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This paper is devoted to the study of almost periodic solutions of a discrete two-species competitive system. With the help of the
methods of the Lyapunov function, some analysis techniques, and preliminary lemmas, we establish a criterion for the existence,
uniqueness, and uniformly asymptotic stability of positive almost periodic solution of the system. Numerical simulations are

presented to illustrate the analytical results.

1. Introduction

In recent years, many works have been done for the difference
system (see [1-14] and the references cited therein) since the
discrete time models governed by the difference equation are
more appropriate than the continuous ones when the popu-
lations have a short life expectancy, nonoverlapping genera-
tions in the real world. In particular, Qin et al. [1] introduced
the following discrete Lotka-Volterra competitive system:

x;(n+1)

= x, (n) exp _Tl (n) —a, (n) x, (n) 1+x,(n) |
Xy (n+1)

¢ (n) x; (n) ]
1+x,(n) |

=x, (n)exp | r, (n) —a, (n) x, (n) -

n=0,12...,
@

where x;(0) > 0, x;(n) stand for the densities of species x;
at the nth generation, r;(#) represent the natural growth rates
of species x; at the nth generation, a;(n) are the intraspecific
effects of the nth generation of species x; on own popula-
tion, and ¢;(n) measure the interspecific effects of the nth
generation of species x; on species x; (i, j = 1,2;i # j). They

investigated the permanence and global asymptotic stability
of positive periodic solutions of system (1).

Notice that the investigation of almost periodic solutions
for difference equations is one of most important topics in
the qualitative theory of difference equations due to the
applications in biology, ecology, neural network, and so forth
(see [10-14] in detail), and few work has been done previously
on an almost periodic version which is corresponding to peri-
odic system (1). In this paper, we will further investigate the
existence, uniqueness, and uniformly asymptotic stability of
positive almost periodic solution of the above almost periodic
version. To this end, we assume that the coefficients of system
(1) {r;(n)}, {a;(n)} and {¢;(n)} are bounded nonnegative almost
periodic sequences.

For the sake of simplicity and convenience in the follow-
ing discussion, the notations below will be used throughout
this paper:

f7 = sup {f ()},

neZ*

fr=inf {fm}

where {f(n)} is a bounded sequence and Z* = {0,1,2,...}.
The remaining part of this paper is organized as follows.
In the next section, we introduce some notations, definitions,
and lemmas which are available for our main results. In
Section 3, sufficient conditions for the existence, uniqueness,
and uniformly asymptotic stability of positive almost periodic
solution of system (1) are given. Numerical simulations are
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FIGURE 1: Positive almost periodic solution of system (13). (a), (c) Time-series x; (1) and x; (1) with initial values x (0) = 1.19, x; (0) = 1.18
for n € [0, 100], respectively. (b), (d) Time-series x| (n) and x; (n) with the above initial values for n € [700, 800], respectively.

carried out to substantiate the above analytical results in
Section 4. Finally, we give some proofs of theorems in the

appendices for convenience in reading this paper.

2. Preliminaries

In this section, we will need some preparations and give some
notations, definitions, and lemmas which will be useful for

our main results.

Denoteby R, R*, Z,and Z" the sets of real numbers, non-
negative real numbers, integers, and nonnegative integers,

respectively. R* and R¥ denote the cone of 2-dimensional and

k-dimensional real Euclidean space, respectively.

Definition I (see [13]). A sequence x : Z — R is called an
almost periodic sequence if the following e-translation set of

X

El{e,x}={reZ:|x(n+1)—-x(n)| <& VneZ}

(3)

is a relatively dense set in Z for all & > 0; that is, for any given
€ > 0, there exists an integer I(¢) > 0 such that each discrete
interval of length I(e) contains a 7 = 7(¢) € Ef{e, x} such that

x(n+1)—-xMn)|<e, Vne. (4)

7 is called the e-translation number of x(n).

Definition 2 (see [13]). Let f : Zx D — R¥, where D is
an open set in R, f(n, x) is said to be almost periodic in n
uniformly for x € D, or uniformly almost periodic for short,
if for any ¢ > 0 and any compact set S in D there exists a
positive integer I(¢, S) such that any interval of length I(¢, S)
contains an integer 7 for which

|f (n+7,x)- f(n,x)| <e (5)

forallm € Zandall x € S. 7is called the e-translation number

of f(n, x).
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FIGURE 2: Phase portrait. (a), (b) 2-dimensional phase portrait of almost periodic system (13). Time-series x, (1) and x; (1) with initial values
x7(0) = 1.19, x5 (0) = 1.18 for n € [0,100] and # € [700, 800], respectively. (c), (d) 3-dimensional phase portrait of almost periodic system
(13). Time-series x; (n) and x; (1) with the above initial values for n € [0, 100] and # € [700, 800], respectively.

Lemma 3 (see [13]). {x(n)} is an almost periodic sequence if
and only if for any sequence {h,} C Z there exists a subsequence
{he} < {h} such that x(n + hy) converges uniformly onn € Z
ask — oo. Furthermore, the limit sequence is also an almost
periodic sequence.

Consider the following almost periodic difference system:

x(n+1) = f(nx(n), nez", (6)

where f: Z* xSz — RF, S = {x € RF : x| < B}, and
f(n,x) is almost periodic in n uniformly for x € Sy and is
continuous in x. The product system of (6) is the following
system:

x(m+1)=f(n,x{n), yn+1)=f(n,y(n), (7)

and Zhang [14] obtained the following lemma.

Lemma 4 (see [14]). Suppose that there exists a Lyapunov
function V(n,x, y) defined forn € Z*, |x| < B, |yll < B
satisfying the following conditions:

(@) allx - yI) < V(n,x,y) < b(lx - yll), where a,b €
KwithK = {a € CR",R") : a(0) = 0O and a is
increasingy;

(i) [V (1, x1, y1) =V (1, x5, y2)| < Llxy = 2511+ 1y, = 2 1),
where L > 0 is a constant;

(iii) AVip,) (1, x, y) < =pV(n, x, y), where 0 < B < lisa
constant and

AViy (mx,y) =V (n+1, f(n,x), f (n,y) -V (n,x, yz .)
8

Moreover, if there exists a solution ¢(n) of system (6) such that
lem)|l < B* < Bforn € Z", then there exists a unique uni-
formly asymptotically stable almost periodic solution p(n) of
system (6) which satisfies | p(n)|| < B*. In particular, if f(n, x)
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FIGURE 3: Uniformly asymptotic stability. (a), (c) Time-series x; (n) and x; (1) with initial values x; (0) = 1.19, x;(0) = 1.18 and x, () and
x,(n) with initial values x, (0) = 1.06, x,(0) = 1.03 for n € [0, 100], respectively. (b), (d) Time-series x| (n), x; (1), x,(n), and x,(n) with the

above initial values for n € [700, 800], respectively.

is periodic of period w, then there exists a unique uniformly

asymptotically stable periodic solution of system (6) of periodic
w.

Lemma 5 (see [1]). Any positive solution (x,(n), x,(n)) of sys-
tem (1) satisfies

U —

i=1,2. (9

Lemma 6 (see [1]). Suppose that system (1) satisfies the follow-
ing assumptions:
n>q,

> (10)

Then, any positive solution (x,(n), x,(n)) of system (1) satisfies

L_ U
TG (L_ Un - U)
Py exp(ry —aM; —¢; ),

i

. def
liminf x; (n) > m; =
n—+0o

i+ j=1,2

(11)
3. Main Result
From (9) and (11), we denote by Q the set of all solutions

(x;(n), x,(n)) of system (1) satisfying m; < x;(n) < M;, i =
1,2 foralln € Z*. According to Lemma 4, we first prove that
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there is a bounded solution of system (1), and then structure
a suitable Lyapunov function for system (1).
Theorem 7. If the assumptions in (10) hold, then Q # ©.
The proof of Theorem 7 is given in Appendix A.

Theorem 8. If the assumptions in (10) are satisfied, further-
more, 0 < 3 < 1, where § = min{s,, s,}, and

U U
1 Uz o (1+(11M1)c2M2
sy = 2a;my —a; "M -

(1+m,)’
) (1+aM,) M, e
(1+m,) (1+m)"

(12)
(1 + agMz) ciJM1

(1 +m1)2

L U2, 2
s, = 2ay,m, —a, M, —

) (1 +a§]M1)c2UM2 ) M2

(1+ m2)4’

(1+m,)’
then there exists a unique uniformly asymptotically stable

almost periodic solution of system (1) which is bounded by Q
forallneZ".

The proof of Theorem 8 is given in Appendix B.

4. Numerical Simulations

In this section, we give the following example to check the
feasibility of the assumptions of Theorem 8.

Example 9. Consider the following discrete system:
x; (n+1)
= x, (n) exp | 1.20 — 0.02 sin (\/Emr)

— (1.05 +0.01 sin (V2n1)) x, ()

(0.025 +0.002 cos (V2nr) ) x, (n)

1+x,(n)

x,(n+1)
= x, (n)exp | 1.15 - 0.02 cos (\/znrr)

- (1.02 + 0.02 cos (\/znn)) x, (n)

(0.035 +0.005 sin (V3n7) ) x, (n)

1+ x, (n)

(13)

A computation shows that

- =1.1530>0, ri-¢ =1.0900>0, (14)

and moreover, we have

s, = 03515, s, = 0.2502, (15)
that is, 0 < = min{s;,s,} = 0.2502 < 1. It is easy to see
that the assumptions of Theorem 8 are satisfied. Hence, in
system (13) there exists a unique uniformly asymptotically
stable positive almost periodic solution. From Figure 1, it is
easy to see that there exists a positive almost periodic solution
(x7(#),x5(t)), and the 2-dimensional and 3-dimensional
phase portraits of almost periodic system (13) are revealed
in Figure 2, respectively. Figure 3 shows that any positive
solution (x, (1), x,(n)) tends to the almost periodic solution

(x7 (n), x5 (n)).

Appendices
A. Proof of Theorem 7

Clearly, by an inductive argument we have from system (1)
that

n-1 ] ]
000 =5, @0 31 0= a O () - S7 0,
n-1 ] ]
() =50, [0 0x0-2050].
(A1)

According to Lemmas 5 and 6, for any solution (x; (1), x,(1))
of system (1) and an arbitrarily small constant ¢ > 0, there
exists n, sufficiently large such that

m; —e<x (n) <M +g my, —e<x,(n) <M, +¢,

Vn > ny.

(A.2)

Set {1, } be any positive integer sequence such that 7, — +oo
as k — +00, we can show that there exists a subsequence of
{r;} still denoted by {7}, such that x;(n+1;,) — x/(n),i=1,2
uniformly in 7 on any finite subset C of Z* as k — +o0,
where C = {a;,a,--a,},a, € Z" (h=1,2---m),and misa
finite number.

As a matter of fact, for any finite subset C ¢ Z*, 7y + ay, >
ny, h =1,2---m, when k is large enough. Therefore, m; — & <
x;(n+71) < M;+ei=1,2;thatis, {x;(n+ 7,)} are uniformly
bounded for k large enough.

Now, for a; € C, we can choose a subsequence {Tlgl)} of
{7} such that {x, (9, +T]£1))} and {x,(a, + T,il) )} uniformly con-
verge on Z" for k large enough.

Analogously, for a, € C, we can also choose a subse-
quence {T,iz)} of {T,il)} such that {x,(a, + TIEZ))} and {x,(a, +

T,iz))} uniformly converge on Z* for k large enough.



Repeating the above process, for a,, € C, we get a subse-
quence {T,im)} of {Tlim_l)} such that {x; (am+T,(<m))} and {x,(a,,+
Tlgm))} uniformly converge on Z* for k large enough.

Now, we choose the sequence {T]im)} which is a subse-
quence of {7} denoted by {7, }; then, for all n € C, we obtain
that x;(n + 7,) — x/(n),i = 1,2 uniformly inn € C as
k — +00. Hence, the conclusion is valid by the arbitrary of
C.

Recall the almost periodicity of {r;(n)}, {g;(n)} and {¢;(n)},
i = 1,2, for the above sequence {13}, 7, — +coask — +oo,
there exists a subsequence denoted by {7} such that

ri(n+n) — ),
a(n+1) — a;(n), (A3)

G(n+7) — g,

ask — +00 uniformly on Z".

Forany o € Z*, we can assume that 7, + a > n, for k large
enough. Let n € Z", by an inductive argument of system (1)
from 7, + a to n + T, + «, we obtain

x (n+ 1 +a)

n+t+a—1
6 () x, (l)]
= x, (1. +«) ex| ri(D-a, () x, (I)-——=—={,
1 (Te+a) Pl_ga[1 1 1 1+ x, ()
X (n+ 1+ a)
n+t+a—1
a () x, ()
=x, (1. +x) ex| r,(D-a, () x (l)—l—].
z(k ) Pl_ga[z ) 2 1+ x, ()
(A4)
Thus, it derives that
x; (n+ 7 +a)
n+oa—1

=x; (1 + &) exp Z

I=a

[rl I+m)—a (+1)x (I+1)

JREPIRS)
1+x, (I+1)

X, (n+ 7 +a)

n+a—1

=x, (1, + a) exp Z

I=a

[rz (o) —ay (1) L+ 7

o(+7)x; (I+7) ]
1 x; (I+13)
(A.5)

Journal of Applied Mathematics

Let k — +00, we have

x; (n+a)
. nta—1 . Iox ) x; )
=x; (x) exp ZZO:C [rl ) —a, () X, - T;(l)] >
x, (n+a)
nt+a—1 *
- 00 S50
=x, (a) exp ; [7'2 (D) —a, (D x, () 1+x () |
(A.6)

Since « is arbitrary, we know that (x] (1), x; (1)) is a solution
of system (1) on Z", and

0<m —e<x; (n)<M, +¢,
(A7)

O<my—-e<x;(n)<M,+e, VneZ'.

Notice that € is an arbitrarily small positive constant; it follows
that

0<m <xj(n) <M, 0<m, <x, (n) <M,

VneZ'.
(A.8)

Thus, Q) # ®. This completes the proof.

B. Proof of Theorem 8

Denote p,(n) = Inx,(n), p,(n) = Inx,(n). It follows from
system (1) that

iy & (m) e
1 +ep2™
¢, (n) en™

1+en™
(B.I)

pi(n+1)=p (n)+r (n)—a (ne

Py (n+1) = p, (n) + 1, (n) — a, (n) ™™ -

According to Theorem 7, we can see that the system (B.1) has
a bounded solution (p, (n), p,(n)) satistying

Inm; < p, (n) <InM,,
(B.2)

Inm, <p,(n)<InM,, neZ.

Thus, |p, ()|
|In M, [}, B

I IA

A, |p,(n)] < B, where A = max{|Inm,|,
max{|Inm,|, |In M,|}. Define the norm
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I(p1 (), p (W)l = 1py ()] + | p, ()], where (p,(n), p,(n)) €
R?. Consider the product system of system (B.1) as follow:

¢, (n) P

Pyt 1) = py ()41, (1) =y () "™ = 2=

p1(n)
p,(n+1)=p,(n)+r,(n)—a,(n epz(n) 4 (n)e

1+’
(n)
B _ a _ G met™
i (n+1) = gy () + 1y (m) =y (W) "™ =~ =~
(n)
B _ ae _ qmet™
7P (l’l+ 1) =q (1’1)+7’2 (7’1) a (n)e ’ 1+e‘11(”) ’
(B3)

We assume that Y = (p,(n), p,(n)), W = (q,(n), g,(n)) are
any two solutions of system (B.1) defined on S; then, ||Y]| < D,
W]l < D,where D = A+B,and S = {(p, (n), p,(n)) | Inm; <
pi(n)<InM,i=1,2neZ}.

Let us construct a Lyapunov function defined on Z* x S x
S as follows:

VY, W) = (p, (1) - q; ) + (p, (n) - g, ()"
(B.4)

It is obvious that the norm [|[Y -W/|| = | p,(n)—q,(n)|+| p,(n) -
q,(n)| is equivalent to [|Y — W|, = [(p,(n) —ql(n))2 +(p,y(n)—
g,(n))*1"%; that is, there are two constants C, > 0, C, > 0,
such that

CGIY-W[<|Y-W|, <C|Y-W], (B.5)
then,
C Y -WI)? <V (Y, W) < (C, Y -W[)..  (BS6)

Let a,b € C(R*,R"), a(x) = Cix®, b(x) = Cix’; then,
condition (i) of Lemma 4 is satisfied.

Moreover, for any (n,Y,W),(n,Y,W) € Z" xS x S, we
have

VY, w) -V (n7,W)|
= |(py 9 = g, )" + (p; (n) - g, (m))”
~(py () =G )" = (B, (1) - T, ()’
< |(py 9 -, @) = (B, (n) - G, (m))’|
+](p2 1) = g, () = (B> (1) = G, ()]
= |(p1 () = g, (M) + (P, (n) = G, ()]
|(pr (1) = g1 (M) = (P (1) = G, ()]
+|(p2 (n) = @, () + (B, (n) = T, ()]
|(p2 ) = g, ) = (B, (W) - G, ()|

< (Ipy ] + @y )] + By ()] + |7, ()])
~(Ipy (1) = By )] + |q1 (n) = G, ()]
+(lp2 | + |a, ()] + |, ()] + |3, (m)])
~(|p2 (0) = By ()] + |q5 (n) — 3, ()]
< L{|p, () = B, ()] + |, () = B, ()]

+ |ay (n) = g, (W] + |g, (n) - G, ()]}
= L{Jy -7+ Jw -7},

(B.7)

where Y = (p;(n), p,(n)), W = (§,(n),q,(n)), and L =
4 max{A, B}. Thus, condition (ii) of Lemma 4 is satisfied.

Finally, calculating the AV (n) of V() along the solutions
of system (B.3), we have

AV ()
=Vn+1)-V(n)
=(pi(n+1) =g (n+1)°
+(p (n+1) =g, (n+ 1))’
(P () = @1 ()" = (py (n) — @, ()’
= [(pr (n+ 1) =gy 1+ 1)) = (py (1) - g, (m))’]

+[(py (4 1) = gy (n+ 1) = (p, (1) — g, ()]

= |: (Pl (n) - q1 (1’1)) - (n) (epl(") _ e‘h(”))

. (n)< ePz(")

qu (n)

2
1 4 eP2(n) - 1 + %™ )] _(pl (”)—Ch (n))Z
+ [ (Pz (n) - q> (7’1)) - a, (n) (epZ(”) — eqz(“))

A (M

2
2
—a () ( 1+er® 14 en® )] ~(p2 (=4, (m)

= =2a, (n) (p () — q; (n)) (epl(n) - eql(”))

2™ 222
-2¢, (m) (Pl (n) - 91 (T’l)) ( 1+ eP2™ - 1+ o™ )

() ()
€P2 n B e\ (epl(n) _ eql(n))
1+er2 14 e

+2a, (n) ¢, (n) (

2
+ af (7’1) (6P1<”) _ eql("))

2
. C2 (n) ePz(”) B 6‘12(”)
2 1+ 1 4eh®




~2a, (n) (p, () — q, () (P2 - =)

ePl(“) e‘h(”)
L+en® 1 4en®

=2¢, () (p, (n) - g, (n)) (

D1(1) 41 (n)
e e
— Pan) _ ()
+2a, (n) ¢ (n) ( (1 oh® 110 ) (e e )

2( ) ePl(") e%('l) 2
TaU T e T T ent )

(B.8)

By the mean value theorem, it derives that

P _ @it _ & (n) (pi (n) —q; (n)) >

ebi™ i) n; (n)

1+ efi™ - 1+ et — (1 + (n))Z

(p; () —g; (),
(B.9)

i = 1,2, where &(n) and 7;(n) lie between e#™ and %™,
respectively. Substituting (B.9) into (B.8), we get

AV(g3) (1)

= 2a, (W) & () (p, (n) — q; (1))’

2 2
Cz (”) 772 (1’1) _ 2
+ (1+n, (n))4 (py (n) — g, (n))
(141, ()’
+a; (n) & () (py (n) - q, ()’

2a, (n) ¢, (n) &, (n) n, (n)
+ 5 (
(1+1,(n)

X (Pz (n) - q, (”))

~2a, (n) & (n) (p, () - g, (n))°
. C12 (n) 11% (n)4(
(1+m, ()
_2amm)
(147, ()’
+a; (0) & () (p, (n) - g, ()

2a, (n) ¢; (n) &, (n) 1, (n)
+ 5 (
(1471, ()

x (py (n) —q, ()

p1(n) =g, (m) (p, (1) - q, ()

() —q, ()

Py (n) - g, ()’

P> (1) =g, () (py () — g, ()

P> (n) =g, (n)
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2 2
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2 2
x{(py (n) =g, )" + (p, (n) - g, ()"}
Uz 02 UM M
=—[2%Lm1—a§]2Mf— ! 14_“2C1 1 22
(1 + ”"1) (1 + ml)
a'M, B ay'c) My M, B oM, ]
(1+m)  (1+m)  (1+m)

x(p; (n) - q, (71))2

U2 3 12 U U
L U2+ 2 o "M, a, ¢, MM,
= |2aym, —a, "M, - -

(1+m)"  (1+m,)
_ a'M, _ ay') My M, B oM, ]
(1+m1)2 (1+m2)2 (1+m2)2

x (py (n) = g, ()’
=- {51(P1 (n) —q, (”))2 +5,(p2 (1) = q, (n))z}
< =B{(p ) = q, )+ (p, (m) - g, )’}
=BV (),
(B.10)

where § = min{s,, s,}. By the conditions of Theorem 8, we
have 0 < 8 < 1, and hence, condition (iii) of Lemma 4 is
satisfied. So, it follows from Lemma 4 that there exists a uni-
que uniformly asymptotically stable almost periodic solution
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(p1 (n), p5 (n)) of system (B.1) which is bounded by S for all
n € Z"; that is, there exists a unique uniformly asymptotically
stable almost periodic solution (x;(n), x5 (1)) of system (1)
which is bounded by Q for all n € Z". This completed the
proof.
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