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A third-order ordinary differential equationwith application in the flow of a thin liquid film is considered.The boundary conditions
come from Tanner’s problem for the surface tension driven flow of a thin film. Symmetric and nonsymmetric finite difference
schemes are implemented in order to obtain steady state solutions. We show that a central difference approximation to the third
derivative in themodel equation produces a solution curvewith oscillations. Adifference schemebased on a combination of forward
and backward differences produces a smooth accurate solution curve. The stability of these schemes is analysed through the use of
a von Neumann stability analysis.

1. Introduction

In this paper we investigate numerical solutions of the third-
order ordinary differential equation (ODE)

𝑑
3
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𝑑𝑥3
= 1 −

1

𝑦
+
𝐴

𝑦3
, (1)

where 𝐴 is a constant to be determined. Equation (1) is the
steady state case of the partial differential equation
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where the flux is given by

𝑓 (𝑢) = 𝑢
2
− 𝑢
3
. (3)

This equation describes the flow of a thin liquid film, where
𝑢(𝑥, 𝑡) ≥ 0 denotes the film thickness. The flux terms
represent surface shear and gravity, where the forces act in
opposing directions, and the diffusion termon the right-hand
side represents surface tension. The surface shear term may
arise due to temperature or concentration gradients or to an
external shear force. Equation (2) with (3) is a special case of
the more general partial differential equation
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where 𝛼, 𝛽, and 𝛾 are nonnegative parameters. Equation (4)
models the flow of a thin film of fluid with thickness 𝑢(𝑥, 𝑡)
above an inclined plane. The variable 𝑥 is the distance down
the plane, and the variable 𝑡 represents time. The parameters
𝛼, 𝛽, and 𝛾 describe the effects of surface tension, gravity, and
the angle of inclination of the plane, respectively. This model
is derived in the work by Bertozzi et al. [1], and numerical
solutions are obtained and investigated. In our model, we
consider a vertical plane, and thus 𝛽 = 0. With 𝛽 = 0 and by
considering the steady state solution, that is, 𝑢(𝑥, 𝑡) = 𝑦(𝑥),
(4) reduces to
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Dividing (5) by 𝛾 and, for simplicity, replacing 1/𝛾 and 𝛼/𝛾
with 𝛼 and 𝛽, respectively, (5) becomes
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which can be rewritten as follows:
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In (7), the parameter 𝛼 is proportional toMarangon’s number
which is a ratio of the surface tension to viscous forces, and
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the parameter 𝛽 is proportional to the Bond number which
is a ratio of gravity to viscous forces [2]. The more general
equation,

𝑑
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𝑘 𝑑
3
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𝑑𝑥3
+ 𝛼𝑦
2
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3
) = 0, (8)

was solved numerically for the case where the arbitrary
constant of integration was set equal to 1, and the asymptotic
solution was investigated in [2].

We can nondimensionalize the equation using the follow-
ing transformations:

𝑦 =
𝛼

𝛽
𝑦, 𝑥 = 𝛼

(𝑘−2)/3
𝛽
(1−𝑘)/3

𝑥 (9)

and after integrating once with respect to 𝑥, (8) becomes
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3
= 𝐴. (10)

The case where 𝐴 = 1 has been studied in [2]. We will
consider (10) for the case 𝑘 = 3, where the value of 𝐴 will be
determined through the application of one of the boundary
conditions. In this paper, we use the conditions provided by
Tanner’s problem [3] in the spreading of silicon oil drops on a
horizontal surface modelled as a thin film. These conditions
are given by

𝑦 (0) = 1, 𝑦
󸀠
(0) = 0. (11)

In his work Tanner [3] investigated surface tension-driven
spreading of an oil dropmodelled as a thin film.The problem
is closed by the boundary condition

𝑦 (𝑟) = 0, (12)

where 𝑟 is a positive constant.The autonomous nature of (10)
makes the specification of 𝑟 arbitrary. The boundary condi-
tion (12) describes the physical phenomenon of touchdown
[4] or, more precisely, the point at which the free surface of
the thin film makes contact with the solid substrate. Given
that (1) is singular at 𝑦 = 0, the boundary condition (12) is
imposed as

𝑦 (𝑟) = 𝜖, (13)

where 𝜖 ≪ 1 is the height of the precursor film. A discussion
of this approximation can be found in Bertozzi [5, 6].

In this paper, we use a symmetric and nonsymmetric
finite difference scheme to solve (1).This method was applied
in [4] to the following equation:

𝑑
3
𝑦

𝑑𝑥3
= 𝑦
−𝑘
. (14)

In [7] a shooting method was applied to (14), and the
asymptotic solution was also studied. In this research, we
will conduct a von Neumann stability analysis as a means of
investigating the stability of the methods employed.

This paper is set out as follows: in Section 2.1 we
implement a symmetric finite difference approximation to

the third derivative with truncation error 𝑂(ℎ2). We see
that this scheme is zero stable and a spectral analysis gives
inconclusive results. Thus, a von Neumann stability analysis
is implemented. The solution obtained via the symmetric
difference scheme contains oscillations. In Section 2.2 we
implement a non-symmetric difference approximation to
the third derivative. This scheme has truncation error 𝑂(ℎ).
It is shown to be zero stable; however, a von Neumann
stability analysis is also implemented. The solution of the
non-symmetric difference scheme does not contain any
oscillations.

We do not rigorously prove that the schemes investigated
in this paper converge, but rather show that the schemes
are stable. Furthermore, we show that convergence does take
place by evaluating the absolute error at each iteration. We
show, in a similar fashion to Momoniat [4], that even if a
numerical scheme is stable, the boundary conditions produce
results which are physically unstable. In this instance, this
instability manifests as oscillations in the solution. Fur-
thermore, stability and accuracy should not necessarily be
accessed based upon the truncation error of the scheme: in
this case the most accurate and stable scheme is the non-
symmetric scheme with a truncation error of 𝑂(ℎ) and a
stability criteria of ℎ < 0.03, instead of 𝑂(ℎ2) and ℎ < 0.02 as
for the symmetric scheme where the solution curve exhibited
oscillations.

2. Finite Difference Methods

In the sections that follow, we let 𝐴 = 𝜖
2
− 𝜖
3 and 𝜖 = 10−3.

The choice of 𝐴 comes from a consideration of the equation
at 𝑥 = 𝑟, where
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that 𝐴 = −(𝑦
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) since 𝑦(𝑟) = 𝜖. Doing

so makes sense given the implementation of the physical
condition that the volume flux at 𝑦 = 𝜖 vanishes, where 𝜖 is
the height of the precursor film.Thus, we may choose𝐴 such
that (10) becomes
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2.1. Symmetric Difference Approximation. We approximate
(1) subject to the boundary conditions given by (11) and (13)
by implementing a symmetric difference approximation. We
define 𝑦

𝑖
= 𝑦(𝑥

𝑖
) to be the approximate value of 𝑦 at a point
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𝑖
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0
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𝑛
= 𝑟, and the

step length ℎ is given by ℎ = 𝑟/𝑛, where 𝑛 is a positive integer.
The first derivative 𝑦󸀠 at a point 𝑥

𝑖
is approximated as
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and the second derivative 𝑦󸀠󸀠 at a point 𝑥
𝑖
is approximated as
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The third derivative 𝑦󸀠󸀠󸀠 is approximated by a central differ-
ence approximation,
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and using (18) we obtain
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Simplifying this we get
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Approximating (1) using (21) and after simplifying, we obtain
a nonlinear difference equation,
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with a truncation error of 𝑂(ℎ2). We now define 𝑦(𝑗)
𝑖

to be
the 𝑗th iteration value to 𝑦

𝑖
. Using this notation, (22) can be

evaluated iteratively in the following manner:
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The boundary conditions are incorporated by requiring that
𝑦
(0)

𝑖
satisfies (11) and (13). The boundary conditions 𝑦(0) = 1

and 𝑦(𝑟) = 𝜖 are implemented by
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When evaluating (23) at the point 𝑥
𝑛
= (𝑛 − 1)ℎ, a value for

𝑦
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is required. In thin film theory, it is reasonable to suppose
that the height 𝑦 of the fluid at position 𝑥
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[4]. In other words, we can obtain a value for 𝑦
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Also, in order to calculate 𝑦
1
using (25), a value for 𝑦
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is required. A central difference approximation is used to
approximate the boundary condition 𝑦󸀠(0) = 0,
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and setting (26) equal to zero, we have

𝑦
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1
. (27)

The difference equation (23), together with the boundary
conditions (24), (25), and (27), can be written more com-
pactly in matrix form as follows:
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An initial guess, 𝑦(0)
𝑖
, to 𝑦 that satisfies the boundary condi-

tions (11) and (13) is given by

𝑦
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2
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The corresponding homogeneous equation of (23) is given by
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𝑖−1
− 𝑦
𝑖−2
= 0. (31)

This equation has been studied extensively in [4]. This
difference scheme is zero stable, and the results of a spectral
analysis were found to be inconclusive with regard to the
convergence of the difference scheme. Plots of (31) were
found to contain oscillations.

Given that we need to consider an alternative form of
analysis we choose to implement the von Neumann stability
analysis. In order to do so we first need to linearize our
scheme (23). We notice that the difference scheme is linear
in 𝑦 except for the (1 − 1/𝑦(𝑗)
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and by making the substitution (33) in our difference scheme
(32) we obtain

𝑦
(𝑗+1)

𝑖+2
− 2𝑦
(𝑗+1)

𝑖+1
+ 2𝑦
(𝑗+1)

𝑖−1
+ 𝑦
(𝑗+1)

𝑖−2
= 𝛾𝑦
(𝑗)

𝑖
, (34)

which is now linear in 𝑦.
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We now implement a Von Neumann stability analysis by
making the substitution,

𝑦
(𝑗)

𝑖
= 𝑌
𝑗
𝑒
𝐼𝜔𝑖ℎ
, (35)

into (34), where 𝐼
2

= −1 and 𝜔 is a constant. The
simplification that follows here can be found in [4], where 𝛾
is given by

2ℎ
3
𝑦
(𝑗)

𝑖

−𝑘−1

, (36)

whereas, in this paper, 𝛾 is given by (33). In [4] 𝛾 > 0;
however, the sign of 𝛾 defined by (33) is not as straightforward
to determine. Following the same procedure as described in
[4] we obtain the following expression for the amplification
factor:

󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝛾
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󵄨󵄨󵄨󵄨8 sin
2
(𝜔ℎ/2) sin (𝜔ℎ)󵄨󵄨󵄨󵄨

. (37)

This can be further simplified, resulting in an upper bound
for 𝛾 given by

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 < 3

√3. (38)

In order to obtain the maximum and minimum values of 𝛾,
consider the plots of |𝛾| as a function of 𝑦 given in Figures
1 and 2. We see that the minimum value for |𝛾| is obtained
at 𝑦 = 𝜖 and is zero. In order to obtain the value at which
|𝛾| is a maximum, we find the second derivative of 𝛾(𝑦) and
set it equal to zero. Solving this in Mathematica, we find that
|𝛾| attains its maximum value at 𝑦 = 0.001414. The value
of |𝛾(𝑦

𝑚
)| is 249543. In other words, we have deduced the

following results:

𝛾max = 𝛾 (𝑦max) ≈ 499086ℎ
3
, 𝛾min = 0. (39)

Now |𝛾min| always satisfies (38). Set 𝛾 = 𝛾max to obtain

ℎ < [
3√3

499086
]

1/3

≈ 0.02. (40)

The von Neumann stability criteria is satisfied if (40) is
satisfied. We can, therefore, conclude that the iteration (32)
is conditionally stable, provided the value of the step length
remains below themaximumvalue of 0.02. In Table 1 we show
the absolute error at each iteration. After five iterations the
absolute errormax|𝑦(𝑗+1)−𝑦(𝑗)| is𝑂(10−9).We plot the results
after five iterations in Figure 3. In both Table 1 and Figure 3
we have chosen ℎ = 1/𝑛, where 𝑛 = 100, and thus, the choice
of ℎ = 10−2 satisfies the von Neumann stability criteria.

The solution obtained via a symmetric difference scheme
given by (23) oscillates. These oscillations diminish as the
value of the step length ℎ is reduced. However, even for 𝑛 =
1000 there are still oscillations present.This seems to indicate
that the oscillations occur in the homogeneous part of the
difference scheme. Similar to [4] we believe these oscillations
occur as a result of imposing the additional boundary condi-
tion necessary to iterate the numerical scheme. In the next
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Figure 1: Plot of |𝛾(𝑦)| for 𝜖 ≤ 𝑦 ≤ 0.01.
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Figure 2: Plot of |𝛾(𝑦)| for 𝜖 ≤ 𝑦 ≤ 1.

Table 1: Table showing the absolute error after each iteration of (28),
where 𝑛 = 100.

𝑖
Error

max|𝑦(𝑗+1) − 𝑦(𝑗)|
1 2.4879𝑒 − 02

2 3.9646𝑒 − 04

3 8.5598𝑒 − 06

4 2.3696𝑒 − 07

5 7.4744𝑒 − 09

section we show that a non-symmetric difference approxi-
mation provides smooth accurate solutions even though the
truncation error is higher than the truncation error for the
symmetric difference scheme.

2.2. Nonsymmetric Difference Approximation. An alternative
method to approximate the third-orderODE (1) is considered
below. Forward and backward difference approximations are
used to approximate the first- and second-order derivatives
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Figure 3: Solution to the symmetric difference scheme for 𝑛 = 100.

Table 2: Table showing the absolute error after each iteration of (50),
where 𝑛 = 100.

𝑖
Error

max|𝑦(𝑗+1) − 𝑦(𝑗)|
1 1.0483𝑒 − 02

2 4.1902𝑒 − 04

3 1.6225𝑒 − 05

4 6.2815𝑒 − 07

5 2.4313𝑒 − 08

6 9.4100𝑒 − 10

instead of the central (symmetric) approximations consid-
ered above. The approximations are given by

𝑦
󸀠

𝑖
=
𝑦
𝑖+1
− 𝑦
𝑖

ℎ
+ 𝑂 (ℎ) , (41)
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𝑖
) /ℎ − (𝑦

𝑖
− 𝑦
𝑖−1
) /ℎ
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+ 𝑂 (ℎ

2
) , (42)

𝑦
󸀠󸀠

𝑖
=
𝑦
𝑖+1
− 2𝑦
𝑖
+ 𝑦
𝑖−1

ℎ2
+ 𝑂 (ℎ

2
) , (43)

𝑦
󸀠󸀠󸀠

𝑖
=
(𝑦
𝑖+1
−𝑦
𝑖
) /ℎ−2 ((𝑦

𝑖
−𝑦
𝑖−1
) /ℎ)+(𝑦

𝑖−1
−𝑦
𝑖−2
) /ℎ

ℎ2

+ 𝑂 (ℎ) ,

(44)

𝑦
󸀠󸀠󸀠

𝑖
=
𝑦
𝑖+1
− 3𝑦
𝑖
+ 3𝑦
𝑖−1
− 𝑦
𝑖−2

ℎ3
+ 𝑂 (ℎ) . (45)

Substituting (45) into (1) results in the following difference
equation:

𝑦
𝑖+1
− 3𝑦
𝑖
+ 3𝑦
𝑖−1
− 𝑦
𝑖−2

ℎ3
= (1 −

1

𝑦
𝑖

+
𝐴

𝑦3
𝑖

) , (46)

which has a truncation error of𝑂(ℎ). After multiplying by ℎ3
we obtain

𝑦
𝑖+1
− 3𝑦
𝑖
+ 3𝑦
𝑖−1
− 𝑦
𝑖−2
= ℎ
3
(1 −

1

𝑦
𝑖

+
𝐴

𝑦3
𝑖

) . (47)

Equation (47) can be evaluated iteratively as

𝑦
(𝑗+1)

𝑖+1
− 3𝑦
(𝑗+1)

𝑖
+ 3𝑦
(𝑗+1)

𝑖−1
− 𝑦
(𝑗+1)

𝑖−2
= ℎ
3
(1 −

1

𝑦
(𝑗)

𝑖

+
𝐴

𝑦
(𝑗)3

𝑖

) .

(48)

To check for 0 stability, we consider the following equation:

𝑦
𝑖+1
− 3𝑦
𝑖
+ 3𝑦
𝑖−1
− 𝑦
𝑖−2
= 0, (49)

which is the homogeneous part of (47). This equation has
been studied extensively in [4].This scheme was proven to be
zero stable, and no oscillations were present in the solution
curve. We can write the above system in the form

𝐵𝑦
(𝑗+1)

= 𝑏, (50)

where

𝐵 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 0 . . . 0 0 0 0 0 0

3 −4 1 0 0 . . . 0 0 0 0 0 0

−1 3 −3 1 0 . . . 0 0 0 0 0 0

0 −1 3 −3 1 . . . 0 0 0 0 0 0

...
...

...
...

... . . .
...

...
...

...
...

...
0 0 0 0 0 . . . −1 3 −3 1 0 0

0 0 0 0 0 . . . 0 −1 3 −3 1 0

0 0 0 0 0 . . . 0 0 −1 3 −3 1

0 0 0 0 0 . . . 0 0 0 0 0 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑦
(𝑗+1)

= [𝑦
(𝑗+1)

0
, 𝑦
(𝑗+1)

1
, 𝑦
(𝑗+1)

2
, 𝑦
(𝑗+1)

3
, . . . , 𝑦

(𝑗+1)

𝑛−1
, 𝑦
(𝑗+1)

𝑛
]
𝑇

,

𝑏 = [1, ℎ
3
(1 −

1

𝑦
(𝑗)

1

+
𝐴

𝑦
(𝑗)3

1

) , ℎ
3
(1 −

1

𝑦
(𝑗)

2

+
𝐴

𝑦
(𝑗)3

2

) , . . . ,

ℎ
3
(1 −

1

𝑦
(𝑗)

𝑛−1

+
𝐴

𝑦
(𝑗)3

𝑛−1

) , 𝜖]

𝑇

.

(51)

An initial guess satisfying the boundary conditions (11) and
(13) (as before) is

𝑦
(0)

𝑖
= 1 + (𝜖 − 1) 𝑥

2

𝑖
. (52)

A von Neumann stability analysis was used to determine the
stability of the system (48). To perform the analysis equation
(48) was linearized as follows:

𝑦
(𝑗+1)

𝑖+1
− 3𝑦
(𝑗+1)

𝑖
+ 3𝑦
(𝑗+1)

𝑖−1
− 𝑦
(𝑗+1)

𝑖−2
= 𝛽𝑦
(𝑗)

𝑖
, (53)

where

𝛽 = ℎ
3
(

1

𝑦
(𝑗)

𝑖

−
1

𝑦
(𝑗)

𝑖

2
+

𝐴

𝑦
(𝑗)

𝑖

4
) . (54)
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Figure 4: Solution to the nonsymmetric scheme for 𝑛 = 100.

In [4] the value assigned to 𝛽 is ℎ3𝑦
𝑖

(𝑗)
−𝑘−1

. The analysis
follows the same procedure with the value for 𝛽 defined by
(54) replacing the value for 𝛽 in [4]. The amplification factor,
𝑔, is given by

𝑔 =

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨

8 sin3 (𝜔ℎ/2)
. (55)

An upper bound for 𝑔 is given by

𝑔 < 8𝛽. (56)

Using the method for determining the maximum and mini-
mum values for 𝛾 from the previous section, we have that a
similar computation for 𝛽 yields

𝛽min = 0, 𝛽max = 249543ℎ
3
. (57)

The von Neumann stability criteria give that

ℎ < (
3√3

249543
)

1/3

≈ 0.03 (58)

which shows that the scheme is conditionally stable. In
Table 2 we show the absolute error max|𝑦(𝑗+1) − 𝑦(𝑗)| at each
iteration for six iterations—after six iterations the absolute
error is 𝑂(10−10). As done previously, in both Table 2 and
Figure 3 we have chosen ℎ = 1/𝑛, where 𝑛 = 100 such that
the choice of ℎ = 10

−2 satisfies the von Neumann stability
criteria. A plot of the nonsymmetric difference scheme is
given in Figure 4 where it can be seen that there are no
oscillations present.

3. Concluding Remarks

In order to investigate the steady state solutions of the partial
differential equation (2) we integrate with respect to 𝑥. In
doing so an arbitrary constant arises, denoted by𝐴, the value

of which was deduced by using the physical condition that
the volume flux at 𝑦 = 𝜖 vanishes. Symmetric and non-
symmetric finite difference schemes were implemented in
order to obtain steady state solutions. In this paper, we use
0 stability to show that the finite difference schemes used to
approximate the third-order derivative in themodel equation
are stable. A von Neumann stability analysis is implemented
to obtain criteria on the step length whichmakes the iterative
evaluation of the nonlinear difference scheme stable.

The symmetric difference scheme has a truncation error
𝑂(ℎ
2
) and is shown to be 0-stable. The nonlinear difference

scheme is solved iteratively and displays unstable results even
though the step length maintains the von Neumann stability
criteria. These oscillations persist even as ℎ is reduced. The
non-symmetric difference scheme, which has a truncation
error of𝑂(ℎ) and is 0 stable, in turn provided a stable solution.
The results obtained in this paper reiterate the fact that
finite difference approximations with a small truncation error
should not thoughtlessly be used to solve problems in which
the boundary conditions affect the behaviour of the solution.
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