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The pixel-value differencing (PVD) scheme uses the difference value between two consecutive pixels in a block to determine how
many secret bits should be embedded. There are two types of the quantization range table in Wu and Tasi’s method. The first was
based on selecting the range widths of [8, 8, 16, 32, 64, 128], to provide large capacity. The second was based on selecting the range
widths of [2, 2, 4, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64], to provide high imperceptibility. Most of the related studies focus on increasing
the capacity using LSB and the readjustment process, so their approach is too conformable to the LSB approach. There are very
few studies focusing on the range table design. Besides, it is intuitive to design it by using the width of the power of two. This
work designs a new quantization range table based on the perfect square number to decide the payload by the difference value
between the consecutive pixels. Our research provides a new viewpoint that if we choose the proper width for each range and use
the proposed method, we can obtain better image quantity and higher capacity. In addition, we offer a theoretical analysis to show
our method is well defined. The experiment results also show the proposed scheme has better image quantity and higher capacity.

1. Introduction

The pixel-value differencing (PVD) [1] scheme provides high
imperceptibility to the stego image by selecting two consecu-
tive pixels anddesigns a quantization range table to determine
the payload by the difference value between the consecutive
pixels. Besides, it offers the advantage of conveying a large
number of payloads, while still maintaining the consistency
of an image characteristic after data embedding.

In recent years, several studies have been proposed to
improve the PVDmethod. Wu et al.’s [2] presented a method
combining pixel-value differencing and the LSB replacement
method. Yang and Weng [3] proposed a multipixel differ-
encing method that uses three difference values in a four-
pixel block to determine how many secret bits should be
embedded, and Jung et al.’s [4] proposed an image data
hiding method based on multipixel differencing and LSB
substitution. Liu and Shih [5] proposed two extensions of
the PVD method, the block-based approach and Haar-based

approach, and Yang et al. proposed an information hiding
technique based on blocked PVD. Liao et al.’s [6] proposed
a four-pixel differencing and modified LSB substitution, and
Yang et al.’s [7] proposed a data hiding scheme using the pixel-
value differencing in multimedia images.

Some studies focused on increasing the capacity [3, 5, 8]
using LSB [2, 4] or a readjusted process [6, 7] to improve the
embedding capacity or image quantity. Few studies focus on
the range table design. Besides, it is intuitive to design it using
the width of the power of two.

In this work, we design a new quantization range table
based on the perfect square number to decide the payload
by the difference value between the consecutive pixels. It
differs from the design of Wu and Tsai’s scheme, in which
the quantization range table is based on the range width of
the power of two. The perfect square number provides an
elegant mathematical model to develop a new quantization
range table, which divides each range into two subranges for
embedding different numbers of secret bits.
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The remainder of this paper is organized as follows.
Section 2 briefly describes Wu and Tsai’s PVD approach.
Section 3 presents our scheme on how to create a new
quantization table based on the perfect square number, how
the embedding procedure works, and how to extract the
secret data from the stego image. Section 4 offers a theoretical
analysis and shows the experiment results. Finally, Section 5
concludes this paper.

2. Review of Wu and Tsai’s PVD Approach

The gray-valued cover image is partitioned into nonoverlap-
ping blocks of two consecutive pixels, states 𝑝

𝑖
and 𝑝

𝑖+1
. From

each block, we can obtain a difference value 𝑑
𝑖

= |𝑝
𝑖
− 𝑝
𝑖+1

|;
then 𝑑

𝑖
ranges from 0 to 255. If 𝑑

𝑖
is small, then the block

is located within the smooth area and will embed less secret
data. Otherwise, it is located on the edge area, and it can
embed a greater amount of secret data. The quantization
range table is designed with 𝑛 contiguous ranges, and the
range table ranges from 0 to 255. The number of secret bits
hidden in two consecutive pixels depends on the quantization
range table.

The embedding algorithm is described as follows.

Step 1. Calculate the difference 𝑑
𝑖
= |𝑝
𝑖
− 𝑝
𝑖+1

| for each block
of two consecutive pixels 𝑝

𝑖
and 𝑝

𝑖+1
.

Step 2. Search the quantization range table for 𝑑
𝑖
to deter-

mine how many bits will be embedded. Obtain the range 𝑅
𝑖

in which 𝑅
𝑖
= [𝑙
𝑖
, 𝑢
𝑖
], where 𝑙

𝑖
and 𝑢
𝑖
are the lower bound and

the upper bound of 𝑅
𝑖
, and 𝑚 = ⌊log

2
(𝑢
𝑖
− 𝑙
𝑖
)⌋ is the number

of embedding bits.

Step 3. Read 𝑚 secret bits from the secret bit stream, and
transform it into decimal value 𝑏.

Step 4. Calculate the new difference 𝑑
󸀠

𝑖
= 𝑙
𝑖
+ 𝑏. Ensure both

𝑑
𝑖
and 𝑑

󸀠

𝑖
are in the same range 𝑅

𝑖
.

Step 5. Average 𝑑
󸀠

𝑖
to 𝑝
𝑖
and 𝑝

𝑖+1
. The new pixel values

𝑝
󸀠

𝑖
and 𝑝

󸀠

𝑖+1
are obtained by the following formula:

(𝑝
󸀠

𝑖
, 𝑝
󸀠

𝑖+1
)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

(𝑝
𝑖
+ ⌈

󵄨󵄨󵄨󵄨󵄨
𝑑
󸀠

𝑖
− 𝑑
𝑖

󵄨󵄨󵄨󵄨󵄨

2
⌉ , 𝑝
𝑖+1

− ⌊

󵄨󵄨󵄨󵄨󵄨
𝑑
󸀠

𝑖
− 𝑑
𝑖

󵄨󵄨󵄨󵄨󵄨

2
⌋) ,

if 𝑝
𝑖
≥ 𝑝
𝑖+1

, 𝑑
󸀠

𝑖
> 𝑑
𝑖
,

(𝑝
𝑖
− ⌈

󵄨󵄨󵄨󵄨󵄨
𝑑
󸀠

𝑖
− 𝑑
𝑖

󵄨󵄨󵄨󵄨󵄨

2
⌉ , 𝑝
𝑖+1

+ ⌊

󵄨󵄨󵄨󵄨󵄨
𝑑
󸀠

𝑖
− 𝑑
𝑖

󵄨󵄨󵄨󵄨󵄨

2
⌋) ,

if 𝑝
𝑖
< 𝑝
𝑖+1

, 𝑑
󸀠

𝑖
> 𝑑
𝑖
,

(𝑝
𝑖
− ⌈

󵄨󵄨󵄨󵄨󵄨
𝑑
󸀠

𝑖
− 𝑑
𝑖

󵄨󵄨󵄨󵄨󵄨

2
⌉ , 𝑝
𝑖+1

+ ⌊

󵄨󵄨󵄨󵄨󵄨
𝑑
󸀠

𝑖
− 𝑑
𝑖

󵄨󵄨󵄨󵄨󵄨

2
⌋) ,

if 𝑝
𝑖
≥ 𝑝
𝑖+1

, 𝑑
󸀠

𝑖
≤ 𝑑
𝑖
,

(𝑝
𝑖
+ ⌈

󵄨󵄨󵄨󵄨󵄨
𝑑
󸀠

𝑖
− 𝑑
𝑖

󵄨󵄨󵄨󵄨󵄨

2
⌉ , 𝑝
𝑖+1

− ⌊

󵄨󵄨󵄨󵄨󵄨
𝑑
󸀠

𝑖
− 𝑑
𝑖

󵄨󵄨󵄨󵄨󵄨

2
⌋) ,

if 𝑝
𝑖
< 𝑝
𝑖+1

, 𝑑
󸀠

𝑖
≤ 𝑑
𝑖
.

(1)

Repeat Steps 1–5 until all secret bits are embedded and the
stego image is produced.

In the extracting phase, the same Steps 1 and 2 in the
embedding algorithm are used. The difference 𝑑

󸀠

𝑖
= |𝑝
󸀠

𝑖
−

𝑝
󸀠

𝑖+1
| is computed for each two consecutive pixels in the stego

image, and then the same quantization range table is searched
to find 𝑙

𝑖
. Compute 𝑏 = 𝑑

󸀠

𝑖
−𝑙
𝑖
, and transform 𝑏 into the binary

stream. Repeat until all secret data is completely extracted.

3. Proposed Scheme

In this section, the proposed scheme is described in three
parts: the new quantization range table is based on the
perfect square number, embedding procedure, and extraction
procedure.

3.1. The New Quantization Range Table Based on Perfect
Square Number. We design a new quantization range table
based on the perfect square number in Table 1. For each
pixel value 𝑝 ∈ [0, 255], choose the nearest perfect square
number 𝑛

2 (we will define the nearest perfect square number
later), then we have range 𝑛

2
− 𝑛 ≤ 𝑛

2
< 𝑛
2

+ 𝑛 for 𝑛 ∈

[1, 16]. The width of this range is (𝑛
2

+ 𝑛) − (𝑛
2

− 𝑛) = 2𝑛,
and the embedding bit length is 𝑚 = ⌊log

2
2𝑛⌋. For each

range [𝑛
2

− 𝑛, 𝑛
2

+ 𝑛), if the width of this range is larger than
2
𝑚, then we divide this range into two subranges: [𝑛2 −𝑛, 𝑛

2
+

𝑛 − 2
𝑚

] and [𝑛
2

+ 𝑛 − 2
𝑚

+ 1, 𝑛
2

+ 𝑛 − 1].
For example, if the pixel value is 34, the nearest perfect

square number is 36; then we have range: [30, 41]. The width
of this range is 12, and the embedding bit length is 𝑚 =

⌊log
2
12⌋ = 3. Since 12 > 23, divide this range into two

subranges [30, 33] and [34, 41].
By the definition of subranges, if the to-be-embedded 𝑚+

1 secret bits equal one of the 𝑚 + 1 LSB bits in the first
subrange, then we claim it can embed 𝑚 + 1 secret bits.
Otherwise, the second subrange’s width is always 2

𝑚, and it
can embed 𝑚 secret bits. Therefore, we can guarantee one of
the continuous series numbers equals the 𝑚 bits secret data
which we want to embed.

There are two important concepts we want to emphasize
here. First, if the difference value is located in the first
subrange, there is no modification needed, so this design
does not violate the basic concept of PVD and HVS (Human
Visual System). Second, we notice almost the difference
values belonging to range [56, 255] are used to embed the
same size of data, 4 bits of secret data. Our design in Table 1
still coincides with the basic concept of PVD—embedding a
lower amount of secret data in the smooth area and a greater
amount of secret data in the edge area.

3.2. Embedding Procedure. Before embedding secret data,
the function Nearest PerfectSquare(𝑑) is defined to find the
nearest perfect square number for difference value 𝑑, where
𝑑 is the difference value of two consecutive pixels.

The functionNearest PerfectSquare(𝑑) returns the nearest
perfect square number 𝑛, and 𝑛 is the range number of 𝑑.
According to range number 𝑛, the secret data is embedded
into the cover image by the embedding procedure. The
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Table 1: The quantization range table based on the perfect square
number.

𝑛 Range Sub-ranges 𝑚

1 [0, 1] [0, 1] 1
2 [2, 5] [2, 5] 2

3 [6, 11]
[6, 7] 3
[8, 11] 2

4 [12, 19] [12, 19] 3

5 [20, 29]
[20, 21] 4
[22, 29] 3

6 [30, 41]
[30, 33] 4
[34, 41] 3

7 [42, 55]
[42, 47] 4
[48, 55] 3

8 [56, 71] [56, 71] 4

9 [72, 89]
[72, 73] 5
[74, 89] 4

10 [90, 109]
[90, 93] 5
[94, 109] 4

11 [110, 131]
[110, 115] 5
[116, 131] 4

12 [132, 155]
[132, 139] 5
[140, 155] 4

13 [156, 181]
[156, 165] 5
[166, 181] 4

14 [182, 209]
[182, 193] 5
[194, 209] 4

15 [210, 239]
[210, 223] 5
[224, 239] 4

16 [240, 255] [240, 255] 4
𝑛 is the perfect square number;𝑚 is the length of embedding bits.

embedding procedure of proposed method is summarized as
follows.

The proposed embedding procedure is as follows.
Input. The grayscale cover image pixel value 𝐺𝑟𝑎𝑦(𝑖),
where 𝑖 is a pixel index. LSB(𝑝, 𝑚) is 𝑚 bits LSB binary
stream for pixel value 𝑝. Secret(𝑚) represents 𝑚 bits binary
secret data.
Output.The grayscale stego image pixel value 𝑆𝑡𝑒𝑔𝑜(𝑖).

Step 1. For each pair of two consecutive pixels, compute the
difference value 𝑑 = |(𝐺𝑟𝑎𝑦(𝑖 + 1) − 𝐺𝑟𝑎𝑦(𝑖)|.

Step 2. Find the nearest perfect square number 𝑛 by function
Nearest PerfectSquare(𝑑), and 𝑛 is the range number of 𝑑 in
Table 1.

Step 3. If 𝑑 ≥ 240, set new pixel-value difference value
𝑑
󸀠

= 240 + 𝑆𝑒𝑐𝑟𝑒𝑡(4). According to PVD embedding scheme

(Step 5), average 𝑑
󸀠 to 𝐺𝑟𝑎𝑦(𝑖) and 𝐺𝑟𝑎𝑦(𝑖 + 1). The new pixel

values 𝑆𝑡𝑒𝑔𝑜(𝑖) and 𝑆𝑡𝑒𝑔𝑜(𝑖+1) are obtained by the following
formula:

(𝑆𝑡𝑒𝑔𝑜 (𝑖) , 𝑆𝑡𝑒𝑔𝑜 (𝑖 + 1))

=

{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{

{

(𝐺𝑟𝑎𝑦 (𝑖) + ⌈

󵄨󵄨󵄨󵄨𝑑
󸀠
− 𝑑

󵄨󵄨󵄨󵄨

2
⌉ , 𝐺𝑟𝑎𝑦 (𝑖 + 1) − ⌊

󵄨󵄨󵄨󵄨𝑑
󸀠
− 𝑑

󵄨󵄨󵄨󵄨

2
⌋) ,

if 𝐺𝑟𝑎𝑦 (𝑖) ≥ 𝐺𝑟𝑎𝑦 (𝑖 + 1) , 𝑑
󸀠

> 𝑑,

(𝐺𝑟𝑎𝑦 (𝑖) − ⌈

󵄨󵄨󵄨󵄨𝑑
󸀠
− 𝑑

󵄨󵄨󵄨󵄨

2
⌉ , 𝐺𝑟𝑎𝑦 (𝑖 + 1) + ⌊

󵄨󵄨󵄨󵄨𝑑
󸀠
− 𝑑

󵄨󵄨󵄨󵄨

2
⌋) ,

if 𝐺𝑟𝑎𝑦 (𝑖) < 𝐺𝑟𝑎𝑦 (𝑖 + 1) , 𝑑
󸀠

> 𝑑,

(𝐺𝑟𝑎𝑦 (𝑖) − ⌈

󵄨󵄨󵄨󵄨𝑑
󸀠
− 𝑑

󵄨󵄨󵄨󵄨

2
⌉ , 𝐺𝑟𝑎𝑦 (𝑖 + 1) + ⌊

󵄨󵄨󵄨󵄨𝑑
󸀠
− 𝑑

󵄨󵄨󵄨󵄨

2
⌋) ,

if 𝐺𝑟𝑎𝑦 (𝑖) ≥ 𝐺𝑟𝑎𝑦 (𝑖 + 1) , 𝑑
󸀠

≤ 𝑑,

(𝐺𝑟𝑎𝑦 (𝑖) + ⌈

󵄨󵄨󵄨󵄨𝑑
󸀠
− 𝑑

󵄨󵄨󵄨󵄨

2
⌉ , 𝐺𝑟𝑎𝑦 (𝑖 + 1) − ⌊

󵄨󵄨󵄨󵄨𝑑
󸀠
− 𝑑

󵄨󵄨󵄨󵄨

2
⌋) ,

if 𝐺𝑟𝑎𝑦 (𝑖) < 𝐺𝑟𝑎𝑦 (𝑖 + 1) , 𝑑
󸀠

≤ 𝑑.

(2)

Step 4. If 𝑑< 240, compute the length of embedding bits 𝑚 =

⌊log
2
(2𝑛)⌋.There are two cases. Search the first subrange [𝑛2−

𝑛, 𝑛
2
+𝑛−2

𝑚
−1] and find a value 𝑝 in the subrange such that

LSB(𝑝, 𝑚+1) = Secret(𝑚+1), and then set 𝑑
󸀠

= 𝑝. Otherwise,
search the second subrange [𝑛2 + 𝑛 − 2

𝑚
, 𝑛
2
+ 𝑛 − 1] and find a

value 𝑝 in the subrange such that LSB(𝑝, 𝑚) = Secret(𝑚), and
then set 𝑑

󸀠
= 𝑝. Finally, average 𝑑

󸀠 to𝐺𝑟𝑎𝑦(𝑖+1) and𝐺𝑟𝑎𝑦(𝑖)

as Step 3 does, and then we obtain 𝑆𝑡𝑒𝑔𝑜(𝑖) and 𝑆𝑡𝑒𝑔𝑜(𝑖 + 1).

We illustrate the embedding procedure in Figure 1.
For example, we choose a pair of two consecutive pixels

(47,81) from the cover image; then 𝑑 = |81 − 47| = 34, 𝑛 = 6.
The following two conditions are discussed.

Case 1. Secret data is “1110” or “1111” or “0000” or “0001.”

In the first subrange [30, 33], the 4 LSBs are the same
as the secret data (30 = 00011110

2
, 31 = 00011111

2
, 32 =

00100000
2
, 33 = 00100001

2
), so we can embed 4 bits of secret

data. Suppose the to-be-embedded bits are “0000”; then the
new difference value 𝑑

󸀠
= 32 (32 = 00100000

2
). Finally, we

modify (47,81) to (48,80).

Case 2. Otherwise, the second subrange [34, 41] is used to
embed 3 secret bits ranging from “000” to “111”. Suppose
the to-be-embedded bits are “001”; then the new difference
value 𝑑

󸀠
= 41 (41 = 00101001

2
). Finally, we modify (47,81) to

(43,84).

We illustrated the embedding examples in Figure 2.

3.3. Extraction Procedure. The extraction procedure of the
proposed method is summarized as follows.

The proposed extraction procedure is as follows.
Input. The grayscale stego image pixel value 𝑆𝑡𝑒𝑔𝑜(𝑖).
LSB(𝑝, 𝑚) is a decimal number transform from 𝑚 bits LSB
binary stream for pixel value 𝑝. Secret(𝑚) represents 𝑚 bits
binary secret data.
Output. Secret data.
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d = |Gray(i + 1) − Gray(i)|

True

False

True

False

n = Nearest PerfectSquare(d)

m = floor(log
2
(2n))

Ifd ≥ 240

Secret(m + 1) = LSB(p, m + 1),

where p is in the first subrange

First subrange

Second subrange

d
󳰀 = p

d
󳰀 to Stego(i),

Stego(i + 1)

if LSB(p,m) = Secret(m)

d
󳰀
= p

// average d󳰀 to Stego(i), Stego( i + 1)

d
󳰀
= 240 + Secret(4)

// average d󳰀 to Stego(i),

Stego( i + 1)
// average

Search the second subrange value p,

Figure 1: The embedding procedure.

True

False

True

False

Secret data 

Secret data 

d = |47 − 81| = 34 M = floor(log
2
(2n)) = 3

n = Nearest PerfectSquare(d) = 6

If d ≥ 240

d
󳰀
= 240 + Secret(4)

// average // averaged
󳰀 to Stego(i),

Stego( i + 1)

d
󳰀 = 32

d
󳰀 to Stego(i),

Stego(i + 1)

d
󳰀 = 41

d
󳰀 to Stego(i),

Stego(i + 1)

If d < n
2
+ n − 2

m

“0000”

“001”

30 = 000111102,
31 = 000111112,
32 = 001000002,
33 = 001000012

34 = 001000102,
35 = 001000112,
36 = 001001002,
37 = 001001012,
38 = 001001102,
39 = 001001112,
40 = 001010002,
41 = 001010012

// average

Figure 2: The embedding examples of two consecutive pixels (47,81) and two cases of secret data “0000” and “001”.

Step 1. For each pair of two consecutive pixels, compute the
difference value 𝑑

󸀠
= |𝑆𝑡𝑒𝑔𝑜(𝑖 + 1) − 𝑆𝑡𝑒𝑔𝑜(𝑖)|.

Step 2. Find the nearest perfect square number 𝑛 by function
Nearest PerfectSquare(𝑑󸀠), and 𝑛 is the range number of 𝑑

󸀠 in
Table 1.

Step 3. If𝑑󸀠≥ 240, Secret(4)=LSB(𝑑󸀠, 4). Otherwise, compute
the length of embedding bits𝑚 = ⌊log

2
(2𝑛)⌋, search subrange

𝑛 from Table 1 to determine which subrange it belongs to,
and extract the secret data (Secret(𝑚 + 1)= LSB(𝑑󸀠, 𝑚 + 1) for
the first subrange and Secret(𝑚) = LSB(𝑑󸀠, 𝑚) for the second
subrange). Finally, we extract all secret data.
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True

False

True False

d
󳰀
= |Stego(i) − Stego(i + 1)|

n = Nearest PerfectSquare

If d󳰀 ≥ 240

m = floor(log
2
(2n))

If d󳰀 < n
2
+ n − 2

m

Secret(4) = LSB(d󳰀, 4) Secret(m + 1) = LSB(d󳰀 (d
󳰀

, m + 1) Secret(m) = LSB , m)

(d
󳰀
)

Figure 3: The extraction procedure.

We illustrate the extraction procedure in Figure 3.
For example, we choose a pair of two consecutive pixels

(48,80) from the stego image; then 𝑑
󸀠

= |80 − 48| = 32, 𝑛 =

6. Since 𝑑
󸀠 is located in the first subrange, we can extract the

secret data “0000” from 4 LSBs of 32 = 00100000
2
.

For another example, we choose a pair of two consecutive
pixels (43,84) from the stego image; then 𝑑

󸀠
= |84 − 43| =

41, 𝑛 = 6. Since 𝑑
󸀠 is located in the second subrange, we can

extract the secret data “001” from 3 LSBs of 41 = 00101001
2
.

4. Theoretical Analysis and Experiment Results

Lena, Baboon, Peppers, Jet, SailBoat, and Tiffany from the
SIPI Image Database are chosen as the cover images. First, we
give a theoretical analysis to show ourmethod is well defined,
and then the experiment results show the proposed scheme
has higher imperceptibility.

4.1.Theoretical Analysis. The stego image quality is measured
by the peak signal-to-noise ratio (PSNR). The PSNR formula
is defined as

PSNR = 10 × log
10

255
2

MSE
(dB) , (3)

where MSE is the mean square error between the cover and
stego images. For a cover image, whose width and height are
𝑤 and ℎ, MSE is defined as

MSE =
1

𝑤 × ℎ

𝑤

∑

𝑖=1

ℎ

∑

𝑗

(𝑆𝑡𝑒𝑔𝑜 (𝑖, 𝑗) − 𝐶𝑜V𝑒𝑟 (𝑖, 𝑗))
2
, (4)

where 𝑆𝑡𝑒𝑔𝑜(𝑖, 𝑗) and 𝐶𝑜V𝑒𝑟(𝑖, 𝑗) are the pixel values of the
stego and cover images, respectively.

Suppose, the probability of distribution is uniform. Then
we calculate the average payload and average MSE for each
range 𝑅

𝑖
(𝑖 = 1 ∼ 16) (or the perfect square number 𝑛)

according to Table 1. The average payload is computed by the
following formula:

average payload =
𝐶 (𝑛
𝑖,1

)

2𝑛
× 𝑛
𝑖,1

+
𝐶 (𝑛
𝑖,2

)

2𝑛
× 𝑛
𝑖,2

, (5)

where 𝐶(𝑛
𝑖,1

) is the total number in the first subrange, 𝑛
𝑖,1

is
the embedding bits in the first subrange, 𝐶(𝑛

𝑖,2
) is the total

number in the second subrange, and 𝑛
𝑖,2

is the embedding
bits in the second subrange. The average error for each range
is calculated by the following formula:

average error
𝑖
=

𝐶 (𝑛
𝑖,1

)

2𝑛
× 0 +

𝐶 (𝑛
𝑖,2

)

2𝑛
×

∑
𝐶(𝑛𝑖,2)−1

𝑖=0
𝑖

𝐶 (𝑛
𝑖,2

)
. (6)

For example, 𝑛 = 6, average payload is (4/12) × 4 +

(8/12) × 3 = 3.33, and the average error is (4/12) × 0 +

(8/12) × (∑
7

𝑖=0
𝑖)/8 = 2.33.

The total MSE is estimated by

MSE =

16

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑛𝑖
󵄨󵄨󵄨󵄨 × (average error

𝑖
)
2
, (7)

where |𝑛
𝑖
| and average error

𝑖
are the width and average error

for each range.
Therefore, we obtain the average payload and average

MSE using the perfect square number, as illustrated in
Table 2.

The same theoretical analysis usingWu and Tsai’s method
is shown in Table 3.

From Tables 2 and 3, we calculate the payload and PNSR
for Lena, Baboon, Peppers, Jet, SailBoat, and Tiffany and
compare Wu and Tsai’s method and the proposed method by
theoretical analysis in Table 4.

Ourmethod clearly has greater capacity and higher PSNR
than Wu and Tsai’s method, which proves the proposed
method is well defined.



6 Journal of Applied Mathematics

Table 2: Distributions of pixel-value difference, average payload, and average MSE for images using the proposed method.

𝑅
𝑖

Lena Baboon Peppers Jet SailBoat Tiffany Average payload Average MSE
1 79276 72714 77375 90611 77179 83887 1 0.5
2 28604 14659 27386 17330 21513 28642 2 1.5
3 13861 15316 17509 11449 16168 10717 2.33 1
4 5013 11053 5467 3894 8215 3953 3 3.5
5 2275 7539 1593 2026 3787 1768 3.2 2.8
6 1128 4754 726 2049 2104 897 3.33 2.33
7 566 2841 353 1138 1127 400 3.43 2
8 224 1466 195 1259 577 535 4 7.5
9 100 561 150 586 270 170 4.11 6.67
10 21 149 109 281 58 87 4.2 6
11 4 18 57 408 19 8 4.27 5.45
12 0 2 51 41 22 7 4.33 5
13 0 0 92 0 33 0 4.38 4.62
14 0 0 9 0 0 1 4.43 4.29
15 0 0 0 0 0 0 4.47 4
16 0 0 0 0 0 0 4 7.5

Table 3: The distributions of pixel-value difference, payload, and MSE for images using Wu and Tsai’s method.

Range width Lena Baboon Peppers Jet SailBoat Tiffany Payload MSE
2 79276 72714 77375 90611 77179 83887 1 0.5
2 17302 7786 15376 17330 12301 18372 1 0.5
4 18177 12904 20501 11449 16226 15669 2 1.5
4 6986 9285 9018 3894 9154 5318 2 1.5
4 3266 6437 3786 2026 5174 2556 2 1.5
8 2889 8147 2574 2049 4944 2354 3 3.5
8 1392 5010 869 1138 2378 1040 3 3.5
16 1174 5201 733 1259 2200 885 4 7.5
16 385 2288 292 586 907 386 4 7.5
32 214 1207 273 281 504 551 5 16
32 11 91 120 408 46 45 5 16
64 0 2 155 41 59 8 6 32
64 0 0 0 0 0 1 6 32

Table 4: Comparison between Wu and Tsai’s method and the proposed method by theoretical analysis.

Cover images
(512 × 512)

Wu and Tsai’s method with the range widths of
2, 2, 4, 4, 4, 8, 8, 16, 16, 32, 32, 64, and 64 Proposed method

Capacity Payload PSNR Capacity Payload PSNR
Lana 173640 0.66 47.75 198209 0.76 49.23
Baboon 213681 0.82 42.31 229459 0.88 46.17
Peppers 176685 0.67 45.71 200831 0.77 49.10
Jet 163312 0.62 46.01 191383 0.73 47.96
SailBoat 188086 0.72 44.86 209494 0.80 47.87
Tiffany 167645 0.64 46.83 191290 0.73 49.18
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(a) (b) (c)

(d) (e) (f)

Figure 4: Six test images: (a) Lena, (b) Baboon, (c) Peppers, (d) Jet, (e) SailBoat, and (f) Tiffany.

Table 5: The experiment results use Figure 4 as the cover image.

Cover images
(512 × 512)

Capacity
(bits)

Payload
(bpp)

PSNR
(dB)

Lena 215740 0.82 50.70
Baboon 241719 0.92 48.57
Peppers 217290 0.83 50.57
Jet 204682 0.78 50.89
SailBoat 224915 0.86 49.86
Tiffany 210935 0.80 50.86

4.2. Experiment Results. We also use the same test images as
the real test shown in Figure 4, and the experiment results are
shown in Table 5.

From Table 5, we found the experiment results have
larger capacity and better PSNR than those of the theoretical
analysis. The capacity and PSNR seem to be affected by the
secret data, withmore pixel-value difference falling in the first
subranges and matching the secret data; we can obtain more
capacities and less distortion.

5. Conclusions

This work designs a new quantization range table based on
the perfect square number. In particular, we propose a new
technology to design the range table. The width of the range

is no longer a power of two, and if the difference value is
located in the first subrange, there is no modification needed.
Therefore, this design has not violated the basic concept
of PVD and HVS (Human Visual System). If we choose a
proper width for each range and use the proposed method
as mentioned above, we can obtain better image quantity and
higher capacity. The theoretical analysis shows the proposed
scheme is well defined and has larger capacity and higher
PSNR than those of Wu and Tsai’s second type range table
design. The experiment results also show the proposed
scheme provides large capacity and high imperceptibility.
In addition, our study ingeniously uses the perfect square
number to achieve the goal.
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