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This paper develops a modified variational iteration method coupled with the Legendre wavelets, which can be used for the efficient
numerical solution of nonlinear partial differential equations (PDEs). The approximate solutions of PDEs are calculated in the form
of a series whose components are computed by applying a recursive relation. Block pulse functions are used to calculate the Legendre
wavelets coefficient matrices of the nonlinear terms. The main advantage of the new method is that it can avoid solving the nonlinear
algebraic system and symbolic computation. Furthermore, the developed vector-matrix form makes it computationally efficient.
The results show that the proposed method is very effective and easy to implement.

1. Introduction

Nonlinear phenomena are of fundamental importance in
applied mathematics and physics and thus have attracted
much attention. It is well known that most engineering
problems are nonlinear, and it is very difficult to achieve the
solution analytically or numerically. The analytical methods
commonly used to solve them are very restricted, while the
numerical techniques involving discretization of the variables
on the other hand give rise to rounding off errors. Consider-
able attention has been paid to developing an efficient and fast
convergent method. Recently, several approximate methods
are introduced to find the numerical solutions of nonlinear
PDEs, such as Adomian’s decomposition method (ADM) [1-
6], homotopy perturbation method (HPM) [7-12], homotopy
analysis method (HAM) [13, 14], variational iteration method
(VIM) [15-23], and wavelets method [24-29].

The variational iteration method (VIM) proposed by He
[15-23] has been shown to be very efficient for handling
a wide class of physical problems [16-18, 30-41]. If the
exact solution of the nonlinear PDEs exists, the VIM gives
rapidly convergent successive approximations; otherwise, a
few approximations can be used for numerical purposes. In
order to improve the efficiency of these algorithms, several

modifications, such as variational iteration method using
He’s Polynomials [42-48] or using Adomian’s Polynomials
[49-54], have been developed and successfully applied to
various engineering problems. However, since the variational
iteration method provides the solution as a sequence of
iterates, its successive iterations may be very complex, so
that the resulting integrations in its iterative relation may be
impossible to perform analytically.

In recent years, wavelets have found their way into many
different fields of science and engineering. Various wavelets
[24-29] have been used for studying problems with greater
computational complexity and proved to be powerful tools
to explore a new direction in solving differential equations.
Unlike the variational iteration method that requires sym-
bolic computations, the wavelets method converts the PDE
into algebraic equations by the operational matrices, which
can be solved by an iterative procedure. It is worthy to
mention here that the method based on operational matrices
of an orthogonal function for solving differential equations
is computer oriented. The problem with this approach is that
the algebraic equations may be singular and nonlinear.

Recently, some efficient modifications of ADM (using [55,
56]) and VIM or HAM [57] (using Legendre polynomials)
are presented to approximate nonhomogeneous terms in



nonlinear differential equations. Motivated and inspired by
the ongoing research in these areas, we implement Leg-
endre wavelets within the framework of VIM to facilitate
the computational work of the method while still keeping
the accuracy. The remainder of the paper is organized as
follows. Section 2 introduces the VIM. In Section 3, we
describe the basic formulation of Legendre wavelets and the
operational matrix required for our subsequent development.
In Section 4, we propose a new variational iteration method
using Legendre wavelets (VIMLW). In order to demonstrate
the validity and applicability of VIMLW, four examples are
given in Section 5. Finally, a brief summary is presented.

2. Variational Iteration Method

This section introduces the basic ideas of variational iteration
method (VIM). Here a description of the method [15-23] is
given to handle the general nonlinear problem:

L)+ N () =g(), @)

where L is a linear operator, N is a nonlinear operator, and
g(t) is a known analytic function. According to He’s VIM, we
can construct a correction functional as follows:

oy (£) = uy () + j A@ (L (1, (1) + N (3, () - g ()},

n>0,

)

where A is a general Lagrange multiplier which can be opti-
mally identified via variational theory and #,, is a restricted
variation which means 8%, = 0. Therefore, the Lagrange
multiplier A should be first determined via integration by
parts. The successive approximation u,(t) (n > 0) of
the solution u(t) will be readily obtained by using the
obtained Lagrange multiplier and any selective function u,,.
The zeroth approximation u, may select any function that
just meets, at least, the initial and boundary conditions.
With A determined, several approximations u,(t), n > 0,
follow immediately. Consequently, the exact solution may be
obtained as

u(t) = nllngoun (t). (3)

The VIM depends on the proper selection of the initial
approximation u,(t). Finally, we approximate the solution of
the initial value problem (1) by the nth-order term u, (). It
has been validated that VIM is capable of effectively, easily,
and accurately solving a large class of nonlinear problems.

3. Legendre Wavelets

3.1. Legendre Wavelets. Legendre wavelets v, (t) = y(k,7,
m, t) have four arguments: k is any positive integer, # =

m—1m = 1,2,3,...,25"Y), m is the order for Legendre
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polynomials, and ¢ is the normalized time. They are defined
on the interval [0, 1) as follows:

Vium (t)

n—1 +1
_{\/m+1/22(k/2)Lm (2%t -a), for nzk <t<

2k

0, otherwise,

(4)

wherem = 0,1,2,...,M—1, n = 1,2,...,25 The coefficient
\m + 1/2 is for orthonormality, the dilation parameter isa =
27, and the translation parameter b = 722 "~. Here, L, (t) are
the well-known Legendre polynomials of order m defined on
the interval [-1, 1].

A function f(t) defined over [0, 1) may be expanded by
Legendre wavelet series as

+00 +00

FO=3 onVum ®) (5)
n=1m=0
with
G = (f (), W (1)) (6)

in (6); (-, -) denotes the inner product.
If the infinite series in (5) is truncated, then it can be
written as

21 M1

FO=Y D @ =C¥(®), )

n=1 m=0

where C and ¥(t) are 2°"' M x 1 matrices given by

C(t) = [Qo>Crise- s Cim15Co0s - s Cop1> - >
; ®)
Ozk—lo,...,(}zk—lM,l] 5
Y () = [y1o®> v Oy s
9)

Werg () sy Wiy D]

A two-dimensional function f(x,t) defined over [0, 1) x
[0, 1) may be expanded by Legendre wavelet series as

2kM 2k M
fet =Y Y qu@y; ) =¥ (x)C¥ (), (10)

i=1 j=1

with
1 1
Gj = Jo fGot)y; (x)dx L f 1) y; (1) dt. (1)

Equation (10) can be written into the discrete form (in matrix
form) by

fxt) =¥ (x)CY¥ (1), (12)
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where C is a 25" M x 251 M matrix given by

0,0 Co,1 G251 M
€10 €1 Cl k1M
C= . R . . (13)
Ck=ip0 CQkipr1 T Gkl klp

The integration and derivative operation matrices of the
Legendre wavelets have been derived in [58, 59].

The integration of the vector ¥(¢) defined in (9) can be
obtained as

Jt ¥ (s)ds = PY (t), (14)
0

where P is a 25”1 M x 257! M matrix given by [58].
The derivative of the vector W(¢) can be expressed by

d¥ (t)

i DY (1), (15)

where D is the 25'M x 2"'M operational matrix of
derivative given by [59].

The integration of u(x,t) = wT'(x)C¥(t) with respect to
variable ¢ can be expressed as

J-t u(x,7)dr = Jt (\I’T (x)C¥Y (T)) dr

0 0

=¥ (x)C (Jt ¥ (1) dT) =97 (x)CPY¥ (t).
’ (16)

Similarly, the integration of u(x,t) = w1 (x)C¥(t) with
respect to variable x can be expressed as

Jx u(r,t)dr = Jx (¥ (r)C¥ (1)) dr

0 0
= <r ¥T (1) dr) C¥ (t) = Y7 (x) PTCY¥ (1).
0

17)

The derivative of u(x,t) = VT (x)C¥(t) with respect to
variable ¢ can be expressed as

duvyy oY CY®) . aw(p
or ot =¥ C ot (18)
=¥ (x)CDY (t).

Similarly, the derivative of u(x,t) = vT(x)C¥(t) with
respect to variable x can be expressed as

dut (W CY®) v (x)
ox ox  ox Y 19)

=vT (x)D'CY ().

3.2. Block Pulse Functions. The block pulse functions (BPFs)
form a complete set of orthogonal functions that are defined
on the interval [0, b) by

1 ) <t<—b
b (t) = m m (20)
0, elsewhere
for i = 1,2,...,m. It is also known that for arbitrary

absolutely integrable function f(t) on [0, b) can be expanded
in block pulse functions:

f®O=&B,0), (1)
in which
E = [fosforeeos fou) s
B, () =[b,(1),b,(1),...,b, ()],

(22)

where f; are the coeflicients of the block pulse function given
by
(ifm)b

ffmhww=%j

0 ((i-1)/m)b

fi=

S

FOb () dt
(23)
The elementary properties of BPFs are as follows.

(1) Disjointness: the BPFs are disjoined with each other
in the interval t € [0,T):

b; (t) bj (t) = 8ijbi (t) (24)

fori,j=1,2,...,m.
(2) Orthogonality: the BPFs are orthogonal with each
other in the interval ¢ € [0, T):

T
J b; () b; (t) dt = hd;; (25)
0

fori,j=1,2,...,m.

(3) Completeness: the BPFs set is complete when m
approaches infinity. This means that for every f €
L*([0,T)), when m approaches to the infinity, Parse-

val's identity holds:
fﬁmm=2ﬂm%i (26)
where
=2 [ rwnoa @)

Definition 1. Let A and B be two matrices of m x m, then A®
B= (a,-j X bij)mm‘



Lemma 2. Assuming that f(t) and g(t) are two absolutely
integrable functions, which can be expanded in block pulse
function as f(t) = FB(t), and g(t) = GB(t) respectively, then
one has

f(t)g(t) = FB(t)B" (t)G" = HB(t), (28)
where H = F® G.

Proof. According to the disjointness property of BPES in (16),
we have

FB(t)B" (1)G"
= [fugnd ) f129020, () -+ fimGim®s ()] (29)

Lemma 3. Let f(x,t) and g(x,t) be two absolutely integrable
functions, which can be expanded in block pulse function as

flx,t) = BT (x)FB(t) and glx,t) = BT (x)GB(t), respectively,
one has
f () g(xt) =B (x)HB(t), (30)

where H = F ® G.

3.3. Nonlinear Term Approximation. The Legendre wavelets
can be expanded into m-set of block pulse functions as

Y () =D,0mB.m (1) (31)
Taking the collocation points as follow,

i-1/2 k-1
t, = o T 1,2,...,2"'M. (32)
The m-square Legendre matrix @, is defined as
(Dmxm = [\P (tl) ¥ (tZ) A 4 (tZk’lM)] : (33)

The operational matrix of product of Legendre wavelets
can be obtained by using the properties of BPFs. Let f(x,t)
and g(x, t) be two absolutely integrable functions, which can
be expanded in Legendre wavelets as f(x,t) = w1 (x)F¥(t)
and g(x,t) = YT (x)GY(1), respectively.

From (31), we have

fxt) =¥ (x) F¥(t) = B" (x) @] Fd, B(1),

(34)
g t) =¥ (x)G¥ (t) = B (x) @] G®,,.B(t),
andlet F, = ®' Fo, G, =®" G,  H,=F,®G,.
By employing Lemma 3, we get
f(x,t) g(x,t) = B" (x) H,B(t)
=B’ (x) d)rTnminV ((Dﬁm) Hyinv (CDmm)
(35)
x @, B(t)
=¥ (x)HY (1),

where H = inV((D;m)Hbinv((Dmm).
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4. Variational Iteration Method Using
Legendre Wavelets

In this section, we present a new modification of variational
iteration method using Legendre wavelets (called VIMLW).
This algorithm can be implemented for solving nonlinear
PDEs effectively.

To deduce the basic relations of our proposed algorithm,
consider the following forms of initial value problems:

Llu(x,t)]+N[u(xt)] =g(xt), xe€l[0,1], t>0,

(36)

where L and N are linear operator and nonlinear operator,
respectively, and g(x, t) is a known analytic function, subject
to the initial condition u(x, 0). It should be noted here that
L[u(x,t)] contains the term 0™u/0t", where m is a positive
integer.

According to the traditional VIM, we can construct the
correction functional for (36) as

Uy (6 1) = uy (x,1) + L AL (ug (x,7)) + N (e (x, 7))

-g(x,7)]dr.
(37)

The Lagrange multiplier of (37) is

N A
m-1)! (m-1)
In order to improve the performance of VIM, we intro-

duce Legendre wavelets to approximate u;(x,t) and the
nonhomogeneous term g(x, t) as

A(t,7) = (38)

g(xt) =¥ (x)GY ().
(39)

u (x,1) = YT (x) CLY (1),
Now for the nonlinear part, by nonlinear term approxi-

mation described in Section 3.3, we have
N [ (5, 8)] =¥ (x) N (1), (40)

where N is matrix of order 25"\ M x 28 ~I M.
For the linear part, we have

L{w (5, t)] =¥ (x)L,¥ (t), (41)

!
where L is a matrix of order 251 M x 25 1M1’
Then the iteration formula (37) can be constructed as

¥ (%) Coy ¥ ()= (x) CL¥ (1)
t
+j AT (%) [L, +N,~G] ¥ (v) dr.
0
(42)
If A is constant, we have

Ck+1=Ck+A[Lk+Nk—G]P. (43)
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TABLE 1: Numerical values when ¢ = 0.25, 0.50, 0.75, and 1.0 for (52).

t 0.25 0.50

X 0.25 0.50 0.75 0.25 0.50 0.75 1.00

VIM 0.20002 0.40004 0.60006 0.80007 0.16702 0.33405 0.50107 0.66810

VIMLW 0.20002 0.40004 0.60006 0.80006 0.16702 0.33405 0.50107 0.66809

Exact 0.20000 0.40000 0.60000 0.80000 0.16667 0.33333 0.50000 0.66667

t 0.75 1.00

X 0.25 0.50 0.75 0.25 0.50 0.75 1.00

VIM 0.14461 0.28921 0.43382 0.57842 0.12989 0.25977 0.38966 0.51955

VIMLW 0.14460 0.28921 0.43382 0.57841 0.12989 0.25977 0.38966 0.51953

Exact 0.14286 0.28571 0.42857 0.57143 0.12500 0.25000 0.37500 0.50000

When A is a function of 7, the Legendre wavelets are used
to approximate A(7) as

At 1) =¥ (1) SY (7). (44)
Substituting (44) into (42), we have
¥ (x) it ¥ (1)

=vT (x) C¥ (1)

+ jt ¥ (%) [Ly + N, -G ¥ () ¥ (1) ST (t) d.
0

(45)
Since
_ §¢liBi (1) ]
b1 b Pum B, (1) o
G P o B, (1) Z¢2iBi (1)
vo= | T =] A ,
(Pml ¢m2 ¢mm Bm (T) m ’
;¢miBi (T)
) (46)
we get
[ i ¢1;B; (1) ]
T g%Bi (t)
Y(O)¥V (r)= | =1
izn:l(pmiBi (t)

| Zeu ) Soubio) - Souio

(47)

According to the property of block pulse functions, we obtain

¥ (1) ¥ (1)
IYLIC
j=li=1
_¢f1 ‘/’fz ' ¢fm B (t)
¢§1 ¢§2 ¢§m B; (t)
-1 . . : : 1 1]
B, ()

_¢3n1 ¢3n2 ¢fnm_
—¢fl ¢f2 ’ ¢%m-
(bgl ‘lgz ¢§m

. L | inv (@)Y @O 1 - 1]

2 2 2
(Pml <!)mZ (pmm

=HY(@#)[1 1 - 1],

(48)
where
[ O 12 o bl
S b0 0 b
H=| . . . [iv( @),  (49)
| Eon Bz B |
Substituting (48) into (45), we have
¥ (x)C Y (1)
=¥" (x) G, ¥ (t)+J: Y7 (x) [Li + Ny - G]
xHY (1)1 1 --- 1]8"Y () dr
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TABLE 2: Numerical values when t = 0.25, 0.50, 0.75, and 1.0 for (54).

t 0.25 0.50

x 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
VIM 0.05001 0.20002 0.45004 0.80007 0.04176 0.16702 0.37581 0.66810
VIMLW 0.05000 0.20002 0.45004 0.80021 0.04168 0.16699 0.37572 0.66831
Exact 0.05000 0.20000 0.45000 0.80000 0.04167 0.16667 0.37500 0.66667
t 0.75 1.00

X 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
VIM 0.03615 0.14461 0.32536 0.57842 0.03247 0.12989 0.29225 0.51955
VIMLW 0.03577 0.14443 0.32491 0.57751 0.03128 0.12932 0.29083 0.51421
Exact 0.03571 0.14286 0.32143 0.57143 0.03125 0.12500 0.28125 0.50000

g §

E E

g =

<

4 S
=

FIGURE 1: Exact solution and VIMLW approximate solution of Example 4.
=¥ ()Y (1) + ¥ (x)[Ly + N, - G] 5. Numerical Examples
x HPY (t) [1 1 --- l] shy () To demonstrate the effectiveness and good accuracy of the

. . VIMLW, four different examples will be examined.
=V (x)C Y () +¥ (x)[Li+ Np—G]

T T

X HPY ()W (1) S[1 1 - 1] Example 4. Consider the regularized long-wave (RLW) equa-

9T (x) C¥ (1) + YT (x) [Ly + N - G tion [39]:
x HPHY (t) s,

50 g
(50) ut—uxxt+<u?> =0, -00<x<00,t>0 (52)
wheres=[11~1]8[11-1]T. x

Finally, we get the iteration formula as follows:

T
Cin =Crt [Li+ N =G HPH[1 1 --- 1]S[1 1 - 1] with the initial condition u(x,0) = x and the exact solution
GD s u(x, t) = (x/(1 +1)).
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Exact solution

VIMLW solution

FIGURE 2: Exact solution and VIMLW approximate solution of Example 5.

Exact solution

VIMLW solution

FIGURE 3: Exact solution and VIMLW approximate solution of Example 6.

By assuming u (x,t) = ‘I’T(x)Ck‘I’(t) and from (52), we

have
_ auk a3uk

L] = Zf - o2 =¥ () LY (),

0
N [] = S =¥ (N (1),

where L, = C,D — (D")’C,D, N, = (D"C,) ® C,.

(53)

We utilize the methods presented in this paper to solve
(52) with M = 16 and k = 1. Table 1 shows the approximate
solutions for (52) obtained for different points using the
variational iteration and VIMLW method. Figure 1 presents
the Exact solution and VIMLW approximate solution of
Example 4. Note that only the fifth-order term of their
solutions is used in evaluating the approximate solutions
for Example 4. We can see that the approximate solution
obtained with VIMLW gives almost the same results as that



Exact solution
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VIMLW solution

FIGURE 4: Exact solution and VIMLW approximate solution of Example 7.

with VIM. It indicates that the approximate solution is quite
close to the exact one.

Example 5. Consider the following equation [39]:

1
u, + Euuxx =U,y —00<X<00,t>0 (54)
with the initial conditions u(x, 0) = x?, and the exact solution
isu(x, t) = (x*/(1 +1)).
By assuming u (x,t) = ‘I’T(x)Ck‘I’(t) and from (54), we
have

ou o’u
Lilw] = 5f - 55 =¥ (0O LY 0, -
N [u] = Pt _ o0 nw
i [w] = 2 a2 () N Y (1),

where L, = (D")’C,D, N = ((1/2)(D")’C,) ® C,.

We employ the methods presented in this paper to solve
(54) with M = 16 and k = 1. The numerical results
are presented in Table 2 and shown in Figure 2. It is to be
noted that only the fifth-order terms are used in evaluating
the approximate solutions. The results obtained using the
VIMLW are in good agreement with the results of VIM.

Example 6. We consider the following equation [40]:

u, (%, 1) +u(x, t)u, (x,t) = g(x,t),
(56)
t>0,x€R, 0<a<1

with the initial conditions u(x,0) = 0 and the exact solution
is u(x,t) = xt, where g(x,t) = x + xt.

By assuming u (x,t) = ‘I’T(x)Ck‘I’(t), glx,t) = vT(x)
GY(t), we have

Ly (] = u; (6, 8) — g (1) = ¥ (x) LY (1),

ou, (57)

= = ¥ (%) N Y (1),

Nie [w4]

where L, = C,D - G, N, = C, ® (D'C}).

Table 3 shows the approximate solutions for (56) with
M = 16 and k = 1 using the VIM and the VIMLW methods
and the results are plotted in Figure 3. It is to be noted that
only the fourth-order terms of VIM and VIMLW are used in
evaluating the approximate solutions in Table 3. We observe
that the approximate solution of (56) with VIMLW gives
analogous results to that obtained by VIM, which shows that
the approximate solution remains closed form to the exact
one.

Example 7. Consider the following Burgers-Poisson (BP)
equation of the form [41]:

—00<x<00, t>0
(58)

Up— Uy TU UL = (3uxuxx+uuxxx) >

with the initial conditions u(x, 0) = x, and the exact solution
isu(x,t) =1 +x)/(1+1t)-1.



Journal of Applied Mathematics 9

TABLE 3: Numerical values when t = 0.25, 0.50, 0.75, and 1.0 for (56).

t 0.25 0.50
X 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
VIM 0.06250 0.12500 0.18750 0.25000 0.12508 0.25015 0.37523 0.50030
VIMLW 0.06250 0.12500 0.18750 0.25000 0.12508 0.25015 0.37523 0.50030
Exact 0.06250 0.12500 0.18750 0.25000 0.12500 0.25000 0.37500 0.50000
t 0.75 1.00
X 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
VIM 0.18882 0.37764 0.56646 0.75527 0.25992 0.51983 0.77975 1.03970
VIMLW 0.18882 0.37764 0.56646 0.75527 0.25992 0.51983 0.77975 1.03970
Exact 0.18750 0.37500 0.56250 0.75000 0.25000 0.50000 0.75000 1.00000
TABLE 4: Numerical values when ¢ = 0.25, 0.50, 0.75, and 1.0 for (58).
t 0.25 0.50
X 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
VIM 0.00009 0.20011 0.40013 0.60015 —0.16488 0.00215 0.16917 0.33620
VIMLW 0.00009 0.20011 0.40013 0.59864 —-0.16489 0.00215 0.16920 0.33283
Exact 0.00000 0.20000 0.40000 0.60000 —-0.16667 0.00000 0.16667 0.33333
t 0.75 1.00
X 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
VIM -0.27697 —-0.13237 0.01224 0.15694 —0.35057 —-0.22068 -0.09079 0.03909
VIMLW -0.27701 —0.13237 0.01228 0.15213 —0.35070 -0.22068 —0.09078 0.03422
Exact —0.28571 —0.14286 0.00000 0.14286 —0.37500 —0.25000 —-0.12500 0.00000

By assuming u(x,t) = ‘I’T(x)Ck‘I’(t), we have

aauk auk

_ oy EVT LY@, ()

Llmd =57 - 535

where L, = C,D - (D")’C,D + D"C,.

closed form solutions if existed. There are four important
points to make here. First, unlike the VIM, the VIMLW can
easily overcome the difficulty arising in the evaluation inte-
gration and the derivative of nonlinear terms and does not
need symbolic computation. Second, by using the properties
of BPFs, operational matrices of product of Legendre wavelets

And are derived and utilized to deal with nonlinear terms. Third,
compared with Legendre wavelets method, the VIMLW only

Ou, 0wy 0°uy uy T needs a few iterations instead of solving a system of nonlinear

N[ ] = Yox T ox o2 R oxd Y NF (O, algebraic equations. Fourth and most important, VIMLW is

(60)

where N, = C, ® (D'C,) - 3(D'C,) ® [(D")’C,] - C, ®
[(DT)'Cy).

Table 4 shows the approximate solutions to (58) with
M = 16 and k = 1 with VIM and VIMLW, and Figure 4
presents the Exact solution and VIMLW approximate solu-
tion of Example 7. Only the fourth-order terms are used in
evaluating the approximate solutions in Table 4. From Table 4
and Figure 4 the approximate solution of the given Example 7
by using VIMLW is in good agreement with the results of
VIM and it clearly appears that the approximate solution
remains closed form to exact solution.

6. Conclusion

A new modification of variational iteration method using
Legendre wavelets is proposed and employed to solve a num-
ber of nonlinear partial differential equations. The proposed
method can give approximations of higher accuracy and

computer oriented and can use existing fast algorithms to
reduce the computation cost.
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