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Using two measurements, we produce an estimate of the mean and the sample standard deviation. We construct a confidence
interval with these parameters and compute the probability of the confidence interval by using the cumulative distribution function
and averaging over the parameters. The probability is in the form of an integral that we compare to a computer simulation.

1. Introduction

A confidence interval is an interval in which a measurement
falls with a given probability [1]. This paper addresses the
question of defining the probability of a confidence interval
that can be constructed when only a minimal number of
measurements are known.

The problem has a couple of significant applications. In
geophysics, time-lapse 3D seismic monitoring is used to
monitor oil and gas reservoirs before and after production.
Because of the high cost of 3D seismic monitoring, a min-
imal-effort time-lapse 3D seismic monitoring approach was
proposed by Houston and Kinsland [2]. This approach pro-
poses a minimal measurement interval based on preliminary
measurements. It implies successively smaller seismic surveys
asmonitoring continues and knowledge of the behavior of the
reservoir grows. The success of the minimal-effort method
is based on the probability that the reservoir is detected by
a seismic survey. The minimal-effort method is based on a
minimal number of measurements, which connects it to the
topic of this paper.

Another significant application of a confidence interval
based on a minimal number of measurements is the problem
of cancer treatment based on the irradiation of a tumor
[3]. The purpose of irradiation is to destroy the tumor, but
targeting the tumor can be problematic because tumors often
exhibit small random motions within the body. Because of
random tumor motion, the result of radiation treatment
often includes the destruction of healthy tissue. Clearly, it is

beneficial that cancer radiation treatment incorporates min-
imal intervals. The success of the cancer treatment is based
on the probability that the tumor is irradiated while using
a minimal irradiation interval. This success hinges on the
ability of the radiation treatment to incorporate preliminary
measurements that are often minimal. It is upon this basis
that the cancer treatment problem connects to the topic of
this paper.

In this paper, we construct a confidence interval based on
minimal estimates of the mean and the standard deviation.
Explicitly, we use two measurements to specify an interval
that contains a subsequent measurement with a given prob-
ability. The mathematical effort includes the derivation of a
specific probability for the confidence interval. The probabil-
ity is computed using the cumulative distribution function,
and this probability is averaged over both the estimate of the
mean and the sample standard deviation to yield a specific
value.The results are compared to a computer simulation that
estimates the probability based on frequency.

2. Probability Based on the Cumulative
Distribution Function

The cumulative distribution function [4] is given as

𝐹 (𝑥; 𝜇, 𝜎
2
) =

1
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where 𝑥 is a measurement, 𝜇 is the mean, and 𝜎 is the stan-
dard deviation. Let V = (𝑡 − 𝜇)/√2𝜎. So, 𝑑V = 𝑑𝑡/√2𝜎, and
(1) becomes
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where erf is the error function [5]. We know that the cumu-
lative distribution function designates probability as

𝐹 (𝑥; 𝜇, 𝜎
2
) = 𝑃 (𝑋 ≤ 𝑥) . (3)

Therefore, we can write
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where 𝑥 is the estimate of the mean given as
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1
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and 𝑠 is the sample standard deviation given as
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This allows us to write
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Let𝑁 = 2. This implies that
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So we have
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This equation can be simplified. Let 𝑦 = 𝑥
1
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2
and 𝑧 =
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3. The Probability Averaged over
the Estimate of the Mean

For simplicity, we have𝑃 ≡ 𝑃((𝑦/2)−𝑛(|𝑧|/√2) ≤ 𝑥 ≤ (𝑦/2)+
𝑛(|𝑧|/√2)). The expectation with respect to 𝑦 can be written
as
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where we have used the fact that the standard deviation of 𝑦
is√2𝜎 because

var (𝑋
1
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2
) = var (𝑋

1
) + var (𝑋

2
) ,

𝜎
𝑋
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(12)

see [6].
Let 𝑢 = (𝑦 − 2𝜇)/2𝜎, so that 𝑑𝑢 = 𝑑𝑦/2𝜎. Equation (11)

becomes
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At this point, consider the following integral:
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We will find three conditions on 𝑔 that determine its struc-
ture. First, the following limit is clear from (14).

Condition 1. Consider
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where V = (𝑎/√𝑚) + 𝑏 and 𝑑V = 𝑑𝑎/√𝑚. Using the known
integral of the error function, we find that
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Condition 2. Consider

𝑠 = 2𝑏√𝑚. (18)
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Therefore, (19) can be added to 𝑔 to obtain
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we have the following.
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lim
𝑚→0
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where 𝑐 > 0. Equations (14) and (23) suggest that we canwrite
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For𝑁 = 200 and Δ𝑎 = 0.1, we find
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4. The Probability Averaged over
the Sample Standard Deviation

The expectation with respect to 𝑧 can be written as

𝐸
𝑧
(𝐸
𝑦
(𝑃)) =

1

2𝜎√𝜋
∫

∞

−∞

erf (𝑛 |𝑧|
√2

2𝜎√3

) 𝑒
−𝑧
2
/4𝜎
2

𝑑𝑧, (33)

where we have used the fact that the standard deviation of
𝑧 is √2𝜎 based on previous information and the fact that
var(𝑎𝑋) = 𝑎2var(𝑋) [6]. Equation (33) can be expressed on a
semi-infinite interval as
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Let 𝑞 = 𝑧/2𝜎. So, 𝑑𝑞 = 𝑑𝑧/2𝜎, and (34) becomes
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or we can write
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5. Computational Simulation

We can estimate ⟨𝑃(𝑥
𝑁=2

− 𝑛𝑠
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≤ 𝑥 ≤ 𝑥
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)⟩

computationally. Simulate the normal, independent random
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𝑖
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∈ 𝑋
𝑖
. (37)

Let the condition 𝛽 be
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𝑁=2
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) . (38)

If 𝑀(𝛽) is the number of trials in which the condition 𝛽 is
met and𝑀 is the total number of trials, then an estimate of
⟨𝑃(𝑥
𝑁=2

− 𝑛𝑠
𝑁=2

≤ 𝑥 ≤ 𝑥
𝑁=2
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)⟩ is given as
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Figure 1 shows a plot of (2/√𝜋) ∫∞
0

erf(𝑛𝑞√2/3)𝑒−𝑞
2

𝑑𝑞 versus
𝑀(𝛽)/𝑀 for𝑀 = 2000.

6. Conclusions

We have computed the probability of a confidence interval
based on minimal estimates of the mean and the standard
deviation. Specifically, the estimates are based on two mea-
surements. The effort addresses the problem of constructing
a confidence interval based onminimal knowledge.The result
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1
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𝑛

Figure 1: A plot of (2/√𝜋) ∫∞
0

erf(𝑛𝑞√2/3)𝑒−𝑞
2

𝑑𝑞 versus the esti-
mate𝑀(𝛽)/𝑀 for𝑀 = 2000.

is in the form of an integral of the error function that we
have evaluated numerically and compared to a computer
simulation that estimates the probability based on frequency.
The comparison shows a high level of agreement that sup-
ports the validity of the derivation.

This work is part of a research effort interested in con-
structing confidence intervals based on various levels of
knowledge. Example applications exist in geophysical explo-
ration and cancer treatment.
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