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Theoremproving is an important approach in formal verification.Higher-order logic is a formof predicate logic that is distinguished
from first-order logic by additional quantifiers and stronger semantics. Higher-order logic is more expressive. This paper presents
the formalization of the linear space theory in HOL4. A set of properties is characterized in HOL4. This result is used to build the
underpinnings for the application of higher-order logic in a wider spectrum of engineering applications.

1. Introduction

Linear space is a core theory of linear algebra. It has a
wide spectrum of applications, such as cryptography, pattern
recognition, and signal processing and communications. In
order to formallymodel and analyze designswith linear space
in a formal logic, it is necessary to achieve the formalization
of linear space. The HOL theorem prover was developed in
1984, and has a wide range of applications in various fields
[1–4]. HOL4 is the latest version of HOL, which provides a
wide collection of theories and libraries. However, there is no
formalization of linear space inHOL4.This paper fills this gap
in the formalization of the linear space in HOL4.

2. Preliminaries in HOL

InHOL4, the theories and libraries are categorized as boolean
logic, temporal logic, natural numbers, real numbers, lists,
and so forth. Each theory consists of types, definitions,
and theorems. Theorems are established based on rigorous
mathematical derivation. A library is usually a collection of
theories, proof tools (such as tactics, tactical and simplifica-
tion sets) and proof procedures [5].

In HOL4, the following steps are involved in the creation
of a new theory.

(1) New Types. The HOL4 system is based on higher-order
logic. Any variable in the higher-order logic has a type [6].
When establishing a theory, one has to define new types of
variables that do not exist in the system.
(2) Formal Definitions. Definition is a process of modeling.
Formal definitions affect the proof of properties and theo-
rems.
(3) Formal Proof of Properties and Theorems. A proof is
related to the choice of appropriate proof structures, inference
rules, and tactics. The final proof result will be saved as a
theorem of type “:thm”.These rigorous steps of mathematical
derivation are checked in HOL.

3. Formalization of Linear Space
Theory in HOL4

3.1. Definitions (Field). Let S be a nonempty subset of the
complex number set. S is a field if

(1) 0 and 1 ∈ 𝑆,
(2) closure property: for 𝑎 ∈ 𝑆 and 𝑏 ∈ 𝑆, 𝑎+𝑏 ∈ 𝑆, 𝑎−𝑏 ∈
𝑆, 𝑎𝑏 ∈ 𝑆 and 𝑏/𝑎 ∈ 𝑆(𝑎 ̸= 0) [7].

The definition of a field is associated with the existing
theories of HOL4. For example, “a nonempty subset of the
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Figure 1: Proof of Property 1.

complex number set” is associated with the Set Theory and
the Complex Theory of HOL4. Therefore, the formalization
of a field inHOL4will be based on these two existing theories
of HOL4.

3.2. Axiomatization of a Field. A field 𝑆 can be characterized
by the following axioms.

Axiom 1 (Complex Number). S is a subset of the complex
number set.

Axiom 2 (Nonempty). S is a nonempty set.

Axiom 3 (Membership). S includes element 0 and element 1,
and all the elements of S meet the closure property of four
operations.

The formalization of Axiom 3 in HOL4 is given as shown
in Box 1.

The definition of a field can be expressed by the formal
description of the above three axioms. The formalization of
Axioms 1 and 2 are “is complex subset” and “nf not empty”.
The formalization of a field in HOL4 is given as shown in
Box 2.

3.3. Definitions (Linear Space). Let V be a nonempty set and
S a field. An addition operation is defined on the elements of
V. For two arbitrary elements x and y of V, there is a unique
element z in V, denoted as 𝑧 = 𝑥 + 𝑦. A scalar multiplication
operation is defined on the numbers of S with the elements
of V. For an arbitrary element k of S and an arbitrary element
x of V, there is a unique element y in V, denoted as 𝑦 = 𝑘𝑥.
If addition and multiplication operations meet the following
eight rules, then V is called a linear space on the field S.

(1) 𝑥 + 𝑦 = 𝑦 + 𝑥
(2) (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧)

(3) There is an element in V called “zero”, denoted as 𝜃.
For an arbitrary element 𝑥, 𝑥 + 𝜃 = 𝑥

(4) For an arbitrary element 𝑥, there is a element y in 𝑉
so that 𝑥 + 𝑦 = 𝜃

(5) If 1 ∈ 𝑆, then 1𝑥 = 𝑥
(6) If 𝑘 ∈ 𝑆, 𝑙 ∈ 𝑆 and 𝑥 ∈ 𝑉, then 𝑘(𝑙𝑥) = (𝑘𝑙)𝑥
(7) If 𝑘 ∈ 𝑆, 𝑙 ∈ 𝑆 and 𝑥 ∈ 𝑉, then (𝑘 + 𝑙)𝑥 = 𝑘𝑥 + 𝑙𝑥
(8) If 𝑘 ∈ 𝑆, 𝑥 ∈ 𝑉 and 𝑦 ∈ 𝑉, then 𝑘(𝑥 + 𝑦) = 𝑘𝑥 + 𝑘𝑦

[8].

A linear space is composed of a nonempty set𝑉 and a field
𝑆 under addition and multiplication operations with eight
algebraic rules. The Set Theory in HOL4 is used to complete
the formulation of the new theory.

3.4. Axiomatization of Linear Space. A linear space𝑀 can be
characterized by the following axioms.

Axiom 1. M is a nonempty set.

Axiom 2. M is a linear space on a field S.

Axiom 3. Theelements ofMmeet the uniqueness and closure
property of addition.

Axiom4. Theelements ofMmeet the uniqueness and closure
property of multiplication.

Axiom 5. The elements of M meet the associative law of
addition.

Axiom 6. The elements of M meet the commutative law of
addition.

Axiom 7. M contains the special element zero.
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-g “linear space ∧s∧ls ==> !x:󸀠a.?!y:󸀠a. (y = ls0) ∧ (x LP ls0 = x)”;
> val it =

Proof manager status: 1 proof.
1. Incomplete goalstack:

Initial goal:
linear space s ls ==> !x. ?!y. (y = ls0) ∧ (x LP ls0 = x)

: proofs

Algorithm 1: Initial goal g.

- e (DISCH TAC)
OK..
1 subgoal:
> val it =

!x. ?!y. (y = ls0) ∧ (x LP ls0 = x)

linear space s ls
: proof

Algorithm 2: The subgoal g1.

- e (GEN TAC);
OK..
1 subgoal:
> val it =

?!y. (y = ls0) ∧ (x LP ls0 = x)

linear space s ls
: proof

Algorithm 3: The subgoal g2.

Axiom 8. M contains the defined negative elements.

Axiom 9. The elements of M meet the rule of multiplication
with element 1 in S.

Axiom 10. The elements of M meet the associative law of
multiplication.

Axiom 11. The elements ofM meet the left distributive law of
multiplication.

Axiom 12. The elements ofM meet the right distributive law
of multiplication.

Let LM, LP, and LN be the addition, multiplication, and
negation operators of linear space. The formal description of
the definition of linear space can be converted into the formal
descriptions of the above 12 axioms. For example, consider
Axiom 3; its formal description inHOL4 is as shown in Box 3.

The unique existing quantifier “?!” is used in the above
description to indicate the uniqueness of the results of
addition.

This axiom is named “ls add”. The formal descriptions of
the other 11 axioms are given in a similar manner. The 12
axioms are then connected by “∧” to indicate that they are
required at the same time.

The formal description of the definition of linear space in
HOL4 is described as shown in Box 4.

3.5. New Types. We introduce new types for the field and the
linear space. In HOL4, the existing type “:complex” is used
as the type of the elements of the field, and the polymorphic
type “:󸀠a” is used as the type of the elements of the linear space.
Since the field and linear space are both sets, their types are
defined by the use of the existing type of set. The definitions
of the two types are as shown in Box 5.

The type of a number field, “num field”, is defined as
a complex set “:complex -> bool”. The type of the lin-
ear space, “linear space”, is defined as a polymorphic set
“:󸀠a -> bool”.

3.6. Properties of Linear Space. Properties of linear space can
be derived in HOL4. For example, the following properties
are formalized in HOL4.

Property 1. The element “zero” in a linear space is unique.

Property 2. For an arbitrary element x in a linear space, the
negative element of x is unique, and denoted as −𝑥.

Property 3. For arbitrary elements𝑥,𝑦 and 𝑧 in a linear space,
if 𝑥 + 𝑦 = 𝑥 + 𝑧, then 𝑦 = 𝑧.

Property 4. For arbitrary elements𝑥, 𝑦 and 𝑧 in a linear space,
if 𝑥 + 𝑦 = 𝑧, then 𝑥 = 𝑧 − 𝑦.

Property 5. For an arbitrary element 𝑘 in a number field, 𝑘𝜃 =
𝜃.

Property 6. For an arbitrary element 𝑥 in a linear space, 0𝑥 =
𝜃.

Property 7. For an arbitrary element 𝑥 in a linear space,
(−1)𝑥 = −𝑥.
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- e (RW TAC arith ss [EXISTS UNIQUE CONV “?!y. (y = ls0) ∧ (x LP ls0 = x)”]);
<<HOL message: inventing new type variable names: 󸀠a, 󸀠b>>
OK..
1 subgoal:
> val it =

x LP ls0 = x

linear space s ls
: proof

Algorithm 4: The subgoal g3.

- e (RW TAC arith ss [zero def]);
OK..
Goal proved.
[linear space s ls] |- x LP ls0 = x

Goal proved.
[linear space s ls] |- ?!y. (y = ls0) ∧ (x LP ls0 = x)

Goal proved.
[linear space s ls] |- !x. ?!y. (y = ls0) ∧ (x LP ls0 = x)
> val it =

Initial goal proved.
[]|- linear space s ls ==> !x. ?!y. (y = ls0) ∧ (x LP ls0 = x): proof

Algorithm 5: The proof result.

> val zero unique =
[] |- linear space s ls ==> !x. ?!y. (y = ls0) ∧ (x LP ls0 = x): thm

Algorithm 6: Theorem “zero unique”.

val s = “s: num field”;
val membership = “0c IN s ∧ 1c IN s ∧

!a:complex b:complex. if a IN s ∧ b IN s
then (a + b IN s) ∧ (a − b IN s) ∧ (a∗ b IN s) ∧ (if a <> 0 then b/a IN s else a = 0c)
else F”;

Box 1

val is num field def = Define󸀠
num field ∧s = ∧is complex subset ∧ ∧nf not empty ∧ ∧membership󸀠.

Box 2

val ls = “ls: 󸀠a linear space”;
val ls add = “!x:󸀠a y:󸀠a. x IN ls ∧ y IN ls ==> ?!z:󸀠a. (z = x LP y) ∧ z IN ls ”;

Box 3
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val is linear space def = Define󸀠
linear space ∧s∧ls = num field ∧s ∧ ∧ls not empty ∧ ∧ls add ∧ ∧ls mul ∧ ∧ls plus assoc

∧
∧ls plus sym ∧ ∧ls zero def ∧ ∧ls opp def ∧ ∧ls mult one

Box 4

val = type abbrev (“num field”, “:complex -> bool”);
val = type abbrev (“linear space”, “:󸀠a -> bool”);

Box 5

Property 8. For an arbitrary element 𝑘 in a number field and
arbitrary elements 𝑥, 𝑦 in a linear space, if 𝑘𝑥 = 𝑦, 𝑘 ̸= 0, then
𝑥 = (1/𝑘)𝑦 [7, 8].

3.7. Proof of Properties of Linear Space. Wecomplete the proof
of 37 properties related to linear space, and create 37 theorems
in the linear space theory.

Without loss of generality, we show the proof process for
Property 1 (i.e., the element “zero” in a linear space is unique).

Theproperty’s proof uses the goal-oriented proofmethod,
and its process is shown in Figure 1.

The proving process consists of five steps.

Step 1. Give the initial goal of Property 1. By using the element
“zero” predefined during the formalmodeling of linear space,
the initial goal of this property is formally described as:
“linear space ∧s∧ls ==> !x:󸀠a.?!y:󸀠a. (y = ls0) ∧ (x LP ls0 =
x)”. “ls0” is the symbol of element “zero” in the expression.
Algorithm 1 shows the result of the input of the initial goal in
HOL4.

Step 2. Start from the initial goal, and assume that the
property desired is correct. Then use the tactic DISCH TAC
to simplify the initial goal g, moving the antecedent of the
implicative goal g into the assumptions to get sub-goal g1.The
process of Step 2 is shown in Algorithm 2.

Step 3. Use the tactic GEN TAC to simplify sub-goal g1,
thereby stripping the outermost universal quantifier from the
conclusion of sub-goal g1 to obtain sub-goal g2. Algorithm 3
shows the process of Step 3.

Step 4. For sub-goal g2, use the function EXISTS UNI-
QUE CONV existing in HOL4 to generate a theorem, that
is, “(?!y⋅ (y = ls0) ∧ (x LP ls0 = x)) <=> (?y⋅ (y = ls0) ∧
(x LP ls0 = x)) ∧ !y y󸀠. ((y = ls0) ∧ (x LP ls0 = x)) ∧ (y󸀠 = ls0)
∧ (x LP ls0 = x) ==> (y = y󸀠)”.Then apply the tactic RW TAC
to g2 by using the theorem, so as to get the simplified sub-goal
g3. The process of Step 4 is shown in Algorithm 4.

Step 5. Apply the tactic RW TAC to the sub-goal g3 by using
an axiom of the definition of linear space, that is, “zero def:
[linear space s ls] |- !x. x LP ls0 = x”, so as to prove the sub-
goal g3 in a directmanner.TheHOL4 system then returns the

proved sub-goals g2 & g1 one by one, until the initial goal g is
returned. The proof result is given in Algorithm 5.

Finally, this paper generates a theorem named
“zero unique” and saves it in the linear space theory by
using a theorem saving tool “store thm”. The result is shown
in Algorithm 6.

According to the above processes, when carrying out a
formal proof by the goal-oriented proof method, the first
requirement is to accurately describe the initial goal, and then
select appropriate tactics against the specific characteristics
of goals in different stages and, finally, to constantly simplify
the goals by using the proved theorems and tactics so as to
complete the whole formal proof.

4. Conclusion

We have presented the formal modeling of the linear space
and the formal proof of its properties in HOL4. Our results
enriched the existing theories of HOL4, thus laying the
underpinnings for theorem proving based verification with
the linear space theory for a broad range of applications.
Further improvements include the formalization of linear
combinations, linear dependence, linear independence, and
subspace. The formalization of these theories will contribute
to a more powerful formal verification engine in terms of the
linear space theory.
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