of p-
valently Bazilevic functions H,(A,B,«a, B). A function f €

A, is said to be in the class H,(A, B, a, f) if and only if

a-n(57) 2 (52 -

z € E. (5)

<¢(2),

1+ Az
1+Bz’

€ E,
(6)

where -1 <B<A<1,a>0,and 0 < 8 < 1. We now define
the following subclass of analytic functions.

Definition 1. Let ¢(z) be a univalent starlike function with
respect to 1 which maps the unit disk E onto a region in the
right half-plane which is symmetric with respect to the real



axis with ¢(0) = 1 and ¢'(0) > 0. A function f € A, isin the
class V,,p, o p() if

22 en(2)

zP
zf' (@) ( f(2)\*
() e
where0 < <1, >0,and b > 0.

7)

Definition 2. A function f € A isin the class Vo g /() if

1—%+%{(1—/3)<(f*g)(z))“

zP

NPLIOAT) (z)<(f *9) <Z>>a} <),

p(f *g)(2) zP
(8)

where 0 < S < 1,a > 0,and b > 0. In other words, a func-
tion f € A, isin the class Vi, 5,(¢) if (f * g)(z) €

Vp,b,tx,ﬁ (¢) .
We have the following special cases.

(i) Vp,2,1,1(¢) coincides with the class S;(gb) introduced
and studied by Ali et al. [1].

(ii) For p = 1,b = 2, and f = 1, we have the class B, (¢)
introduced and studied by Ravichandran et al. [4].

(iii) For b = 2 and ¢(z) = (1 + Az)/(1 + Bz), the class
Vp2.0,8(4) reduces to H,(A,B,a, B) introduced and
studied by Owa [3].

(iv) For ¢(z) = (1 + (1 -2y)z)/(1 - z), the class V., . ; ($)
reduces to the class Bp(oc, y) defined as

Boloon) = {fEA”'Re<pf(z>< = )W o)

03y<1,zeE}.

(v) For ¢(z) = (1 + (1 - 2y)2)/(1 — z), the class Vp,Z,a,0(¢)
is defined as

{feAP:Re<¥>“>y, 0<y<l, zeE}. (10)

(vi) V,,
(2]

(vii) For ¢(z) = (1 + (1 - 2y)z)/(1 - 2), the class V , | o(¢)
reduces to the class

0.1(¢) = S*(¢) is investigated by Ma and Minda

By:{feAl:Refiz)>y}. 11

studied by Chen [5].

Journal of Applied Mathematics

We need the following results to obtain our main results.

Lemma 3 (see [1]). Let Q be the class of analytic functions w,
normalized by w(0) = 0, satisfying condition |w(z)| < 1.Ifw €
Qand w(z) = w,z + w,z* + -+, z € E, then

—t, t<-l,
'wz - twf| <{1, -1<t<1, 12)
t,  t>1.

Fort < —1ort > 1, the equality holds, if and only if w(z) = z
or one of its rotation. For =1 < t < 1, the equality holds, if
w(z) = 2* or one of its rotation. the equality holds for t = -1,
if and only if w(z) = z(A + 2)/(1 + Az)) (0 < A < 1) or one
of its rotation, while for t = 1, the equality holds, if and only if
w(z) = —z((A+2)/(1+A2)) (0 < A < 1) or one of its rotation.
The above upper bound for —1 < t < 1 is sharp, and it can be
improved as follows:

|w, —twi + A+ O |w, | <1, -1<t<0,

(13)
|w2—twf'+(l—t)|w1|2£ 1, O0<t<l.
Lemma 4 (see [6, (7), page 10]). Ifw € Q and w(z) = w,z +
w,z* + -+, z € E, then

|w, - twi| < max {1;]¢]}, (14)

for any complex number t. The result is sharp for the functions
w(z) = 22 orw(z) = z.

Lemma 5 (see [7]). Ifw € Q, then for any real number q, and
4, the following sharp estimate holds:

|w3 +quw,w, + ‘bwf' <H(q1:4) (15)
where
H(‘h"]z)
0
(91-9,) € D, UD,,
|92|’
7
(91-9) € kL_J3Dk)
- 1/2
2 |9 +1
< (| +1) (— ;
3 | ll 3(|‘11|+1+Q2) (16)

(41-9,) € Dg U Dy,
1 (qf—‘l )( g - 4 >”2
32\ g1, )30 -1))
(41-95) € Dy U Dy \ (2,1},
|q1|_1

5 1/2

z S I R & ,

5 (o )<3(Iq1|—1—qz))
(91,9,) € Dy
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The extremal function up to the rotations is of the form

w(z) = z, w(z) =z,

- B z([(l—l)82+)t£1]—81522)
w(z) = w, (2) = 1-[(1-Ng + g z

_ _ Z(tl—z)
w(z)_w](z)_ 1—tlz >
z(t, +2)
W mw @ =T
|81| = |82| =1, g = tO _e—i90/2 (ai b)’

& = —¢0/2 (ia + D),
0 0 bra 17)
a=tycos =, b=11-tsin>-2, =222
2 2 2b

1/2
( 2q,(q; +2) - 3q; >
fo=| 5 ,

(q,-1) (‘ﬁ —4q,)

|q1|+ 1 )1/2

tl:(3(|q1|+1+qz)

t :( |q1|_1 )1/2
2\ 3 (g -1-4)

oo q1<%(%+8)—2(fﬁ+2)>

2 2\ 2q,(¢+2)-3¢

The sets Dy, k = 1,2,...,12 are defined as follows:

1
D, = @) lal <5 ol <1},

D, = {(‘h»‘b) - <|g| <2

DO | =

4
Sllal+ 1 - (gl + ) <a, < 1},

1
= 1 a): |‘11| < > |q2| < —1},

1 2
(@a) :|ai| = =» @2 <= (la] + D>
2 3

1
~{@ea) 2<lal <4 a> 5 (@ +8)},

D,
D,
D,
Dy
D;

{
{
(@) |a| <2 ¢ 21},
{
{

2
(@) |lal =4 g, 2 3 (la] - 1)}’

Dy = {(‘h"b) i <lg <2

| =

2 4
Slal+ V== (al+ ) - (al+ 1},
Dy = { (91,9,) : |Q1| 22,

2|‘11|(|Ql|+1)}

2lal+ s
3BT =R g 4

D, = { (91,9,) : 2 < |‘11| <4

2| (Ja| + 1) 1,
@ +2|q|+4 == 12(q1+8) ’

Dy, = ‘l (91, a2) : |‘Z1| >4,

2"11|(|‘11|+1) < <2|‘11|(|‘11|_1)}
—_ 2— b
4 +2|q | +4 q —2|q| +4

D,, = ‘l (91-9) : |‘h| >4,

2| (| = 1)

2
q%_2|q1|+4 Sq2S§(|q1|—1)}.

(18)

2. Main Results

Theorem 6. Let ¢(z) = 1+ B,z +B,z* + B;2> +---, where B,,
s are real with By > 0 and B, > 0. Let

_ (ap+py
' bpB? (ap +2P)
z(oc—1>(ocp+2ﬁ)}
x 12(B, - B,) —bpBi———~——_T/ 1
{( S e B)
o (prp)y
" bpB? (ap +2P)

2<a—1>(ap+2/3)}
x {2(B, + B,) - bpBj ——— "1,
{( T

o l(aprp)
" bpB? (ap +2P)

§ {232 ppp @ Do +22ﬁ) } )
2(ap +B)
(ap+2B) 2u+a— 1).
2ap + B)’

© (p o o) =
(19)



If f (2) is of the form (1) and belongs to the class V, ; 5, g(¢), then

2
|ap+2 - [’mp+1 |

bp bpB;
B, - O (p,a, B, )
2(06P+2/3)( 2 2 (paﬁll/l)
H# <0y
< < & o < <0— (20)
“12(ap+28) LEHE
bp bpB;
2((XP+2ﬁ) (BZ 2 (D(p,(x,ﬂ,[/l) >
M>O’2.

Furthermore, for o, < p < 03,

2
|ap+2 - n"lap+1 '

1 B, (“P"’/-”))Z
" bpB, <2<1 B B_1> (ap +2P)

bp 1 2

2

< bpB,
" 2(ap+2p)

and for o3 < p < 05,
2
[87+2 = 1|
2
+ ! <2<1+&>—(“P+ﬁ)
bpB, B,/ (ap +2p)

bpB 22
2
- ! (2‘u+(x—1)>|ap+1|

< bpB,
T 2(ap+2P)

For any complex number y,

2
|ap+2 - .“apﬂ'

bpB, { Ipr1 B, }
= 2(ap+2p) "1 2 @ (p, i o) AR
(23)
Also,
bpB
|‘1p+3'S it H(q,9,), (24)

2 (ap +3B)
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where H(q,,q,) is defined in Lemma 3 and
2B,

q __+prl (1-a)(ap+3p)

"B 2 (ap+p)(ap+2B)

_ By (bpB\}(@—1) Qa~1)(ap +3p)
%‘&+<2) 6(ap + B’
+bPBz (1-a)(ap+3p)

2 (ap+p)(ap+2pB)

These results are sharp.

(25)

Proof. Since f €V, , 3(¢), therefore we have for a Schwarz

function
w(z)=wz+w,z’ +--, z€E (26)

such that

2 2, o (f@\ Lz @ f@))
1_b+b{(1 ‘B)( zP > +ﬁpf(Z)< zP )} (27)

3 a8 ey

2 1
—1+b—p(“P+/3)ap+1Z+5(“P+2ﬁ)

2 (ap +3p) (28)

x{2ap+2+(oc—1)a2 }z2+ bp

p+l

X {ap+3 +(a—-1)ay,a,,,

-1 -2
+&_%LJ@45+M
Also, we have
¢(w(z)) =1+ Bwz+ (Blw2 + Blwf) 2
(29)
+ (Blw3 +2B,w,w, + B3wf) 24

Comparing the coefficients of z, 2%, z* and after simple calcu-
lations, we obtain
bpB,w,
Ap) = ————>
P 2(ap+ )
bpB,
Api2 = S
2(ap +2P)

X{w_<mmma—nwp+M)_g>w1
P\ 2 ow+p’ BT
_ bpB;
W5 S apr28) |

3
w; + qw,w, + qul} >

(30)
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where g, and g, are defined in (25). It can be easily followed
from (30) that

2 bpB, 2
Apiy = P,y = m {wz - vwl} , (31
where
B pr1 B,
v=——0(papp) B, (32)

The results from (20) to (22) are obtained by using Lemma 3,
(23) by using Lemma 4, and (24) by using Lemma 5. To show
that these results are sharp, we define the functions K¢n(z),
F,(z), and G, (z) such that

Ky (0) = [Ky,] @ -1=0,
F(0)=F (0)-1=0, (33)
G, (0) =G, (0)-1=0,
with
2 2 Ky (2) 2Ky, (2) [ Ky (2) \*
N z{“‘f’”( ) PR @\
< ¢(Zn—1),
L 2,2 F,\(z> zF) (2) Fk(z)>"‘
b b{(l '8)< +ﬁpﬂ(z)< 2p
z(z+A)
<¢< 1+ Az )

1‘% %{(1—/3)(@(2)) +/32G;L(z)<GA(Z)>a}

PGy (2)\ 2P
z(z+A)
<¢<_ 1+ Az )
(34)

It is clear that the functions K, F), G, € V3 4(¢). Let
Ky := Kg. Ity < 0y or g > 0, then the equahty occurs
for the functlon K, or one of its rotations. For 0, < p < 05,
the equality is attained, if and only if f is Ky; or one of
its rotations. When ¢ = o, then the equality holds for the
function F) or one of its rotations. If 4 = 0,, then the equality
is obtained for the function G, or one of its rotations. O

Corollary 7. For b = 2, the results from (20) to (24) coincide
with the results proved by Ramachandran et al. [8].

Corollary 8. Forb = 2, p = 1, and 3 = 1, the results from
(20) to (22) coincide with the results obtained by Ravichandran
et al. [4] for the class B, (¢).

Corollary 9. Forb = 2, « = 0, and f3 = 1, the results from
(20) to (24) coincide with the results obtained by Ali et al. [1]
for the class S, ().

Corollary 10. Forb=2, p=1,a =0, and 3 = 1, the results
from (20) to (22) coincide with the results obtained by Ma and
Minda [2] for the class S (¢).

2.1. Application of Theorem 6 to
the Function Defined by Convolutions

Theorem 11. Let ¢(z) = 1 + B,z + B,z* + B32” + -+, where

B,, s are real with B, > 0 and B, > 0. Let

(ap + p)’*
Gp+2 bpB7 (ap +2P)

2
_ gp+1

1

X {2 (B, - By)
~ bpB? (@—1)(ap +22/3) } ,
2(ap + )

(ap+B)’
Gp+2 bPB] (ap +2P)

2
gp+1
) =

X {2 (B2 + Bl)
_ bPBf (= 1) (ap +22/3) } ,
2(ap + B)
(ap + p)*
Gp+2 bPB] (ap +2P)

{23 @ (e +225) } )
2ap +B)

(ap +28) (26 (gpa/gpnr) + - 1)
2ap+ )’

2
gp+1
3 =

" (p,o. ) =

(35)

If f(z) is of the form (1) and belongs to the class V.

wpg(D)
then pbels

2
|ap+2 - /"ap+1|
bp ( bpB; . )
- (D >, &s Oy 5
2gp+2 (“P + Zﬁ) 2 (P ‘8 ‘u)

U <oy,
bpB,

) 2gp+2 (‘XP + ZB) ’

bp (prf \ )
[0 o, 3 u)—B, |,
20 lepr2f) \ 2 © PebH) B

0, < Y <0y,

IN

Y >0,
(36)



Furthermore, for o0, < p < 03,

2
|ap+2 - Abtap+1'
2
gp+1

B, (ap + ﬁ)z
" bpB,g,. (2 <1 B B_1> (ap +2P)

B
B (2 ) ) g
2 Ip+1

< bpB,
- 2gp+2 (“P + 2/3),
(37)
and for o3 < p < 0,,
2
'ap+2 - [’mp+1|
2 2
N/ <2<1+§> (op + )
bPBlgp+2 Bl (‘Xp + Zﬁ)

bpB Ip+2 2
—% (2‘1,1l +a - 1) > |ap+1|
gp+1
bpB,

S ——-
2gp+2 (“P + ZB)
(38)

For any complex number y,

2
Apia — ("ap+1|

bpB, { ‘prl . B, }
< ——————max1l, Q" (pa, Bopr) — =\t -
20722 (0 + ) 2 O ebig,
(39)
Also,
bpB,
- - H N R
|aP+3| s 2 (ap + 3B) Gpes (41-92) (40)
where H(q,q,) is defined in Lemma 5 and
_ 2B, s bpB, (1-«a)(ap+3p)
"B 2 (ap plapr2p)
a-1)Qa-1
0 %+(pr1) (a—1)Qa )(OSCP+3/3) 1)
B\ 2 6(ap + )

bpB, (1-a) (ap +3P)
2 (ap+p)(ap+2pB)

These results are sharp.
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Proof. Since f €V, g 5(§), therefore we have for a Schwarz
function w, such that

1—§+§{(1_5)(%>
Z(f*g)'(z)((f*g)(z)>“} .
+ﬂP(f*g)(z) 2P = w(2).
(42)
Now,
bben(t2)

L0 @ (9@
ﬁp(f*g)(Z)( 2 )}

2 1
=1+ bp (ap + B) api1gpz + op (ap +2P)
2
X {zap+zgp+2 +(@-1) a;+1g127+1} 2+ 5 (‘xp + 313)

{ap+3gp+3 +(a—1) ap+lap+29p+1gp+2} 3
X VANE R

(x—1)(ax—2)
BRI
(43)
Also, we obtain
¢(w(z)) =1+ Bwz+ (Blw2 + Blwf) 2
(44)

+ (Blw3 +2B,w,w, + B3wf) 24

Comparing the coefficients of z, z°, z° and after simple
calculations, we obtain

_ bpB,w,
T 2gpn (ap+ B)
_ bpB,

- 2'gp+2 (‘xp + Zﬁ)

X{w _(bp31 (oc—l)(ocp+2/3)_§>wz}
2 2 2((Xp+ﬁ)2 Bl 1( >

_ bpB,
2gp+3 ((Xp + Zﬁ)

ap+2

3
Api3 {w3 +qww, + qul} .

(45)

The remaining proof of the theorem is similar to the proof of
Theorem 6. O

Corollary 12. For b = 2, the results from (36) to (40) coincide
with the results proved by Ramachandran et al. [8] for the class
Rprap.9(®)-
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Corollary 13. Forb = 2, « = 0, and 8 = 1, the results from
(36) to (40) coincide with the results obtained by Ali et al. [1]
for the class S, ().

Corollary 14. Forb=2, p=1 a=0,and f =1,

TGr2-1) 2

927 "1 2-A
TWrRe-A) 6
BT 7TTa-N NG (16)
8 16

the results from (36) to (38) coincide with the results obtained
by Srivastava and Mishra [9].
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