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We introduce a new iterative algorithm for finding a common element of a fixed point problem of amenable semigroups of
nonexpansive mappings, the set solutions of a system of a general system of generalized equilibria in a real Hilbert space. Then, we
prove the strong convergence of the proposed iterative algorithm to a common element of the above three sets under some suitable
conditions. As applications, at the end of the paper, we apply our results to find the minimum-norm solutions which solve some
quadratic minimization problems. The results obtained in this paper extend and improve many recent ones announced by many
others.

1. Introduction

Throughout this paper, we denoted by R the set of all real
numbers. We always assume that 𝐻 is a real Hilbert space
with inner product ⟨⋅, ⋅⟩ and induced norm ‖ ⋅ ‖ and 𝐶 is a
nonempty, closed, and convex subset of 𝐻. 𝑃𝐶 denotes the
metric projection of 𝐻 onto 𝐶. A mapping 𝑇 : 𝐶 → 𝐶 is
said to be 𝐿-Lipschitzian if there exists a constant 𝐿 > 0 such
that

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (1)

If 0 < 𝐿 < 1, then 𝑇 is a contraction, and if 𝐿 = 1, then 𝑇 is
a nonexpansive mapping. We denote by Fix(𝑇) the set of all
fixed points set of the mapping 𝑇; that is, Fix(𝑇) = {𝑥 ∈ 𝐶 :

𝑇𝑥 = 𝑥}.
A mapping 𝐹 : 𝐶 → 𝐻 is said to bemonotone if

⟨𝐹𝑥 − 𝐹𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐶. (2)

A mapping 𝐹 : 𝐶 → 𝐻 is said to be strongly monotone if
there exists 𝜂 > 0 such that

⟨𝐹𝑥 − 𝐹𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐶. (3)

Let 𝜑 : 𝐶 → R be a real-valued function, Θ : 𝐶 × 𝐶 →

R an equilibrium bifunction, and Ψ : 𝐶 → 𝐻 a nonlinear
mapping.The generalizedmixed equilibriumproblem is to find
𝑥
∗
∈ 𝐶 such that

Θ(𝑥
∗
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑥

∗
) + ⟨Ψ𝑥

∗
, 𝑦 − 𝑥

∗
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

(4)

which was introduced and studied by Peng and Yao [1]. The
set of solutions of problem (4) is denoted by GMEP(Θ, 𝜑, Ψ).
As special cases of problem (4), we have the following results.

(1) If Ψ = 0, then problem (4) reduces to mixed equilib-
rium problem. Find 𝑥∗ ∈ 𝐶 such that

Θ(𝑥
∗
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑥

∗
) ≥ 0, ∀𝑦 ∈ 𝐶, (5)

which was considered by Ceng and Yao [2].The set of
solutions of problem (5) is denoted by MEP(Θ).

(2) If 𝜑 = 0, then problem (4) reduces to generalized
equilibrium problem. Find 𝑥

∗
∈ 𝐶 such that

Θ(𝑥
∗
, 𝑦) + ⟨Ψ𝑥

∗
, 𝑦 − 𝑥

∗
⟩ ≥ 0, ∀𝑦 ∈ 𝐶, (6)
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which was considered by S. Takahashi and W. Taka-
hashi [3]. The set of solutions of problem (6) is
denoted by GEP(Θ, Ψ).

(3) IfΨ = 𝜑 = 0, then problem (4) reduces to equilibrium
problem. Find 𝑥

∗
∈ 𝐶 such that

Θ(𝑥
∗
, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (7)

The set of solutions of problem (7) is denoted by
EP(Θ).

(4) If Θ = 𝜑 = 0, then problem (4) reduces to classical
variational inequality problem. Find 𝑥

∗
∈ 𝐶 such that

⟨Ψ𝑥
∗
, 𝑦 − 𝑥

∗
⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (8)

The set of solutions of problem (8) is denoted by
VI(𝐶, Ψ). It is known that 𝑥∗ ∈ 𝐶 is a solution of the
problem (8) if and only if 𝑥∗ is a fixed point of the
mapping 𝑃

𝐶
(𝐼 − 𝜆Ψ), where 𝜆 > 0 is a constant and 𝐼

is the identity mapping.

The problem (4) is very general in the sense that it includes
several problems, namely, fixed point problems, optimization
problems, saddle point problems, complementarity prob-
lems, variational inequality problems, minimax problems,
Nash equilibrium problems in noncooperative games, and
others as special cases. Numerous problems in physics, opti-
mization, and economics reduce to find a solution of problem
(4) (see, e.g., [4–9]). Several iterative methods to solve the
fixed point problems, variational inequality problems, and
equilibrium problems are proposed in the literature (see, e.g.,
[1–3, 10–18]) and the references therein.

Let𝐴1, 𝐴2 : 𝐶 → 𝐻 be twomappings. Ceng andYao [12]
considered the following problem of finding (𝑥∗, 𝑦∗) ∈ 𝐶×𝐶

such that

𝐺
2
(𝑥
∗
, 𝑥) + ⟨𝐴

2
𝑦
∗
, 𝑥 − 𝑥

∗
⟩ +

1

𝜆
2

⟨𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0,

∀𝑥 ∈ 𝐶,

𝐺
1
(𝑦
∗
, 𝑦) + ⟨𝐴

1
𝑥
∗
, 𝑦 − 𝑦

∗
⟩ +

1

𝜆1

⟨𝑦
∗
− 𝑥
∗
, 𝑦 − 𝑦

∗
⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

(9)

which is called a general system of generalized equilibria,
where 𝜆

1 > 0 and 𝜆2 > 0 are two constants. In particular,
if 𝐺1 = 𝐺2 = 𝐺 and 𝐴1 = 𝐴2 = 𝐴, then problem (9) reduces
to the following problem of finding (𝑥∗, 𝑦∗) ∈ 𝐶×𝐶 such that

𝐺 (𝑥
∗
, 𝑥) + ⟨𝐴𝑦

∗
, 𝑥 − 𝑥

∗
⟩ +

1

𝜆2

⟨𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0,

∀𝑥 ∈ 𝐶,

𝐺 (𝑦
∗
, 𝑦) + ⟨𝐴𝑥

∗
, 𝑦 − 𝑦

∗
⟩ +

1

𝜆
1

⟨𝑦
∗
− 𝑥
∗
, 𝑦 − 𝑦

∗
⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

(10)

which is called a new system of generalized equilibria, where
𝜆
1
> 0 and 𝜆

2
> 0 are two constants.

If 𝐺
1
= 𝐺
2
= Θ, 𝐴

1
= 𝐴
2
= 𝐴, and 𝑥

∗
= 𝑦
∗, then

problem (9) reduces to problem (7).
If 𝐺
1
= 𝐺
2
= 0, then problem (9) reduces to a general

system of variational inequalities. Find (𝑥
∗
, 𝑦
∗
) ∈ 𝐶 × 𝐶 such

that

⟨𝜆
2
𝐴
2
𝑦
∗
+ 𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

⟨𝜆1𝐴1𝑥
∗
+ 𝑦
∗
− 𝑥
∗
, 𝑦 − 𝑦

∗
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

(11)

where 𝜆
1

> 0 and 𝜆
2

> 0 are two constants, which is
introduced and considered by Ceng et al. [19].

In 2010, Ceng andYao [12] proposed the following relaxed
extragradient-like method for finding a common solution
of generalized mixed equilibrium problems, a system of
generalized equilibria (9), and a fixed point problem of a 𝑘-
strictly pseudocontractive self-mapping 𝑆 on 𝐶 as follows:

𝑧𝑛 = 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝑥𝑛 − 𝑟𝑛Ψ𝑥𝑛) ,

𝑦
𝑛
= 𝑆
𝐺
1

𝜆
1

[𝑆
𝐺
2

𝜆
2

(𝑧
𝑛
− 𝜆
2
𝐴
2
𝑧
𝑛
) − 𝜆
1
𝐴
1
𝑆
𝐺
2

𝜆
2

(𝑧
𝑛
− 𝜆
2
𝐴
2
𝑧
𝑛
)] ,

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝑦
𝑛
+ 𝛿
𝑛
𝑆𝑦
𝑛
, ∀𝑛 ≥ 0,

(12)

where Ψ,𝐴
1, 𝐴2 : 𝐶 → 𝐻 are 𝛼-inverse strongly mono-

tone, 𝛼̃1-inverse strongly monotone, and 𝛼̃2-inverse strongly
monotone, respectively. They proved strong convergence of
the related extragradient-like algorithm (12) under some
appropriate conditions {𝛼𝑛}, {𝛽𝑛}, {𝛾𝑛}, and {𝛿𝑛} ⊂ [0, 1]

satisfying 𝛼𝑛+𝛽𝑛+𝛾𝑛+𝛿𝑛 = 1, for all 𝑛 ≥ 0, to 𝑥 = 𝑃Ω𝑥, where
Ω = Fix(𝑆) ∩ GMEP(Θ, 𝜑, Ψ) ∩ Fix(𝐾), with the mapping
𝐾 : 𝐶 → 𝐶 defined by

𝐾𝑥 = 𝑆
𝐺
1

𝜆
1

[𝑆
𝐺
2

𝜆
2

(𝑥 − 𝜆
2
𝐴
2
𝑥) − 𝜆

1
𝐴
1
𝑆
𝐺
2

𝜆
2

(𝑥 − 𝜆
2
𝐴
2
𝑥)] ,

∀𝑥 ∈ 𝐶.

(13)

Very recently, Ceng et al. [11] introduced an iterative method
for finding fixed points of a nonexpansive mapping 𝑇 on a
nonempty, closed, and convex subset𝐶 in a real Hilbert space
𝐻 as follows:

𝑥
𝑛+1

= 𝑃
𝐶
[𝛼
𝑛
𝛾𝑉𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇𝑥

𝑛
] , ∀𝑛 ≥ 0, (14)

where 𝑃
𝐶
is a metric projection from 𝐻 onto 𝐶, 𝑉 is an

𝐿-Lipschitzian mapping with a constant 𝐿 ≥ 0, and 𝐹

is a 𝜅-Lipschitzian and 𝜂-strongly monotone operator with
constants 𝜅, 𝜂 > 0 and 0 < 𝜇 < 2𝜂/𝜅

2. Then, they proved that
the sequences generated by (14) converge strongly to a unique
solution of variational inequality as follows:

⟨(𝜇𝐹 − 𝛾𝑉) 𝑥
∗
, 𝑥
∗
− 𝑥⟩ ≥ 0, ∀𝑥 ∈ Fix (𝑇) . (15)
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In this paper, motivated and inspired by the previous
facts, we first introduce the following problem of finding
(𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑀
) ∈ 𝐶 × 𝐶 × ⋅ ⋅ ⋅ × 𝐶 such that

𝐺
𝑀
(𝑥
∗

1
, 𝑥
1
) + ⟨𝐴

𝑀
𝑥
∗

𝑀
, 𝑥
1
− 𝑥
∗

1
⟩

+
1

𝜆
𝑀

⟨𝑥
∗

1
− 𝑥
∗

𝑀
, 𝑥
1
− 𝑥
∗

1
⟩ ≥ 0, ∀𝑥

1
∈ 𝐶,

𝐺
𝑀−1

(𝑥
∗

𝑀
, 𝑥
𝑀
) + ⟨𝐴

𝑀−1
𝑥
∗

𝑀−1
, 𝑥
𝑀
− 𝑥
∗

𝑀
⟩

+
1

𝜆
𝑀−1

⟨𝑥
∗

𝑀
− 𝑥
∗

𝑀−1
, 𝑥
𝑀
− 𝑥
∗

𝑀
⟩ ≥ 0, ∀𝑥

𝑀
∈ 𝐶,

...

𝐺
2
(𝑥
∗

3
, 𝑥
3
) + ⟨𝐴

2
𝑥
∗

2
, 𝑥
3
− 𝑥
∗

3
⟩ +

1

𝜆
2

⟨𝑥
∗

3
− 𝑥
∗

2
, 𝑥
3
− 𝑥
∗

3
⟩ ≥ 0,

∀𝑥
3
∈ 𝐶,

𝐺
1
(𝑥
∗

2
, 𝑥
2
) + ⟨𝐴

1
𝑥
∗

1
, 𝑥
2
− 𝑥
∗

2
⟩ +

1

𝜆1

⟨𝑥
∗

2
− 𝑥
∗

1
, 𝑥
2
− 𝑥
∗

2
⟩ ≥ 0,

∀𝑥2 ∈ 𝐶,

(16)

which is called amore general system of generalized equilibria
in Hilbert spaces, where 𝜆

𝑖
> 0 for all 𝑖 ∈ {1, 2, . . . ,𝑀}. In

particular, if 𝑀 = 2, 𝑥
∗

1
= 𝑥
∗
, 𝑥
∗

2
= 𝑦
∗
, 𝑥
1

= 𝑥, and
𝑥
2
= 𝑦, then problem (16) reduces to problem (9). Finally,

by combining the relaxed extragradient-like algorithm (12)
with the general iterative algorithm (14), we introduce a new
iterative method for finding a common element of a fixed
point problem of a nonexpansive semigroup, the set solutions
of a general system of generalized equilibria in a real Hilbert
space. We prove the strong convergence of the proposed
iterative algorithm to a common element of the previous
three sets under some suitable conditions. Furthermore, we
apply our results to finding the minimum-norm solutions
which solve some quadraticminimization problem.Themain
result extends various results existing in the current literature.

2. Preliminaries

Let 𝑆 be a semigroup. We denote by ℓ
∞ the Banach space

of all bounded real-valued functionals on 𝑆 with supremum
norm. For each 𝑠 ∈ 𝑆, we define the left and right translation
operators 𝑙(𝑠) and 𝑟(𝑠) on ℓ

∞
(𝑆) by

(𝑙 (𝑠) 𝑓) (𝑡) = 𝑓 (𝑠𝑡) , (𝑟 (s) 𝑓) (𝑡) = 𝑓 (𝑡𝑠) , (17)

for each 𝑡 ∈ 𝑆 and𝑓 ∈ ℓ
∞
(𝑆), respectively. Let𝑋be a subspace

of ℓ∞(𝑆) containing 1. An element 𝜇 in the dual space 𝑋∗ of
𝑋 is said to be amean on𝑋 if ‖𝜇‖ = 𝜇(1) = 1. It is well known
that 𝜇 is a mean on𝑋 if and only if

inf
𝑠∈𝑆

𝑓 (𝑠) ≤ 𝜇 (𝑓) ≤ sup
𝑠∈𝑆

𝑓 (𝑠) , (18)

for each 𝑓 ∈ 𝑋. We often write 𝜇
𝑡
(𝑓(𝑡)) instead of 𝜇(𝑓) for

𝜇 ∈ 𝑋
∗ and 𝑓 ∈ 𝑋.

Let 𝑋 be a translation invariant subspace of ℓ∞(𝑆) (i.e.,
𝑙(𝑠)𝑋 ⊂ 𝑋 and 𝑟(𝑠)𝑋 ⊂ 𝑋 for each 𝑠 ∈ 𝑆) containing 1.Then, a
mean 𝜇 on𝑋 is said to be left invariant (resp., right invariant)
if 𝜇(𝑙(𝑠)𝑓) = 𝜇(𝑓) (resp., 𝜇(𝑟(𝑠)𝑓) = 𝜇(𝑓)) for each 𝑠 ∈ 𝑆

and 𝑓 ∈ 𝑋. A mean 𝜇 on 𝑋 is said to be invariant if 𝜇 is
both left and right invariant [20–22]. 𝑆 is said to be left (resp.,
right) amenable if 𝑋 has a left (resp., right) invariant mean.
𝑆 is a amenable if 𝑆 is left and right amenable. In this case,
ℓ
∞
(𝑆) also has an invariant mean. As is well known, ℓ∞(𝑆) is

amenable when 𝑆 is commutative semigroup; see [23]. A net
{𝜇𝛼} of means on𝑋 is said to be left regular if

lim
𝛼

󵄩󵄩󵄩󵄩𝑙
∗

𝑠
𝜇
𝛼
− 𝜇
𝛼

󵄩󵄩󵄩󵄩 = 0, (19)

for each 𝑠 ∈ 𝑆, where 𝑙∗
𝑠
is the adjoint operator of 𝑙𝑠.

Let 𝐶 be a nonempty, closed, and convex subset of 𝐻. A
family S = {𝑇(𝑠) : 𝑠 ∈ 𝑆} is called a nonexpansive semigroup
on 𝐶 if for each 𝑠 ∈ 𝑆, the mapping 𝑇(𝑠) : 𝐶 → 𝐶 is
nonexpansive and 𝑇(𝑠𝑡) = 𝑇(𝑡𝑠) for each 𝑠, 𝑡 ∈ 𝑆. We denote
by Fix(S) the set of common fixed point of S; that is,

Fix (S) = ⋂

𝑠∈𝑆

Fix (𝑇 (𝑠)) = ⋂

𝑠∈𝑆

{𝑥 ∈ 𝐶 : 𝑇 (𝑠) 𝑥 = 𝑥} . (20)

Throughout this paper, the open ball of radius 𝑟 centered at 0
is denoted by 𝐵

𝑟
, and for a subset 𝐷 of𝐻 by co𝐷, we denote

the closed convex hull of 𝐷. For 𝜖 > 0 and a mapping 𝑇 :

𝐷 → 𝐻, the set of 𝜖-approximate fixed point of 𝑇 is denoted
by 𝐹
𝜖
(𝑇,𝐷); that is, 𝐹

𝜖
(𝑇,𝐷) = {𝑥 ∈ 𝐷 : ‖𝑥 − 𝑇𝑥‖ ≤ 𝜖}.

In order to prove our main results, we need the following
lemmas.

Lemma 1 (see [23–25]). Let 𝑓 be a function of a semigroup
𝑆 into a Banach space 𝐸 such that the weak closure of {𝑓(𝑡) :
𝑡 ∈ 𝑆} is weakly compact, and let 𝑋 be a subspace of ℓ∞(𝑆)
containing all the functions 𝑡 󳨃→ ⟨𝑓(𝑡), 𝑥

∗
⟩ with 𝑥

∗
∈ 𝐸
∗.

Then, for any 𝜇 ∈ 𝑋
∗, there exists a unique element 𝑓

𝜇
in 𝐸

such that

⟨𝑓
𝜇
, 𝑥
∗
⟩ = 𝜇
𝑡
⟨𝑓 (𝑡) , 𝑥

∗
⟩ , (21)

for all 𝑥∗ ∈ 𝐸
∗. Moreover, if 𝜇 is a mean on 𝑋, then

∫𝑓 (𝑡) 𝑑𝜇 (𝑡) ∈ co {𝑓 (𝑡) : 𝑡 ∈ 𝑆} . (22)

One can write 𝑓
𝜇
by ∫𝑓(𝑡)𝑑𝜇(𝑡).

Lemma 2 (see [23–25]). Let 𝐶 be a closed and convex subset
of a Hilbert space 𝐻, S = {𝑇(𝑠) : 𝑠 ∈ 𝑆} a nonexpansive
semigroup from 𝐶 into 𝐶 such that Fix(S) ̸= 0, and 𝑋 a
subspace of ℓ∞ containing 1, the mapping 𝑡 󳨃→ ⟨𝑇(𝑡)𝑥, 𝑦⟩ an
element of 𝑋 for each 𝑥 ∈ 𝐶 and 𝑦 ∈ 𝐻, and 𝜇 a mean on𝑋.

If one writes 𝑇(𝜇)𝑥 instead of ∫𝑇𝑡𝑥𝑑𝜇(𝑡), then the follow-
ing hold:

(i) 𝑇(𝜇) is nonexpansive mapping from C into C;
(ii) 𝑇(𝜇)𝑥 = 𝑥 for each 𝑥 ∈ Fix(S);
(iii) 𝑇(𝜇)𝑥 ∈ co{𝑇

𝑡
𝑥 : 𝑡 ∈ 𝑆} for each 𝑥 ∈ 𝐶;
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(iv) if 𝜇 is left invariant, then 𝑇(𝜇) is a nonexpansive re-
traction from 𝐶 onto Fix(S).

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩
and norm ‖ ⋅ ‖, and let 𝐶 be a nonempty, closed, and convex
subset of𝐻. We denote the strong convergence and the weak
convergence of {𝑥

𝑛
} to 𝑥 ∈ 𝐻 by 𝑥

𝑛
→ 𝑥 and 𝑥

𝑛
⇀ 𝑥,

respectively. Also, a mapping 𝐼 : 𝐶 → 𝐶 denotes the identity
mapping. For every point 𝑥 ∈ 𝐻, there exists a unique nearest
point of 𝐶, denoted by 𝑃𝐶𝑥, such that

󵄩󵄩󵄩󵄩𝑥 − 𝑃
𝐶
𝑥
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑦 ∈ 𝐶. (23)

Such a projection 𝑃
𝐶
is called themetric projection of𝐻 onto

𝐶. We know that 𝑃
𝐶
is a firmly nonexpansive mapping of 𝐻

onto 𝐶; that is,

⟨𝑥 − 𝑦, 𝑃
𝐶
𝑥 − 𝑃
𝐶
𝑦⟩ ≥

󵄩󵄩󵄩󵄩𝑃𝐶𝑥 − 𝑃
𝐶
𝑦
󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐻. (24)

It is known that

𝑧 = 𝑃
𝐶
𝑥 ⇐⇒ ⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, ∀𝑥 ∈ 𝐻, 𝑦 ∈ 𝐶. (25)

In a real Hilbert space𝐻, it is well known that

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2
= ‖𝑥‖

2
−
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2
− 2 ⟨𝑥 − 𝑦, 𝑦⟩ , (26)

󵄩󵄩󵄩󵄩𝜆𝑥 + (1 − 𝜆) 𝑦
󵄩󵄩󵄩󵄩

2
= 𝜆‖𝑥‖

2
+ (1 − 𝜆)

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

− 𝜆 (1 − 𝜆)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
,

(27)

for all 𝑥, 𝑦 ∈ 𝐻 and 𝜆 ∈ [0, 1].
If 𝐴 : 𝐶 → 𝐻 is 𝛼-inverse strongly monotone, then it

is obvious that 𝐴 is 1/𝛼-Lipschitz continuous. We also have
that, for all 𝑥, 𝑦 ∈ 𝐶 and 𝜆 > 0,

󵄩󵄩󵄩󵄩(𝐼 − 𝜆𝐴) 𝑥 − (𝐼 − 𝜆) 𝑦
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝑥 − 𝑦) − 𝜆(𝐴𝑥 − 𝐴𝑦)

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
− 2𝜆 ⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ + 𝜆

2󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
+ 𝜆 (𝜆 − 2𝛼)

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦
󵄩󵄩󵄩󵄩

2
.

(28)

In particular, if𝜆 < 2𝛼, then 𝐼−𝜆𝐴 is a nonexpansivemapping
from 𝐶 to𝐻.

For solving the equilibrium problem, let us assume that
the bifunction Θ : 𝐶 × 𝐶 → R satisfies the following
conditions:

(A1) Θ(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;
(A2) Θ is monotone, that is,Θ(𝑥, 𝑦) +Θ(𝑦, 𝑥) ≤ 0 for each

𝑥, 𝑦 ∈ 𝐶;
(A3) Θ is upper semicontinuous, that is, for each 𝑥, 𝑦, 𝑧 ∈

𝐶,

lim sup
𝑡→0
+

Θ(𝑡𝑧 + (1 − 𝑡) 𝑥, 𝑦) ≤ Θ (𝑥, 𝑦) ; (29)

(A4) Θ(𝑥, ⋅) is convex and weakly lower semicontinuous
for each 𝑥 ∈ 𝐶;

(B1) for each 𝑥 ∈ 𝐻 and 𝑟 > 0, there exists a bounded
subset𝐷

𝑥
⊂ 𝐶 and 𝑦

𝑥
∈ 𝐶 such that for all 𝑧 ∈ 𝐶\𝐷

𝑥
,

Θ(𝑧, 𝑦
𝑥
) + 𝜑 (𝑦

𝑥
) − 𝜑 (𝑧) +

1

𝑟
⟨𝑦
𝑥
− 𝑧, 𝑧 − 𝑥⟩ < 0; (30)

(B2) 𝐶 is a bounded set.

Lemma 3 (see [1]). Let 𝐶 be a nonempty, closed, and convex
subset of a real Hilbert space 𝐻. Let Θ : 𝐶 × 𝐶 → R be a
bifunction satisfying conditions (A1) − (A4), and let 𝜑 : 𝐶 →

R be a lower semicontinuous and convex function. For 𝑟 > 0

and 𝑥 ∈ 𝐻, define a mapping 𝑆(Θ,𝜑)
𝑟

: 𝐻 → 𝐶 as follows:

𝑆
(Θ,𝜑)

𝑟
(𝑥)

= {𝑦 ∈ 𝐶 : Θ (𝑦, 𝑧) + 𝜑 (𝑧) − 𝜑 (𝑦)

+
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑧 ∈ 𝐶} .

(31)

Assume that either (B1) or (B2) holds.Then, the following hold:

(i) 𝑆(Θ,𝜑)
𝑟

̸= 0 for all 𝑥 ∈ 𝐻 and 𝑆(Θ,𝜑)
𝑟

is single valued;

(ii) 𝑆(Θ,𝜑)
𝑟

is firmly nonexpansive, that is, for all 𝑥, 𝑦 ∈ 𝐻,

󵄩󵄩󵄩󵄩󵄩
𝑆
(Θ,𝜑)

𝑟
𝑥 − 𝑆
(Θ,𝜑)

𝑟
𝑦
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝑆
(Θ,𝜑)

𝑟
𝑥 − 𝑆
(Θ,𝜑)

𝑟
𝑦, 𝑥 − 𝑦⟩ ; (32)

(iii) Fix(𝑆(Θ,𝜑)
𝑟

) = MEP(Θ, 𝜑);
(iv) MEP(Θ, 𝜑) is closed and convex.

Remark 4. If 𝜑 = 0, then 𝑆
(Θ,𝜑)

𝑟
is rewritten as 𝑆Θ

𝑟
(see [12,

Lemma 2.1] for more details).

Lemma 5 (see [26]). Let {𝑥
𝑛
} and {𝑙

𝑛
} be bounded sequences

in a Banach space 𝑋, and let {𝛽
𝑛
} be a sequence in [0, 1] with

0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1. Suppose that𝑥

𝑛+1
=

(1−𝛽
𝑛
)𝑙
𝑛
+𝛽
𝑛
𝑥
𝑛
for all integers 𝑛 ≥ 0 and lim supn→∞(‖𝑙𝑛+1−

𝑙
𝑛
‖ − ‖𝑥

𝑛+1
− 𝑥
𝑛
‖) ≤ 0. Then, lim

𝑛→∞
‖𝑙
𝑛
− 𝑥
𝑛
‖ = 0.

Lemma 6 (Demiclosedness Principle [27]). Let 𝐶 be a
nonempty, closed, and convex subset of a real Hilbert space𝐻.
Let 𝑇 : 𝐶 → 𝐶 be a nonexpansive mapping with Fix(𝑇) ̸= 0.
If {𝑥
𝑛
} is a sequence in 𝐶 that converges weakly to 𝑥 and if

{(𝐼 − 𝑇)𝑥
𝑛
} converges strongly to 𝑦, then (𝐼 − 𝑇)𝑥 = 𝑦; in

particular, if 𝑦 = 0, then 𝑥 ∈ Fix(𝑇).

Lemma 7 (see [28]). Assume that {𝑎
𝑛
} is a sequence of non-

negative real numbers such that

𝑎
𝑛+1

≤ (1 − 𝜎
𝑛
) 𝑎
𝑛
+ 𝛿
𝑛
, (33)

where {𝜎
𝑛} is a sequence in (0, 1) and {𝛿𝑛} is a sequence in R

such that

(i) ∑∞
𝑛=0

𝜎
𝑛
= ∞;

(ii) lim sup
𝑛→∞

(𝛿𝑛/𝜎𝑛) ≤ 0 or ∑∞
𝑛=0

|𝛿𝑛| < ∞.

Then, lim
𝑛→∞

𝑎
𝑛
= 0.
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The following lemma can be found in [29, 30]. For the
sake of the completeness, we include its proof in a real Hilbert
space version.

Lemma 8. Let 𝐶 be a nonempty, closed, and convex subset of
a real Hilbert space 𝐻. Let 𝐹 : 𝐶 → 𝑋 be a 𝜅-Lipschitzian
and 𝜂-strongly monotone operator. Let 0 < 𝜇 < 2𝜂/𝜅

2 and
𝜏 = 𝜇(𝜂 − 𝜇𝜅

2
/2). Then, for each 𝑡 ∈ (0,min{1, 1/2𝜏}), the

mapping 𝑆 : 𝐶 → 𝐻 defined by 𝑆 := 𝐼 − 𝑡𝜇𝐹 is a contraction
with constant 1 − 𝑡𝜏.

Proof. Since 0 < 𝜇 < 2𝜂/𝜅
2 and 𝑡 ∈ (0,min{1, 1/2𝜏}), this

implies that 1 − 𝑡𝜏 ∈ (0, 1). For all 𝑥, 𝑦 ∈ 𝐶, we have

󵄩󵄩󵄩󵄩𝑆𝑥 − 𝑆𝑦
󵄩󵄩󵄩󵄩

2
=
󵄩󵄩󵄩󵄩(𝐼 − 𝑡𝜇𝐹) 𝑥 − (𝐼 − 𝑡𝜇𝐹) 𝑦

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝑥 − 𝑦) 𝑥 − 𝑡𝜇 (𝐹𝑥 − 𝐹𝑦)

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
− 2𝑡𝜇 ⟨𝐹𝑥 − 𝐹𝑦, 𝑥 − 𝑦⟩

+ 𝑡
2
𝜇
2󵄩󵄩󵄩󵄩𝐹𝑥 − 𝐹𝑦

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
− 2𝑡𝜇𝜂

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

+ 𝑡
2
𝜇
2
𝜅
2󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

≤ [1 − 𝑡𝜇 (2𝜂 − 𝜇𝜅
2
)]

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

= [1 − 2𝑡𝜇(𝜂 −
𝜇𝜅
2

2
)]

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

≤ [1 − 𝑡𝜇(𝜂 −
𝜇𝜅
2

2
)]

2

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

= (1 − 𝑡𝜏)
2󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
.

(34)

It follows that

󵄩󵄩󵄩󵄩𝑆𝑥 − 𝑆𝑦
󵄩󵄩󵄩󵄩 ≤ (1 − 𝑡𝜏)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 . (35)

Hence, we have that 𝑆 := 𝐼−𝑡𝜇𝐹 is a contractionwith constant
1 − 𝑡𝜏. This completes the proof.

Lemma 9. Let 𝐶 be a nonempty, closed, and convex subset of
a real Hilbert space 𝐻. Let 𝐴

𝑖
: 𝐶 → 𝐻 (𝑖 = 1, 2, . . . ,𝑀)

be a finite family of 𝛼
𝑖
-inverse strongly monotone operator. Let

𝐾 : 𝐶 → 𝐶 be a mapping defined by

𝐾𝑥 := 𝑆
𝐺
𝑀

𝜆
𝑀

(𝐼 − 𝜆
𝑀
𝐴
𝑀
) 𝑆
𝐺
𝑀−1

𝜆
𝑀−1

× (𝐼 − 𝜆𝑀−1𝐴𝑀−1) ⋅ ⋅ ⋅ 𝑆
𝐺
1

𝜆
1

(𝐼 − 𝜆1𝐴1) 𝑥, ∀𝑥 ∈ 𝐶.

(36)

If 0 < 𝜆
𝑖
< 2𝛼
𝑖
for all 𝑖 = 1, 2, . . . ,𝑀, then 𝐾 : 𝐶 → 𝐶 is

nonexpansive.

Proof. Put 𝑄𝑖 = 𝑆
𝐺
𝑖

𝜆
𝑖

(𝐼 − 𝜆
𝑖
𝐴
𝑖
)𝑆
𝐺
𝑖−1

𝜆
𝑖−1

(𝐼 − 𝜆
𝑖−1

𝐴
𝑖−1

) ⋅ ⋅ ⋅ 𝑆
𝐺
1

𝜆
1

(𝐼 −

𝜆1𝐴1) for 𝑖 = 1, 2, . . . ,𝑀 and 𝑄
0
= 𝐼. Then, 𝐾 = 𝑄

𝑀. For all
𝑥, 𝑦 ∈ 𝐶, it follows from (28) that

󵄩󵄩󵄩󵄩𝐾𝑥 − 𝐾𝑦
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀
𝑥 − 𝑄

𝑀
𝑦
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑆
𝐺
𝑀

𝜆
𝑀

(𝐼 − 𝜆
𝑀
𝐴
𝑀
) 𝑄
𝑀−1

𝑥 − 𝑆
𝐺
𝑀

𝜆
𝑀

(𝐼 − 𝜆
𝑀
𝐴
𝑀
) 𝑄
𝑀−1

𝑦
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑀
𝐴
𝑀
) 𝑄
𝑀−1

𝑥 − (𝐼 − 𝜆
𝑀
𝐴
𝑀
) 𝑄
𝑀−1

𝑦
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀−1

𝑥 − 𝑄
𝑀−1

𝑦
󵄩󵄩󵄩󵄩󵄩

...

≤
󵄩󵄩󵄩󵄩󵄩
𝑄
0
𝑥 − 𝑄

0
𝑦
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 ,

(37)

which implies that 𝐾 is nonexpansive. This completes the
proof.

Lemma 10. Let 𝐶 be a nonempty, closed, and convex subset of
a real Hilbert space 𝐻. Let 𝐴

𝑖
: 𝐶 → 𝐻 (𝑖 = 1, 2, . . . ,𝑀)

be a nonlinear mapping. For given (𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑀
) ∈ 𝐶 ×

𝐶 × ⋅ ⋅ ⋅ × 𝐶, where 𝑥∗ = 𝑥
∗

1
, 𝑥∗
𝑖
= 𝑆
𝐺
𝑖−1

𝜆
𝑖−1

(𝐼 − 𝜆
𝑖−1

𝐴
𝑖−1

)𝑥
∗

𝑖−1
,

for 𝑖 = 2, 3, . . . ,𝑀, and 𝑥
∗

1
= 𝑆
𝐺
𝑀

𝜆
𝑀

(𝐼 − 𝜆
𝑀
𝐴
𝑀
)𝑥
∗

𝑀
. Then,

(𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑀
) is a solution of the problem (16) if and only

if 𝑥∗ is a fixed point of the mapping 𝐾 defined as in Lemma 9.

Proof. Let (𝑥∗
1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑀
) ∈ 𝐶 ×𝐶× ⋅ ⋅ ⋅ × 𝐶 be a solution of

the problem (16). Then, we have

𝐺
𝑀
(𝑥
∗

1
, 𝑥
1
) + ⟨𝐴

𝑀
𝑥
∗

𝑀
, 𝑥
1
− 𝑥
∗

1
⟩

+
1

𝜆𝑀

⟨𝑥
∗

1
− 𝑥
∗

𝑀
, 𝑥
1
− 𝑥
∗

1
⟩ ≥ 0, ∀𝑥

1
∈ 𝐶,

𝐺
𝑀−1 (𝑥

∗

𝑀
, 𝑥𝑀) + ⟨𝐴𝑀−1𝑥

∗

𝑀−1
, 𝑥𝑀 − 𝑥

∗

𝑀
⟩

+
1

𝜆
𝑀−1

⟨𝑥
∗

𝑀
− 𝑥
∗

𝑀−1
, 𝑥𝑀 − 𝑥

∗

𝑀
⟩ ≥ 0, ∀𝑥𝑀 ∈ 𝐶,

...

𝐺2 (𝑥
∗

3
, 𝑥3) + ⟨𝐴2𝑥

∗

2
, 𝑥3 − 𝑥

∗

3
⟩

+
1

𝜆
2

⟨𝑥
∗

3
− 𝑥
∗

2
, 𝑥3 − 𝑥

∗

3
⟩ ≥ 0, ∀𝑥3 ∈ 𝐶,

𝐺
1
(𝑥
∗

2
, 𝑥
2
) + ⟨𝐴

1
𝑥
∗

1
, 𝑥
2
− 𝑥
∗

2
⟩

+
1

𝜆1

⟨𝑥
∗

2
− 𝑥
∗

1
, 𝑥
2
− 𝑥
∗

2
⟩ ≥ 0, ∀𝑥

2
∈ 𝐶,

⇕
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𝑥
∗

1
= 𝑆
𝐺
𝑀

𝜆
𝑀

(𝐼 − 𝜆𝑀𝐴𝑀) 𝑥
∗

𝑀

𝑥
∗

2
= 𝑆
𝐺
1

𝜆
1

(𝐼 − 𝜆
1
𝐴
1
) 𝑥
∗

1
,

...

𝑥
∗

𝑀−1
= 𝑆
𝐺
𝑀−2

𝜆
𝑀−2

(𝐼 − 𝜆𝑀−2𝐴𝑀−2) 𝑥
∗

𝑀−2
,

𝑥
∗

𝑀
= 𝑆
𝐺
𝑀−1

𝜆
𝑀−1

(𝐼 − 𝜆
𝑀−1

𝐴
𝑀−1

) 𝑥
∗

𝑀−1
,

⇕

𝑥
∗
= 𝑆
𝐺
𝑀

𝜆
𝑀

(𝐼 − 𝜆𝑀𝐴𝑀) 𝑆
𝐺
𝑀−1

𝜆
𝑀−1

× (𝐼 − 𝜆
𝑀−1

𝐴
𝑀−1

) ⋅ ⋅ ⋅ 𝑆
𝐺
1

𝜆
1

(𝐼 − 𝜆
1
𝐴
1
) 𝑥
∗
= 𝐾𝑥
∗
.

(38)

This completes the proof.

3. Main Results

Theorem 11. Let𝐶 be a nonempty, closed, and convex subset of
a real Hilbert space𝐻. LetΘ

𝑘
: 𝐶×𝐶 → R (𝑘 = 1, 2, . . . , 𝑁) a

finite family of bifunctions which satisfy (A1)–(A4), 𝜑
𝑘
: 𝐶 →

R (𝑘 = 1, 2, . . . , 𝑁) a finite family of lower semicontinuous
and convex functions, and Ψ

𝑘
: 𝐶 → 𝐻 (𝑘 = 1, 2, . . . , 𝑁)

a finite family of a 𝜇
𝑘
-inverse strongly monotone mapping and

𝐴
𝑘
: 𝐶 → 𝐻 (𝑘 = 1, 2, . . . ,𝑀) a finite family of an 𝛼

𝑘
-

inverse strongly monotone mapping. Let 𝑆 be a semigroup, and
let S = {𝑇(𝑡) : 𝑡 ∈ 𝑆} be a nonexpansive semigroup on
𝐶 such that Fix(S) ̸= 0. Let 𝑋 be a left invariant subspace of
ℓ
∞
(𝑆) such that 1 ∈ 𝑋 and the function 𝑡 → ⟨𝑇(𝑡)𝑥, 𝑦⟩ is an

element of 𝑋 for 𝑥 ∈ 𝐶 and 𝑦 ∈ 𝐻. Let {𝜇
𝑛
} be a left regular

sequence of means on X such that lim
𝑛→∞

‖𝜇
𝑛+1

− 𝜇
𝑛
‖ = 0.

Let 𝐹 : 𝐶 → 𝐻 be a 𝜅-Lipschitzian and 𝜂-strongly monotone
operator with constants 𝜅, 𝜂 > 0, and let 𝑉 : 𝐶 → 𝐻 be an 𝐿-
Lipschitzianmapping with a constant 𝐿 ≥ 0. Let 0 < 𝜇 < 2𝜂/𝜅

2

and 0 ≤ 𝛾𝐿 < 𝜏, where 𝜏 = 𝜇(𝜂 − 𝜇𝜅
2
/2). Assume that

F := ⋂
𝑁

𝑘=1
GMEP(Θ

𝑘
, 𝜑
𝑘
, Ψ
𝑘
) ∩ (𝐾) ∩ Fix(S) ̸= 0, where 𝐾 is

defined as in Lemma 9. For given 𝑥1 ∈ 𝐶, let {𝑥𝑛} be a sequence
defined by

𝑢
𝑛
= 𝑆
(Θ
𝑁
,𝜑
𝑁
)

𝑟
𝑁,𝑛

(𝐼 − 𝑟
𝑁,𝑛

Ψ
𝑁
) 𝑆
(Θ
𝑁−1
,𝜑
𝑁−1
)

𝑟
𝑁−1,𝑛

× (𝐼 − 𝑟
𝑁−1,𝑛

Ψ
𝑁−1

) ⋅ ⋅ ⋅ 𝑆
(Θ
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟
1,𝑛
Ψ
1
) 𝑥
𝑛
,

𝑦
𝑛
= 𝑆
𝐺
𝑀

𝜆
𝑀

(𝐼 − 𝜆
𝑀
𝐴
𝑀
) 𝑆
𝐺
𝑀−1

𝜆
𝑀−1

× (𝐼 − 𝜆𝑀−1𝐴𝑀−1) ⋅ ⋅ ⋅ 𝑆
𝐺
1

𝜆
1

(𝐼 − 𝜆1𝐴1) 𝑢𝑛,

𝑥𝑛+1 = 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛) 𝑃𝐶 [𝛼𝑛𝛾𝑉𝑥𝑛 + (𝐼 − 𝛼𝑛𝜇𝐹)𝑇 (𝜇𝑛) 𝑦𝑛] ,

∀𝑛 ≥ 1,

(39)

where {𝛼
𝑛
}, {𝛽
𝑛
} are sequences in (0, 1), and {𝑟

𝑘,𝑛
}
𝑁

𝑘=1
is a

sequence such that {𝑟
𝑘,𝑛
}
𝑁

𝑘=1
⊂ [𝑎
𝑘
, 𝑏
𝑘
] ⊂ (0, 2𝛾

𝑘
) satisfying the

following conditions:

(𝐶1) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
= ∞;

(𝐶2) 0 < lim inf
𝑛→∞𝛽𝑛 ≤ lim sup

𝑛→∞
𝛽𝑛 < 1;

(𝐶3) lim inf
𝑛→∞

𝑟
𝑘,𝑛

> 0 and lim
𝑛→∞

(𝑟
𝑘,𝑛
/𝑟
𝑘,𝑛+1

) = 1 for
all 𝑘 ∈ {1, 2, . . . , 𝑁}.

Then, the sequence {𝑥
𝑛
} defined by (39) converges strongly to

𝑥 ∈ F as 𝑛 → ∞, where 𝑥 solves uniquely the variational
inequality

⟨(𝜇𝐹 − 𝛾𝑉) 𝑥, 𝑥 − V⟩ ≤ 0, ∀V ∈ F. (40)

Equivalently, one has 𝑥 = 𝑃F(𝐼 − 𝜇𝐹 + 𝛾𝑉)𝑥.

Proof. Note that from condition (𝐶1), we may assume,
without loss of generality, that𝛼

𝑛
≤ min{1, 1/2𝜏} for all 𝑛 ∈ N.

First, we show that {𝑥
𝑛
} is bounded. Set

𝐺
𝑘

𝑛
:= 𝑆
(Θ
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟
𝑘,𝑛
Ψ
𝑘
) 𝑆
(Θ
𝑘−1
,𝜑
𝑘−1
)

𝑟
𝑘−1,𝑛

× (𝐼 − 𝑟
𝑘−1,𝑛

Ψ
𝑘−1

) ⋅ ⋅ ⋅ 𝑆
(Θ
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟
1,𝑛
Ψ
1
) ,

∀𝑘 ∈ {1, 2, . . . , 𝑁} , 𝑛 ∈ N,

𝑄
𝑖
:= 𝑆
𝐺
𝑖

𝜆
𝑖

(𝐼 − 𝜆𝑖𝐴 𝑖) 𝑆
𝐺
𝑖−1

𝜆
𝑖−1

(𝐼 − 𝜆𝑖−1𝐴 𝑖−1) ⋅ ⋅ ⋅ 𝑆
𝐺
1

𝜆
1

(𝐼 − 𝜆1𝐴1) ,

∀𝑖 ∈ {1, 2, . . . ,𝑀} ,

(41)

𝐺
0

𝑛
= 𝑄
0

= 𝐼. Then, we have 𝑢
𝑛

= 𝐺
𝑁

𝑛
𝑥
𝑛
and 𝑦

𝑛
=

𝑄
𝑀
𝑢
𝑛
. From Lemmas 3 and 9, we have that 𝐺𝑁

𝑛
and 𝑄

𝑀 are
nonexpansive. Take 𝑥∗ ∈ F; we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑁

𝑛
𝑥𝑛 − 𝐺

𝑁

𝑛
𝑥
∗󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 . (42)

By Lemma 10, we have 𝑥∗ = 𝑄
𝑀
𝑥
∗. It follows from (42) that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀
𝑢
𝑛
− 𝑄
𝑀
𝑥
∗󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 .

(43)

Set

𝑧
𝑛
:= 𝑃
𝐶
[𝛼
𝑛
𝛾𝑉𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇 (𝜇

𝑛
) 𝑦
𝑛
] , ∀𝑛 ∈ N.

(44)

Then, we can rewrite (39) as 𝑥
𝑛+1 = 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛)𝑧𝑛. From

Lemma 8 and (43), we have
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑃𝐶 [𝛼𝑛𝛾𝑉𝑥𝑛 + (𝐼 − 𝛼𝜇𝐹)𝑇 (𝜇

𝑛
) 𝑦
𝑛
] − 𝑃
𝐶
𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝛼𝑛 (𝛾𝑉𝑥𝑛 − 𝜇𝐹𝑥

∗
) + (𝐼 − 𝛼

𝑛
𝜇𝐹) (𝑇 (𝜇

𝑛
) 𝑦
𝑛
− 𝑥
∗
)
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑉𝑥𝑛 − 𝜇𝐹𝑥
∗󵄩󵄩󵄩󵄩 + (1 − 𝛼

𝑛𝜏)
󵄩󵄩󵄩󵄩𝑇 (𝜇
𝑛) 𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝛾
󵄩󵄩󵄩󵄩𝑉𝑥𝑛 − 𝑉𝑥

∗󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑉𝑥
∗
− 𝜇𝐹𝑥

∗󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
𝜏)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
(𝜏 − 𝛾𝐿))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝛼

𝑛

󵄩󵄩󵄩󵄩𝛾𝑉𝑥
∗
− 𝜇𝐹𝑥

∗󵄩󵄩󵄩󵄩 .

(45)
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It follows from (45) that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑥

∗
) + (1 − 𝛽𝑛) (𝑧𝑛 − 𝑥

∗
)
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + (1 − 𝛽

𝑛
)

× [(1 − 𝛼𝑛 (𝜏 − 𝛾𝐿))
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑉𝑥
∗
− 𝜇𝐹𝑥

∗󵄩󵄩󵄩󵄩]

= (1 − 𝛼
𝑛 (1 − 𝛽𝑛) (𝜏 − 𝛾𝐿))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
(1 − 𝛽

𝑛
) (𝜏 − 𝛾𝐿)

󵄩󵄩󵄩󵄩𝛾𝑉𝑥
∗
− 𝜇𝐹𝑥

∗󵄩󵄩󵄩󵄩

𝜏 − 𝛾𝐿
.

(46)

By induction, we have

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤ max{󵄩󵄩󵄩󵄩𝑥1 − 𝑥

∗󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝛾𝑉𝑥
∗
− 𝜇𝐹𝑥

∗󵄩󵄩󵄩󵄩

𝜏 − 𝛾𝐿
} , ∀𝑛 ≥ 1.

(47)

Hence, {𝑥
𝑛
} is bounded, and so are {𝑉𝑥

𝑛
} and {𝐹𝑇(𝜇

𝑛
)𝑦
𝑛
}.

Next, we show that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (48)

Observe that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑇 (𝜇
𝑛+1) 𝑦𝑛 − 𝑇 (𝜇𝑛) 𝑦𝑛

󵄩󵄩󵄩󵄩 = 0. (49)

Indeed,
󵄩󵄩󵄩󵄩𝑇 (𝜇
𝑛+1

) 𝑦
𝑛
− 𝑇 (𝜇

𝑛
) 𝑦
𝑛

󵄩󵄩󵄩󵄩

= sup
‖𝑧‖=1

󵄨󵄨󵄨󵄨⟨𝑇 (𝜇
𝑛+1

) 𝑦
𝑛
− 𝑇 (𝜇

𝑛
) 𝑦
𝑛
, 𝑧⟩

󵄨󵄨󵄨󵄨

= sup
‖𝑧‖=1

󵄨󵄨󵄨󵄨(𝜇𝑛+1)𝑠
⟨𝑇 (𝑠) 𝑦𝑛, 𝑧⟩ − (𝜇

𝑛
)
𝑠
⟨𝑇 (𝑠) 𝑦𝑛, 𝑧⟩

󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝜇𝑛+1 − 𝜇

𝑛

󵄩󵄩󵄩󵄩 sup
𝑠∈𝑆

󵄩󵄩󵄩󵄩𝑇 (𝑠) 𝑦𝑛
󵄩󵄩󵄩󵄩 .

(50)

Since {𝑦
𝑛
} is bounded and lim

𝑛→∞
‖𝜇
𝑛+1

− 𝜇
𝑛
‖ = 0, then (49)

holds. We observe that
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀
𝑢
𝑛+1

− 𝑄
𝑀
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢

𝑛

󵄩󵄩󵄩󵄩 .

(51)

Let {𝜔
𝑛
} be a bounded sequence in 𝐶. Now, we show that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑁

𝑛
𝜔𝑛 − 𝐺

𝑁

𝑛+1
𝜔𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (52)

For the previous purpose, put 𝐷𝑘
𝑛
= 𝑆
(Θ
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟
𝑘,𝑛
Ψ
𝑘
), and

we first show that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑘

𝑛+1
𝜔𝑛 − 𝐷

𝑘

𝑛
𝜔𝑛

󵄩󵄩󵄩󵄩󵄩
= 0, ∀𝑘 ∈ {1, 2, . . . , 𝑁} . (53)

In fact, since 𝐷
𝑘

𝑛
𝜔
𝑛

∈ GMEP(Θ
𝑘
, 𝜑
𝑘
, Ψ
𝑘
) and 𝐷

𝑘

𝑛+1
𝜔
𝑛

∈

GMEP(Θ
𝑘
, 𝜑k, Ψ𝑘), we have

Θ
𝑘
(𝐷
𝑘

𝑛
𝜔
𝑛
, 𝑦) + 𝜑

𝑘
(𝑦) − 𝜑

𝑘
(𝐷
𝑘

𝑛
𝜔
𝑛
)

+ ⟨Ψ
𝑘
𝜔
𝑛
, 𝑦 − 𝐷

𝑘

𝑛
𝜔
𝑛
⟩

+
1

𝑟
𝑘,𝑛

⟨𝑦 − 𝐷
𝑘

𝑛
𝜔
𝑛
, 𝐷
𝑘

𝑛
𝜔
𝑛
− 𝜔
𝑛
⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

(54)

Θ
𝑘
(𝐷
𝑘

𝑛+1
𝜔
𝑛
, 𝑦) + 𝜑

𝑘
(𝑦) − 𝜑

𝑘
(𝐷
𝑘

𝑛+1
𝜔
𝑛
)

+ ⟨Ψ
𝑘
𝜔
𝑛
, 𝑦 − 𝐷

𝑘

𝑛+1
𝜔
𝑛
⟩

+
1

𝑟
𝑘,𝑛+1

⟨𝑦 − 𝐷
𝑘

𝑛+1
𝜔
𝑛
, 𝐷
𝑘

𝑛+1
𝜔
𝑛
− 𝜔
𝑛
⟩ ≥ 0,

∀𝑦 ∈ 𝐶.

(55)

Substituting 𝑦 = 𝐷
𝑘

𝑛+1
𝜔
𝑛
in (54) and 𝑦 = 𝐷

𝑘

𝑛
𝜔
𝑛
in (55), then

add these two inequalities, and using (A2), we obtain

⟨𝐷
𝑘

𝑛+1
𝜔
𝑛
− 𝐷
𝑘

𝑛
𝜔
𝑛
,
1

𝑟
𝑘,𝑛

(𝐷
𝑘

𝑛
𝜔
𝑛
− 𝜔
𝑛
)

−
1

𝑟𝑘,𝑛+1

(𝐷
𝑘

𝑛+1
𝜔
𝑛
− 𝜔
𝑛
)⟩ ≥ 0.

(56)

Hence,

⟨𝐷
𝑘

𝑛+1
𝜔
𝑛
− 𝐷
𝑘

𝑛
𝜔
𝑛
, 𝐷
𝑘

𝑛
𝜔
𝑛
− 𝐷
𝑘

𝑛+1
𝜔
𝑛
+ 𝐷
𝑘

𝑛+1
𝜔
𝑛

−𝜔
𝑛
−

𝑟
𝑘,𝑛

𝑟𝑛,𝑘+1

(𝐷
𝑘

𝑛+1
𝜔
𝑛
− 𝜔
𝑛
)⟩ ≥ 0;

(57)

we derive from (57) that

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑘

𝑛+1
𝜔𝑛 − 𝐷

𝑘

𝑛
𝜔𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝐷
𝑘

𝑛+1
𝜔
𝑛
− 𝐷
𝑘

𝑛
𝜔
𝑛
, (1 −

𝑟𝑘,𝑛

𝑟
𝑘,𝑛+1

)(𝐷
𝑘

𝑛+1
𝜔
𝑛
− 𝜔
𝑛
)⟩

≤
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑘

𝑛+1
𝜔
𝑛
− 𝐷
𝑘

𝑛
𝜔
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝑘,𝑛

𝑟
𝑘,𝑛+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑘

𝑛+1
𝜔
𝑛
− 𝜔
𝑛

󵄩󵄩󵄩󵄩󵄩
,

(58)

which implies that

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑘

𝑛+1
𝜔𝑛 − 𝐷

𝑘

𝑛
𝜔𝑛

󵄩󵄩󵄩󵄩󵄩
≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝑘,𝑛

𝑟
𝑘,𝑛+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑘

𝑛+1
𝜔𝑛 − 𝜔𝑛

󵄩󵄩󵄩󵄩󵄩
. (59)
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Noticing that condition (𝐶3) implies that (53) holds, from the
definition of 𝐺𝑁

𝑛
and the nonexpansiveness of𝐷𝑘

𝑛
, we have

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑁

𝑛
𝜔
𝑛
− 𝐺
𝑁

𝑛+1
𝜔
𝑛

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑁

𝑛
𝐺
𝑁−1

𝑛
𝜔
𝑛
− 𝐷
𝑁

𝑛+1
𝐺
𝑁−1

𝑛+1
𝜔
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑁

𝑛
𝐺
𝑁−1

𝑛
𝜔
𝑛
− 𝐷
𝑁

𝑛+1
𝐺
𝑁−1

𝑛
𝜔
𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑁

𝑛+1
𝐺
𝑁−1

𝑛
𝜔
𝑛
− 𝐷
𝑁

𝑛+1
𝐺
𝑁−1

𝑛+1
𝜔
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑁

𝑛
𝐺
𝑁−1

𝑛
𝜔
𝑛
− 𝐷
𝑁

𝑛+1
𝐺
𝑁−1

𝑛
𝜔
𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑁−1

𝑛
𝜔𝑛 − 𝐺

𝑁−1

𝑛+1
𝜔𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑁

𝑛
𝐺
𝑁−1

𝑛
𝜔𝑛 − 𝐷

𝑁

𝑛+1
𝐺
𝑁−1

𝑛
𝜔𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑁−1

𝑛
𝐺
𝑁−2

𝑛
𝜔
𝑛
− 𝐷
𝑁−1

𝑛+1
𝐺
𝑁−2

𝑛+1
𝜔
𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑁−2

𝑛
𝜔
𝑛
− 𝐺
𝑁−2

𝑛+1
𝜔
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑁

𝑛
𝐺
𝑁−1

𝑛
𝜔
𝑛
− 𝐷
𝑁

𝑛+1
𝐺
𝑁−1

𝑛
𝜔
𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑁−1

𝑛
𝐺
𝑁−2

𝑛
𝜔
𝑛
− 𝐷
𝑁−1

𝑛+1
𝐺
𝑁−2

𝑛+1
𝜔
𝑛

󵄩󵄩󵄩󵄩󵄩
+ ⋅ ⋅ ⋅

+
󵄩󵄩󵄩󵄩󵄩
𝐷
2

𝑛
𝜔
𝑛
− 𝐷
2

𝑛+1
𝜔
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐷
1

𝑛
𝜔
𝑛
− 𝐷
1

𝑛+1
𝜔
𝑛

󵄩󵄩󵄩󵄩󵄩
,

(60)

for which (52) follows by (53). Since 𝑢
𝑛
= 𝐺
𝑁

𝑛
𝑥
𝑛
and 𝑢

𝑛+1
=

𝐺
𝑁

𝑛+1
𝑥𝑛+1, we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
𝑛+1

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑁

𝑛
𝑥
𝑛
− 𝐺
𝑁

𝑛+1
𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑁

𝑛
𝑥
𝑛
− 𝐺
𝑁

𝑛+1
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑁

𝑛+1
𝑥
𝑛
− 𝐺
𝑁

𝑛+1
𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑁

𝑛
𝑥
𝑛
− 𝐺
𝑁

𝑛+1
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 .

(61)

Put a constant𝑀
1
> 0 such that

𝑀
1
= sup
𝑛≥1

{𝛾
󵄩󵄩󵄩󵄩𝑉𝑥𝑛+1

󵄩󵄩󵄩󵄩 + 𝜇
󵄩󵄩󵄩󵄩𝐹𝑇 (𝑡

𝑛+1
) 𝑦
𝑛+1

󵄩󵄩󵄩󵄩 ,

𝛾
󵄩󵄩󵄩󵄩𝑉𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝜇
󵄩󵄩󵄩󵄩𝐹𝑇 (𝑡

𝑛) 𝑦𝑛
󵄩󵄩󵄩󵄩} .

(62)

From definition of {𝑧
𝑛}, we note that

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑃𝐶 [𝛼𝑛+1𝛾𝑉𝑥𝑛+1 + (𝐼 − 𝛼𝑛+1𝜇𝐹)𝑇 (𝜇𝑛+1) 𝑦𝑛+1]

−𝑃
𝐶
[𝛼
𝑛
𝛾𝑉𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇 (𝜇

𝑛
) 𝑦
𝑛
]
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛+1

󵄩󵄩󵄩󵄩𝛾𝑉𝑥𝑛+1 − 𝜇𝐹𝑇 (𝜇𝑛+1) 𝑦𝑛+1
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑉𝑥𝑛+1 − 𝜇𝐹𝑇 (𝜇
𝑛
) 𝑦
𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑇 (𝜇
𝑛+1

) 𝑦
𝑛+1

− 𝑇 (𝜇
𝑛
) 𝑦
𝑛

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛+1

󵄩󵄩󵄩󵄩𝛾𝑉𝑥𝑛+1 − 𝜇𝐹𝑇 (𝜇
𝑛+1

) 𝑦
𝑛+1

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑉𝑥𝑛+1 − 𝜇𝐹𝑇 (𝜇
𝑛
) 𝑦
𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑇 (𝜇
𝑛+1

) 𝑦
𝑛+1

− 𝑇 (𝜇
𝑛+1

) 𝑦
𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑇 (𝜇
𝑛+1

) 𝑦
𝑛
− 𝑇 (𝜇

𝑛
) 𝑦
𝑛

󵄩󵄩󵄩󵄩

≤ (𝛼
𝑛+1

+ 𝛼
𝑛
)𝑀
1
+
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑇 (𝜇
𝑛+1

) 𝑦
𝑛
− 𝑇 (𝜇

𝑛
) 𝑦
𝑛

󵄩󵄩󵄩󵄩 .

(63)

It follows from (51), (61), and (63) that

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧𝑛
󵄩󵄩󵄩󵄩 ≤ (𝛼

𝑛+1 + 𝛼𝑛)𝑀1 +
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑁

𝑛
𝑥𝑛 − 𝐺

𝑁

𝑛+1
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇 (𝜇
𝑛+1

) 𝑦
𝑛
− 𝑇 (𝜇

𝑛
) 𝑦
𝑛

󵄩󵄩󵄩󵄩 .

(64)

From condition (𝐶1), (49), and (52), we have

lim sup
𝑛→∞

(
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩) ≤ 0. (65)

Hence, by Lemma 5, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (66)

Consequently,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = lim
𝑛→∞

(1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 = 0. (67)

From condition (𝐶1), we have

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑇 (𝜇
𝑛
) 𝑦
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑃𝐶 [𝛼𝑛𝛾𝑉𝑥𝑛 + (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇 (𝜇

𝑛
) 𝑦
𝑛
] − 𝑃
𝐶
𝑇 (𝜇
𝑛
) 𝑦
𝑛

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑉𝑥𝑛 − 𝜇𝐹𝑇 (𝜇
𝑛
) 𝑦
𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0 as 𝑛 󳨀→ ∞.

(68)

From (66) and (68), we have

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇 (𝜇
𝑛
) 𝑦
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑇 (𝜇𝑛) 𝑦𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0 as 𝑛 󳨀→ ∞.

(69)

Set 𝑧
𝑛 = 𝑃𝐶V𝑛, where V𝑛 = 𝛼𝑛𝛾𝑉𝑥𝑛 +(𝐼−𝛼𝑛𝜇𝐹)𝑇(𝜇𝑛)𝑦𝑛. From

(25), we have

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 = ⟨V

𝑛
− 𝑥
∗
, 𝑧
𝑛
− 𝑥
∗
⟩

+ ⟨𝑃
𝐶
V
𝑛
− V
𝑛
, 𝑃
𝐶
V
𝑛
− 𝑥
∗
⟩

≤ ⟨V
𝑛
− 𝑥
∗
, 𝑧
𝑛
− 𝑥
∗
⟩

= 𝛼𝑛 ⟨𝛾𝑉𝑥𝑛 − 𝜇𝐹𝑥
∗
, 𝑧𝑛 − 𝑥

∗
⟩

+ ⟨(𝐼 − 𝛼
𝑛
𝜇𝐹) (𝑇 (𝜇

𝑛
) 𝑦
𝑛
− 𝑥
∗
) , 𝑧
𝑛
− 𝑥
∗
⟩
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≤ (1 − 𝛼
𝑛
𝜏)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝛼
𝑛 ⟨𝛾𝑉𝑥𝑛 − 𝜇𝐹𝑥

∗
, 𝑧𝑛 − 𝑥

∗
⟩

≤
(1 − 𝛼

𝑛
𝜏)

2
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
)

+ 𝛼
𝑛
⟨𝛾𝑉𝑥
𝑛
− 𝜇𝐹𝑥

∗
, 𝑧
𝑛
− 𝑥
∗
⟩

≤
(1 − 𝛼𝑛𝜏)

2

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+
1

2

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
⟨𝛾𝑉𝑥
𝑛
− 𝜇𝐹𝑥

∗
, 𝑧
𝑛
− 𝑥
∗
⟩ .

(70)

It follows that
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 2𝛼
𝑛
⟨𝛾𝑉𝑥
𝑛
− 𝜇𝐹𝑥

∗
, 𝑧
𝑛
− 𝑥
∗
⟩

≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑉𝑥𝑛 − 𝜇𝐹𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(71)

By the convexity of ‖ ⋅ ‖2 and (71), we have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑥

∗
) + (1 − 𝛽

𝑛
) (𝑧
𝑛
− 𝑥
∗
)
󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤ 𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛)

× {
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 2𝛼𝑛

󵄩󵄩󵄩󵄩𝛾𝑉𝑥𝑛 − 𝜇𝐹𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩}

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+ 2𝛼𝑛 (1 − 𝛽𝑛)𝑀2,

(72)

where 𝑀
2 > 0 is an appropriate constant such that 𝑀2 =

sup
𝑛≥1

{‖𝛾𝑉𝑥𝑛 − 𝜇𝐹𝑥
∗
‖‖𝑧𝑛 − 𝑥

∗
‖}.

Next, we show that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥
𝑛
− 𝐺
𝑘

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0, ∀𝑘 ∈ {1, 2, . . . , 𝑁} . (73)

From (28), we have
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑆
(Θ
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟𝑘,𝑛Ψ𝑘) 𝐺
𝑘−1

𝑛
𝑥𝑛 − 𝑆

(Θ
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟𝑘,𝑛Ψ𝑘) 𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑟
𝑘,𝑛
Ψ
𝑘
) 𝐺
𝑘−1

𝑛
− (𝐼 − 𝑟

𝑘,𝑛
Ψ
𝑘
) 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩󵄩

2

+ 𝑟𝑘,𝑛 (𝑟𝑘,𝑛 − 2𝜇𝑘)
󵄩󵄩󵄩󵄩󵄩
Ψ
𝑘𝐺
𝑘−1

𝑛
𝑥𝑛 − Ψ𝑘𝑥

∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 𝑟
𝑘,𝑛 (𝑟𝑘,𝑛 − 2𝜇

𝑘)
󵄩󵄩󵄩󵄩󵄩
Ψ
𝑘
𝐺
𝑘−1

𝑛
𝑥
𝑛
− Ψ
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

.

(74)

From (42), for all 𝑘 ∈ {1, 2, . . . , 𝑁}, we note that
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
=

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀
𝑢
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑁

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

.

(75)

From (72) and (75), we have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑁

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼𝑛 (1 − 𝛽𝑛)𝑀2

≤ 𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛)

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘

𝑛
𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
)𝑀
2
.

(76)

Substituting (74) into (72), we have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)

× {
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 𝑟
𝑘,𝑛

(𝑟
𝑘,𝑛

− 2𝜇
𝑘
)
󵄩󵄩󵄩󵄩󵄩
Ψ
𝑘
𝐺
𝑘−1

𝑛
𝑥
𝑛
− Ψ
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

}

+ 2𝛼𝑛 (1 − 𝛽𝑛)𝑀2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛) 𝑟𝑘,𝑛 (𝑟𝑘,𝑛 − 2𝜇𝑘)

×
󵄩󵄩󵄩󵄩󵄩
Ψ
𝑘
𝐺
𝑘−1

𝑛
𝑥
𝑛
− Ψ
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
)𝑀
2
,

(77)

which in turn implies that

(1 − 𝛽
𝑛) 𝑟𝑘,𝑛 (2𝜇𝑘 − 𝑟𝑘,𝑛)

󵄩󵄩󵄩󵄩󵄩
Ψ
𝑘𝐺
𝑘−1

𝑛
𝑥𝑛 − Ψ𝑘𝑥

∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 2𝛼
𝑛
(1 − 𝛽

𝑛
)𝑀
2

≤ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
)𝑀
2
.

(78)

Since lim inf𝑛→∞(1 − 𝛽𝑛) > 0, 0 < 𝑟𝑘,𝑛 < 2𝜇𝑘, for all 𝑘 ∈

{1, 2, . . . , 𝑁}, from (𝐶1) and (67), we obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
Ψ
𝑘
𝐺
𝑘−1

𝑛
𝑥
𝑛
− Ψ
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

= 0, ∀𝑘 ∈ {1, 2, . . . , 𝑁} . (79)

On the other hand, from Lemma 3 and (26), we have
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑆
(Θ
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟𝑘,𝑛Ψ𝑘) 𝐺
𝑘−1

𝑛
𝑥𝑛 − 𝑆

(Θ
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟𝑘,𝑛Ψ𝑘) 𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨(𝐼 − 𝑟
𝑘,𝑛
Ψ
𝑘
) 𝐺
𝑘−1

𝑛
𝑥
𝑛
− (𝐼 − 𝑟

𝑘,𝑛
Ψ
𝑘
) 𝑥
∗
, 𝐺
𝑘

𝑛
𝑥
𝑛
− 𝑥
∗
⟩

=
1

2
(
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑟
𝑘,𝑛Ψ𝑘) 𝐺

𝑘−1

𝑛
𝑥𝑛 − (𝐼 − 𝑟𝑘,𝑛Ψ𝑘) 𝑥

∗󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑟
𝑘,𝑛
Ψ
𝑘
) 𝐺
𝑘−1

𝑛
𝑥
𝑛
− (𝐼 − 𝑟

𝑘,𝑛
Ψ
𝑘
) 𝑥
∗

− (𝐺
𝑘

𝑛
𝑥
𝑛
− 𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

)



10 Journal of Applied Mathematics

≤
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘

𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥
𝑛
− 𝐺
𝑘

𝑛
𝑥
𝑛
− 𝑟
𝑘,𝑛

(Ψ
𝑘
𝐺
𝑘−1

𝑛
𝑥
𝑛
− Ψ
𝑘
𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

) ,

(80)

which in turn implies that

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥𝑛 − 𝐺

𝑘

𝑛
− 𝑟𝑘,𝑛(Ψ𝑘𝐺

𝑘−1

𝑛
− Ψ𝑘𝑥

∗
)
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥
𝑛
− 𝐺
𝑘

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

− 𝑟
2

𝑘,𝑛

󵄩󵄩󵄩󵄩󵄩
Ψ
𝑘
𝐺
𝑘−1

𝑛
𝑥
𝑛
− Ψ
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑟𝑘,𝑛 ⟨𝐺
𝑘−1

𝑛
𝑥𝑛 − 𝐺

𝑘

𝑛
𝑥𝑛, Ψ𝑘𝐺

𝑘−1

𝑛
𝑥𝑛 − Ψ𝑘𝑥

∗
⟩

≤
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥
𝑛
− 𝐺
𝑘

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑟
𝑘,𝑛

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥
𝑛
− 𝐺
𝑘

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
Ψ
𝑘
𝐺
𝑘−1

𝑛
𝑥
𝑛
− Ψ
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥𝑛 − 𝐺

𝑘

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑟
𝑘,𝑛

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥
𝑛
− 𝐺
𝑘

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
Ψ
𝑘
𝐺
𝑘−1

𝑛
𝑥
𝑛
− Ψ
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

.

(81)

Substituting (81) into (76), we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤ 𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛)

× {
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥𝑛 − 𝐺

𝑘

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

2

+2𝑟
𝑘,𝑛

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥
𝑛
− 𝐺
𝑘

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
Ψ
𝑘
𝐺
𝑘−1

𝑛
𝑥
𝑛
− Ψ
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

}

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
)𝑀
2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
− (1 − 𝛽𝑛)

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥𝑛 − 𝐺

𝑘

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

+ 2𝑟
𝑘,𝑛

(1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥
𝑛
− 𝐺
𝑘

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
Ψ
𝑘
𝐺
𝑘−1

𝑛
𝑥
𝑛
− Ψ
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛 (1 − 𝛽𝑛)𝑀2,

(82)

which in turn implies that

(1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥
𝑛
− 𝐺
𝑘

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝑟
𝑘,𝑛

(1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥
𝑛
− 𝐺
𝑘

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
Ψ
𝑘
𝐺
𝑘−1

𝑛
𝑥
𝑛
− Ψ
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
)𝑀
2

≤ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

+ 2𝑟
𝑘,𝑛

(1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑘−1

𝑛
𝑥
𝑛
− 𝐺
𝑘

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
Ψ
𝑘
𝐺
𝑘−1

𝑛
𝑥
𝑛
− Ψ
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛 (1 − 𝛽𝑛)𝑀2.

(83)

Since lim inf
𝑛→∞

(1 − 𝛽
𝑛
) > 0, from (𝐶1), (67), and (79), we

obtain that (73) holds. Consequently,

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢
𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩
𝐺
0

𝑛
− 𝐺
𝑁

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐺
0

𝑛
𝑥
𝑛
− 𝐺
1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐺
1

𝑛
𝑥
𝑛
− 𝐺
2

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+ ⋅ ⋅ ⋅

+
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑁−1

𝑛
𝑥𝑛 − 𝐺

𝑁

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0 as 𝑛 󳨀→ ∞.

(84)

Next, we show that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖
𝑄
𝑖−1

𝑢
𝑛
− 𝐴
𝑖
𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

= 0, ∀𝑖 ∈ {1, 2, . . . ,𝑀} .

(85)

From (28), we have

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀
𝑢𝑛 − 𝑄

𝑀
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑆
𝐺
𝑀

𝜆
𝑀

(𝐼 − 𝜆𝑀𝐴𝑀)𝑄
𝑀−1

𝑢𝑛 − 𝑆
𝐺
𝑀

𝜆
𝑀

(𝐼 − 𝜆𝑀𝐴𝑀)𝑄
𝑀−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑀
𝐴
𝑀
)𝑄
𝑀−1

𝑢
𝑛
− (𝐼 − 𝜆

𝑀
𝐴
𝑀
) 𝑄
𝑀−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀−1

𝑢
𝑛
− 𝑄
𝑀−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 𝜆
𝑀
(𝜆
𝑀
− 2𝛼
𝑀
)

×
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑀𝑄
𝑀−1

𝑢𝑛 − 𝐴𝑀𝑄
𝑀−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

.

(86)

By induction, we have

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀
𝑢
𝑛
− 𝑄
𝑀
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 +

𝑀

∑

𝑖=1

𝜆𝑖 (𝜆𝑖 − 2𝛼𝑖)
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖𝑄
𝑖−1

𝑢𝑛 − 𝐴 𝑖𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 +

𝑀

∑

𝑖=1

𝜆
𝑖
(𝜆
𝑖
− 2𝛼
𝑖
)
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖
𝑄
𝑖−1

𝑢
𝑛
− 𝐴
𝑖
𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

.

(87)

From (72) and (75), we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2
≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀
𝑢
𝑛
− 𝑄
𝑀
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
)𝑀
2
.

(88)
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Substituting (87) into (88), we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)

× {
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+

𝑀

∑

𝑖=1

𝜆
𝑖
(𝜆
𝑖
− 2𝛼
𝑖
)
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖
𝑄
𝑖−1

𝑢
𝑛
− 𝐴
𝑖
𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

}

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
)𝑀
2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽
𝑛
)

𝑀

∑

𝑖=1

𝜆
𝑖
(𝜆
𝑖
− 2𝛼
𝑖
)
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖
𝑄
𝑖−1

𝑢
𝑛
− 𝐴
𝑖
𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼𝑛 (1 − 𝛽𝑛)𝑀2,

(89)

which in turn implies that

(1 − 𝛽
𝑛
)

𝑀

∑

𝑖=1

𝜆
𝑖
(2𝛼
𝑖
− 𝜆
𝑖
)
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖
𝑄
𝑖−1

𝑢
𝑛
− 𝐴
𝑖
𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 2𝛼𝑛 (1 − 𝛽𝑛)𝑀2

≤ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
)𝑀
2
.

(90)

Since lim inf
𝑛→∞

(1−𝛽
𝑛
) > 0, from (𝐶1) and (67), we obtain

that (85) holds.
On the other hand, from (24) and (26), we have

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀
𝑢
𝑛
− 𝑄
𝑀
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑆
𝐺
𝑀

𝜆
𝑀

(𝐼 − 𝜆
𝑀
𝐴
𝑀
)𝑄
𝑀−1

𝑢
𝑛
− 𝑆
𝐺
𝑀

𝜆
𝑀

(𝐼 − 𝜆
𝑀
𝐴
𝑀
)𝑄
𝑀−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨(𝐼 − 𝜆
𝑀
𝐴
𝑀
) 𝑄
𝑀−1

𝑢
𝑛
− (𝐼 − 𝜆

𝑀
𝐴
𝑀
) 𝑄
𝑀−1

𝑥
∗
,

𝑄
𝑀
𝑢
𝑛
− 𝑄
𝑀
𝑥
∗
⟩

=
1

2
(
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑀
𝐴
𝑀
) 𝑄
𝑀−1

𝑢
𝑛
− (𝐼 − 𝜆

𝑀
𝐴
𝑀
) 𝑄
𝑀−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀
𝑢
𝑛
− 𝑄
𝑀
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑀
𝐴
𝑀
) 𝑄
𝑀−1

𝑢
𝑛

−(𝐼 − 𝜆
𝑀
𝐴
𝑀
)𝑥
∗
− (𝑄
𝑀
𝑢
𝑛
− 𝑄
𝑀
𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

)

≤
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀−1

𝑢
𝑛
− 𝑄
𝑀−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀
𝑢
𝑛
− 𝑄
𝑀
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀−1

𝑢
𝑛
− 𝑄
𝑀
𝑢
𝑛
+ 𝑄
𝑀
𝑥
∗
− 𝑄
𝑀−1

𝑥
∗

−𝜆𝑀 (𝐴𝑀𝑄
𝑀−1

𝑢𝑛 − 𝐴𝑀𝑄
𝑀−1

𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

) ,

(91)

which in turn implies that
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀
𝑢
𝑛
− 𝑄
𝑀
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀−1

𝑢
𝑛
− 𝑄
𝑀−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀−1

𝑢
𝑛
− 𝑄
𝑀
𝑢
𝑛
+ 𝑄
𝑀
𝑥
∗
− 𝑄
𝑀−1

𝑥
∗

−𝜆𝑀(𝐴𝑀𝑄
𝑀−1

𝑢𝑛 − 𝐴𝑀𝑄
𝑀−1

𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀−1

𝑢𝑛 − 𝑄
𝑀−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀−1

𝑢
𝑛
− 𝑄
𝑀
𝑢
𝑛
− 𝑄
𝑀
𝑥
∗
− 𝑄
𝑀−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

− 𝜆
2

𝑀

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑀
𝑄
𝑀−1

𝑢
𝑛
− 𝐴
𝑀
𝑄
𝑀−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑀
⟨𝑄
𝑀−1

𝑢
𝑛
− 𝑄
𝑀
𝑢
𝑛
+ 𝑄
𝑀
𝑥
∗
− 𝑄
𝑀−1

𝑥
∗
,

𝐴𝑀𝑄
𝑀−1

𝑢𝑛 − 𝐴𝑀𝑄
𝑀−1

𝑥
∗
⟩

≤
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀−1

𝑢
𝑛
− 𝑄
𝑀−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀−1

𝑢
𝑛
− 𝑄
𝑀
𝑢
𝑛
+ 𝑄
𝑀
𝑥
∗
− 𝑄
𝑀−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑀

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀−1

𝑢
𝑛
− 𝑄
𝑀
𝑢
𝑛
+ 𝑄
𝑀
𝑥
∗
− 𝑄
𝑀−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑀𝑄
𝑀−1

𝑢𝑛 − 𝐴𝑀𝑄
𝑀−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

.

(92)

By induction, we have
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀
𝑢
𝑛
− 𝑄
𝑀
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

−

𝑀

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑖−1

𝑢
𝑛
− 𝑄
𝑖
𝑢
𝑛
+ 𝑄
𝑖
𝑥
∗
− 𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+

𝑁

∑

𝑖=1

2𝜆𝑖

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑖−1

𝑢𝑛 − 𝑄
𝑖
𝑢𝑛 + 𝑄

𝑖
𝑥
∗
− 𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖𝑄
𝑖−1

𝑢𝑛 − 𝐴 𝑖𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 −

𝑀

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑖−1

𝑢
𝑛
− 𝑄
𝑖
𝑢
𝑛
+ 𝑄
𝑖
𝑥
∗
− 𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+

𝑁

∑

𝑖=1

2𝜆
𝑖

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑖−1

𝑢
𝑛
− 𝑄
𝑖
𝑢
𝑛
+ 𝑄
𝑖
𝑥
∗
− 𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖𝑄
𝑖−1

𝑢𝑛 − 𝐴 𝑖𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

.

(93)
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Substituting (93) into (88), we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)

× {
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 −

𝑀

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑖−1

𝑢
𝑛
− 𝑄
𝑖
𝑢
𝑛
+ 𝑄
𝑖
𝑥
∗
− 𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+

𝑀

∑

𝑖=1

2𝜆
𝑖

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑖−1

𝑢
𝑛
− 𝑄
𝑖
𝑢
𝑛
+ 𝑄
𝑖
𝑥
∗
− 𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖
𝑄
𝑖−1

𝑢
𝑛
− 𝐴
𝑖
𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

}

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
)𝑀
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

− (1 − 𝛽
𝑛
)

𝑀

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑖−1

𝑢
𝑛
− 𝑄
𝑖
𝑢
𝑛
+ 𝑄
𝑖
𝑥
∗
− 𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽
𝑛
)

×

𝑀

∑

𝑖=1

2𝜆
𝑖

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑖−1

𝑢
𝑛
− 𝑄
𝑖
𝑢
𝑛
+ 𝑄
𝑖
𝑥
∗
− 𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖
𝑄
𝑖−1

𝑢
𝑛
− 𝐴
𝑖
𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
)𝑀
2
,

(94)

which in turn implies that

(1 − 𝛽
𝑛)

𝑀

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑖−1

𝑢𝑛 − 𝑄
𝑖
𝑢𝑛 + 𝑄

𝑖
𝑥
∗
− 𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽
𝑛
)

𝑀

∑

𝑖=1

2𝜆
𝑖

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑖−1

𝑢
𝑛
− 𝑄
𝑖
𝑢
𝑛
+ 𝑄
𝑖
𝑥
∗
− 𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖
𝑄
𝑖−1

𝑢
𝑛
− 𝐴
𝑖
𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
)𝑀
2

≤ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛)

𝑀

∑

𝑖=1

2𝜆𝑖

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑖−1

𝑢𝑛 − 𝑄
𝑖
𝑢𝑛 + 𝑄

𝑖
𝑥
∗
− 𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖
𝑄
𝑖−1

𝑢
𝑛
− 𝐴
𝑖
𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛
(1 − 𝛽

𝑛
)𝑀
2
.

(95)

Since lim inf
𝑛→∞

(1 − 𝛽
𝑛
) > 0, from (𝐶1), (67), and (85), we

obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑖−1

𝑢
𝑛
− 𝑄
𝑖
𝑢
𝑛
+ 𝑄
𝑖
𝑥
∗
− 𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

= 0,

∀𝑖 ∈ {1, 2, . . . ,𝑀} .

(96)

Consequently,

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝑄
0
𝑢𝑛 − 𝑄

𝑀
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

≤

𝑀

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑖−1

𝑢
𝑛
− 𝑄
𝑖
𝑢
𝑛
+ 𝑄
𝑖
𝑥
∗
− 𝑄
𝑖−1

𝑥
∗󵄩󵄩󵄩󵄩󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞.

(97)

It follows from (84) and (97) that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞.

(98)

Next, we show that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇 (𝑡) 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0, ∀𝑡 ∈ 𝑆. (99)

Put

𝑀
∗
= max{󵄩󵄩󵄩󵄩𝑥1 − 𝑥

∗󵄩󵄩󵄩󵄩 ,
1

𝜏 − 𝛾𝐿

󵄩󵄩󵄩󵄩𝛾𝑉𝑥
∗
− 𝜇𝐹𝑥

∗󵄩󵄩󵄩󵄩} . (100)

Set 𝐷 = {𝑦 ∈ 𝐶 : ‖𝑦 − 𝑥
∗
‖ ≤ 𝑀

∗
}. We remark that 𝐷 is

nonempty, bounded, closed, and convex set, and {𝑥
𝑛
}, {𝑦
𝑛
},

and {𝑧
𝑛
} are in𝐷. We will show that

lim sup
𝑛→∞

sup
𝑦∈𝐷

󵄩󵄩󵄩󵄩𝑇 (𝜇
𝑛) 𝑦 − 𝑇 (𝑡) 𝑇 (𝜇𝑛) 𝑦

󵄩󵄩󵄩󵄩 = 0, ∀𝑡 ∈ 𝑆. (101)

To complete our proof, we follow the proof line as in [31] (see
also [23, 32, 33]). Let 𝜖 > 0. By [34, Theorem 1.2], there exists
𝛿 > 0 such that

co𝐹
𝛿 (𝑇 (𝑡) ; 𝐷) + 𝐵

𝛿
⊂ 𝐹
𝜖 (𝑇 (𝑡) ; 𝐷) , ∀𝑡 ∈ 𝑆. (102)

Also by [34, Corollary 1.1], there exists a natural number 𝑁
such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑁 + 1

𝑁

∑

𝑖=0

𝑇 (𝑡
𝑖
𝑠) 𝑦 − 𝑇 (𝑡) (

1

𝑁 + 1

𝑁

∑

𝑖=0

𝑇 (𝑡
𝑖
) 𝑦)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛿,

(103)
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for all 𝑡, 𝑠 ∈ 𝑆 and 𝑦 ∈ 𝐷. Let 𝑡 ∈ 𝑆. Since {𝜇
𝑛
} is strongly left

regular, there exists 𝑛
0
∈ N such that ‖𝜇

𝑛
− 𝑙
∗

𝑡
𝑖𝜇𝑛‖ ≤ 𝛿/(𝑀

∗
+

‖𝑤‖) for all 𝑛 ≥ 𝑛
0
and 𝑖 = 1, 2, . . . , 𝑁. Then, we have

sup
𝑦∈𝐷

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑇 (𝜇
𝑛
) 𝑦 − ∫

1

𝑁 + 1

𝑁

∑

𝑖=0

𝑇 (𝑡
𝑖
𝑠) 𝑦𝑑𝜇

𝑛 (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= sup
𝑦∈𝐷

sup
‖𝑧‖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨𝑇 (𝜇
𝑛
) 𝑦, 𝑧⟩

−⟨∫
1

𝑁 + 1

𝑁

∑

𝑖=0

𝑇 (𝑡
𝑖
𝑠) 𝑦 𝑑𝜇

𝑛 (𝑠) , 𝑧⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= sup
𝑦∈𝐷

sup
‖𝑧‖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑁 + 1

𝑁

∑

𝑖=0

(𝜇
𝑛
)
𝑠
⟨𝑇 (𝑠) 𝑦, 𝑧⟩

−
1

𝑁 + 1

𝑁

∑

𝑖=0

(𝜇
𝑛
)
𝑠
⟨𝑇 (𝑡
𝑖
) 𝑦, 𝑧⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

𝑁 + 1

×

𝑁

∑

𝑖=0

sup
𝑦∈𝐷

sup
‖𝑧‖=1

󵄨󵄨󵄨󵄨(𝜇𝑛)𝑠
⟨𝑇 (𝑠) 𝑦, 𝑧⟩ − (𝑙

∗

𝑡
𝑖𝜇𝑛)𝑠

⟨𝑇 (𝑠) 𝑦, 𝑧⟩
󵄨󵄨󵄨󵄨

≤ max
𝑖=1,2,3,...,𝑁

󵄩󵄩󵄩󵄩𝜇𝑛 − 𝑙
∗

𝑡
𝑖𝜇𝑛

󵄩󵄩󵄩󵄩 (𝑀
∗
+ ‖𝑤‖) ≤ 𝛿, ∀𝑛 ≥ 𝑛0.

(104)

On the other hand, by Lemma 2, we have

∫
1

𝑁 + 1

𝑁

∑

𝑖=0

𝑇 (𝑡
𝑖
𝑠) 𝑦 𝑑𝜇

𝑛 (𝑠)

∈ co{ 1

𝑁 + 1

𝑁

∑

𝑖=0

𝑇 (𝑡
𝑖
) 𝑇 (𝑠) 𝑦 : 𝑠 ∈ 𝑆} .

(105)

Combining (103)–(105), we have

𝑇 (𝜇
𝑛) 𝑦 =

1

𝑁 + 1

𝑁

∑

𝑖=1

𝑇 (𝑡
𝑖
𝑠) 𝑦 𝑑𝜇𝑛 (𝑠)

+ (𝑇 (𝜇
𝑛) 𝑦 − ∫

1

𝑁 + 1

𝑁

∑

𝑖=1

𝑇 (𝑡
𝑖
𝑠) 𝑦 𝑑𝜇𝑛 (𝑠))

∈ co{ 1

𝑁 + 1

𝑁

∑

𝑖=0

𝑇 (𝑡
𝑖
) (𝑇 (𝑠) 𝑦) : 𝑠 ∈ 𝑆} + 𝐵𝛿

⊂ co𝐹
𝛿 (𝑇 (𝑡) ; 𝐷) + 𝐵

𝛿
,

(106)

for all 𝑦 ∈ 𝐷 and 𝑛 ≥ 𝑛
0
. Therefore,

lim sup
𝑛→∞

sup
𝑦∈𝐷

󵄩󵄩󵄩󵄩𝑇 (𝜇
𝑛
) 𝑦 − 𝑇 (𝑡) 𝑇 (𝜇

𝑛
) 𝑦

󵄩󵄩󵄩󵄩 ≤ 𝜖. (107)

Since 𝜖 > 0 is arbitrary, we obtain that (101) holds. Let 𝑡 ∈ 𝑆

and 𝜖 > 0. Then, there exists 𝛿 > 0 satisfying (102). From

(101) and condition (𝐶2), there exists 𝑎, 𝑏 ∈ (0, 1) such that
0 < 𝑎 ≤ 𝛽

𝑛
≤ 𝑏 < 1 and 𝑇(𝜇

𝑛
)𝑦 ∈ 𝐹

𝛿
(𝑇(𝑡); 𝐷) for all 𝑦 ∈ 𝐷.

From (69), there exists 𝑘
0
∈ N such that ‖𝑥

𝑛
−𝑇(𝜇
𝑛
)𝑦
𝑛
‖ < 𝛿/𝑏

for all 𝑛 > 𝑘
0
. Then, from (102) and (106), we have

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇 (𝜇

𝑛
) 𝑦
𝑛

= 𝑇 (𝜇
𝑛
) 𝑦
𝑛
+ 𝛽
𝑛
(𝑥
𝑛
− 𝑇 (𝜇

𝑛
) 𝑦
𝑛
)

∈ 𝐹𝛿 (𝑇 (𝑡) ; 𝐷) + 𝐵
𝛿 ⊂ 𝐹𝜖 (𝑇 (𝑡) ; 𝐷) ,

(108)

for all 𝑛 > 𝑘
0. Hence, lim sup

𝑛→∞
‖𝑥𝑛 − 𝑇(𝑡)𝑥𝑛‖ ≤ 𝜖. Since

𝜖 > 0 is arbitrary, we obtain that (99) holds.
Next, we show that

lim sup
𝑛→∞

⟨𝛾𝑉𝑥 − 𝜇𝐹𝑥, 𝑧𝑛 − 𝑥⟩ ≤ 0, (109)

where 𝑥 = 𝑃F(𝐼 − 𝜇𝐹 + 𝛾𝑉)𝑥. To show this, we choose a
subsequence {𝑥

𝑛
𝑖

} of {𝑥
𝑛
} such that

lim sup
𝑛→∞

⟨𝛾𝑉𝑥 − 𝜇𝐹𝑥, 𝑥
𝑛
− 𝑥⟩ = lim

𝑖→∞

⟨𝛾𝑉𝑥 − 𝜇𝐹𝑥, 𝑥
𝑛
𝑖

− 𝑥⟩ .

(110)

Since {𝑥
𝑛
} is bounded, there exists a subsequence {𝑥

𝑛
𝑖

} of {𝑥
𝑛
}

such that 𝑥
𝑛
𝑖

⇀ V. Now, we show that V ∈ F.

(i) We first show that V ∈ Fix(S). From (99), we have
‖𝑥
𝑛
−𝑇(𝑡)𝑥

𝑛
‖ → 0 as 𝑛 → ∞ for all 𝑡 ∈ 𝑆.Then, from

Demiclosedness Principle 2.6, we get V ∈ Fix(S).
(ii) We show that V ∈ Fix(𝐾), where 𝐾 is defined as in

Lemma 9. Then, from (97), we have
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐾𝑦𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝐾𝑢
𝑛 − 𝐾𝑦𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞,

(111)

and from (98), we also have ‖𝑥
𝑛
− 𝐾𝑥
𝑛
‖ → 0. By

Demiclosedness Principle 2.6, we get V ∈ Fix(𝐾).

(iii) We show that V ∈ ⋂
𝑁

𝑘=1
GMEP(Θ

𝑘
, 𝜑
𝑘
, Ψ
𝑘
). Note

that 𝐺𝑘
𝑛
𝑥
𝑛
= 𝑆
(Θ
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟
𝑘,𝑛
Ψ
𝑘
)𝐺
𝑘−1

𝑛
𝑥
𝑛
, for all 𝑘 ∈

{1, 2, . . . , 𝑁}. Then, we have

Θ𝑘 (𝐺
𝑘

𝑛
𝑥𝑛, 𝑦) + 𝜑𝑘 (𝑦) − 𝜑𝑘 (𝐺

𝑘

𝑛
)

+ ⟨Ψ
𝑘
𝐺
𝑘−1

𝑛
𝑥
𝑛
, 𝑦 − 𝐺

𝑘

𝑛
𝑥
𝑛
⟩

+
1

𝑟
𝑘,𝑛

⟨𝑦 − 𝐺
𝑘

𝑛
𝑥𝑛, 𝐺
𝑘

𝑛
𝑥𝑛 − 𝐺

𝑘−1

𝑛
𝑥𝑛⟩ ≥ 0.

(112)

Replacing 𝑛 by 𝑛
𝑖
in the last inequality and using (𝐴2), we

have

𝜑𝑘 (𝑦) − 𝜑𝑘 (𝐺
𝑘

𝑛
𝑖

𝑥𝑛
𝑖

) + ⟨Ψ𝑘𝐺
𝑘−1

𝑛
𝑖

𝑥𝑛
𝑖

, 𝑦 − 𝐺
𝑘

𝑛
𝑖

𝑥𝑛
𝑖

⟩

+
1

𝑟
𝑘,𝑛

⟨𝑦 − 𝐺
𝑘

𝑛
𝑖

𝑥𝑛
𝑖

, 𝐺
𝑘

𝑛
𝑖

𝑥𝑛
𝑖

− 𝐺
𝑘−1

𝑛
𝑖

𝑥𝑛
𝑖

⟩ ≥ Θ𝑘 (𝑦, 𝐺
𝑘

𝑛
𝑖

𝑥𝑛
𝑖

) .

(113)
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Let 𝑦
𝑡
= 𝑡𝑦 + (1 − 𝑡)V for all 𝑡 ∈ (0, 1] and 𝑦 ∈ 𝐶. This implies

that 𝑦
𝑡
∈ 𝐶. Then, we have

⟨𝑦
𝑡
− 𝐺
𝑘

𝑛
𝑖

𝑥
𝑛
𝑖

, Ψ
𝑘
𝑦
𝑡
⟩

≥ 𝜑
𝑘 (𝐺
𝑘

𝑛
𝑖

𝑥𝑛
𝑖

) − 𝜑𝑘 (𝑦𝑡) + ⟨𝑦𝑡 − 𝐺
𝑘

𝑛
𝑖

𝑥𝑛
𝑖

, Ψ𝑘𝑦𝑡⟩

− ⟨𝑦
𝑡
− 𝐺
𝑘

𝑛
𝑖

𝑥
𝑛
𝑖

, Ψ
𝑘
𝐺
𝑘−1

𝑛
𝑥
𝑛
𝑖

⟩

−⟨𝑦
𝑡
− 𝐺
𝑘

𝑛
𝑖

𝑥
𝑛
𝑖

,

𝐺
𝑘

𝑛
𝑖

𝑥
𝑛
𝑖

− 𝐺
𝑘−1

𝑛
𝑖

𝑥
𝑛
𝑖

𝑟
𝑘,𝑛
𝑖

⟩+Θ
𝑘
(𝑦
𝑡
, 𝐺
𝑘

𝑛
𝑖

𝑥
𝑛
𝑖

)

= 𝜑
𝑘
(𝐺
𝑘

𝑛
𝑖

𝑥
𝑛
𝑖

) − 𝜑
𝑘
(𝑦
𝑡
) + ⟨𝑦

𝑡
− 𝐺
𝑘

𝑛
𝑖

𝑥
𝑛
𝑖

, Ψ
𝑘
𝑦
𝑡
− Ψ
𝑘
𝐺
𝑘

𝑛
𝑖

𝑥
𝑛
𝑖

⟩

+ ⟨𝑦
𝑡
− 𝐺
𝑘

𝑛
𝑖

𝑥
𝑛
𝑖

, Ψ
𝑘
𝐺
𝑘

𝑛
𝑖

𝑥
𝑛
𝑖

− Ψ
𝑘
𝐺
𝑘−1

𝑛
𝑖

𝑥
𝑛
𝑖

⟩

−⟨𝑦
𝑡
− 𝐺
𝑘

𝑛
𝑖

𝑥
𝑛
𝑖

,

𝐺
𝑘

𝑛
𝑖

𝑥
𝑛
𝑖

− 𝐺
𝑘−1

𝑛
𝑖

𝑥
𝑛
𝑖

𝑟
𝑘,𝑛
𝑖

⟩+Θ
𝑘
(𝑦
𝑡
, 𝐺
𝑘

𝑛
𝑖

𝑥
𝑛
𝑖

) .

(114)

From (73), we have ‖Ψ
𝑘𝐺
𝑘

𝑛
𝑖

𝑥𝑛
𝑖

− Ψ𝑘𝐺
𝑘−1

𝑛
𝑖

𝑥𝑛
𝑖

‖ → 0 as 𝑖 →

∞. Furthermore, by the monotonicity of Ψ
𝑘
, we obtain ⟨𝑦

𝑡
−

𝐺
𝑘

𝑛
𝑖

𝑥
𝑛
𝑖

, Ψ
𝑘
𝑦
𝑡
− Ψ
𝑘
𝐺
𝑘

𝑛
𝑖

𝑥
𝑛
𝑖

⟩ ≥ 0. Then, from (𝐴4), we obtain

⟨𝑦
𝑡
− V, Ψ

𝑘
𝑦
𝑡
⟩ ≥ 𝜑
𝑘 (V) − 𝜑

𝑘
(𝑦
𝑡
) + Θ
𝑘
(𝑦
𝑡
, V) . (115)

Using (𝐴1), (𝐴4), and (115), we also obtain

0 = Θ
𝑘
(𝑦
𝑡
, 𝑦
𝑡
) + 𝜑
𝑘
(𝑦
𝑡
) − 𝜑
𝑘
(𝑦
𝑡
)

≤ 𝑡Θ
𝑘
(𝑦
𝑡
, 𝑦) + (1 − 𝑡)Θ𝑘 (𝑦𝑡, V) + (1 − 𝑡) 𝜑𝑘 (V) − 𝜑

𝑘
(𝑦
𝑡
)

≤ 𝑡 [Θ
𝑘
(𝑦
𝑡
, 𝑦) + 𝜑

𝑘
(𝑦) − 𝜑

𝑘
(𝑦
𝑡
)] + (1 − 𝑡) ⟨𝑦𝑡 − V, Ψ

𝑘
𝑦
𝑡
⟩

= 𝑡 [Θ𝑘 (𝑦𝑡, 𝑦) + 𝜑𝑘 (𝑦) − 𝜑𝑘 (𝑦𝑡)] + (1 − 𝑡) 𝑡 ⟨𝑦 − V, Ψ𝑘𝑦𝑡⟩ ,

(116)

and, hence,

0 ≤ Θ
𝑘 (𝑦𝑡, 𝑦) + 𝜑

𝑘 (𝑦) − 𝜑
𝑘 (𝑦𝑡) + (1 − 𝑡) ⟨𝑦 − V, Ψ

𝑘
𝑦
𝑡⟩ .

(117)

Letting 𝑡 → 0 and using (𝐴3), we have, for each 𝑦 ∈ 𝐶,

0 ≤ Θ
𝑘 (V, 𝑦) + 𝜑

𝑘 (𝑦) − 𝜑
𝑘 (V) + ⟨𝑦 − V, Ψ

𝑘
V⟩ . (118)

This implies that V ∈ GMEP(Θ𝑘, 𝜑𝑘, Ψ𝑘). Hence, V ∈

⋂
𝑁

𝑘=1
GMEP(Θ

𝑘
, 𝜑
𝑘
, Ψ
𝑘
). Therefore,

V ∈ F :=

𝑁

⋂

𝑘=1

GMEP (Θ𝑘, 𝜑𝑘, Ψ𝑘) ∩ Fix (𝐾) ∩ Fix (S) . (119)

From (66) and (110), we obtain

lim sup
𝑛→∞

⟨𝛾𝑉𝑥 − 𝜇𝐹𝑥, 𝑧
𝑛
− 𝑥⟩ = lim sup

𝑛→∞

⟨𝛾𝑉𝑥 − 𝜇𝐹𝑥, 𝑥
𝑛
− 𝑥⟩

= lim
𝑖→∞

⟨𝛾𝑉𝑥 − 𝜇𝐹𝑥, 𝑥
𝑛
𝑖

− 𝑥⟩

= ⟨𝛾𝑉𝑥 − 𝜇𝐹𝑥, V − 𝑥⟩ ≤ 0.

(120)

Finally, we show that 𝑥
𝑛
→ 𝑥 as 𝑛 → ∞. Notice that 𝑧

𝑛
=

𝑃
𝐶
V
𝑛
, where V

𝑛
= 𝛼
𝑛
𝛾𝑉𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇(𝜇

𝑛
)𝑦
𝑛
. Then, from

(25), we have

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
󵄩󵄩󵄩󵄩

2
= ⟨V
𝑛
− 𝑥, 𝑧
𝑛
− 𝑥⟩ + ⟨𝑃

𝐶
V
𝑛
− V
𝑛
, 𝑃
𝐶
V
𝑛
− 𝑥⟩

≤ ⟨V
𝑛
− 𝑥, 𝑧
𝑛
− 𝑥⟩

= 𝛼
𝑛
𝛾⟨𝑉𝑥
𝑛
− 𝑉𝑥, 𝑧

𝑛
− 𝑥⟩

+ 𝛼𝑛⟨𝛾𝑉𝑥 − 𝜇𝐹𝑥, 𝑧𝑛 − 𝑥⟩

+ ⟨(𝐼 − 𝛼
𝑛
𝜇𝐹) (𝑇 (𝜇

𝑛
) 𝑦
𝑛
− 𝑥) , 𝑧

𝑛
− 𝑥⟩

≤ (1 − 𝛼𝑛 (1 − 𝛽𝑛) (𝜏 − 𝛾𝐿))
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
⟨𝛾𝑉𝑥 − 𝜇𝐹𝑥, 𝑧

𝑛
− 𝑥⟩ .

(121)

It follows from (121) that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
󵄩󵄩󵄩󵄩

2
≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

󵄩󵄩󵄩󵄩

2

≤ 𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛)

× {(1 − 𝛼
𝑛
(1 − 𝛽

𝑛
) (𝜏 − 𝛾𝐿))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩

2

+𝛼
𝑛
⟨𝛾𝑉𝑥 − 𝜇𝐹𝑥, 𝑧

𝑛
− 𝑥⟩ }

≤ (1 − 𝛼
𝑛
(1 − 𝛽

𝑛
) (𝜏 − 𝛾𝐿))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩

2

+ 𝛼𝑛 (1 − 𝛽𝑛) ⟨𝛾𝑉𝑥 − 𝜇𝐹𝑥, 𝑧𝑛 − 𝑥⟩.

(122)

Put 𝜎
𝑛
:= 𝛼
𝑛
(1 − 𝛽

𝑛
)(𝜏 − 𝛾𝐿) and 𝛿

𝑛
:= 𝛼
𝑛
(1 − 𝛽

𝑛
)⟨𝛾𝑉𝑥 −

𝜇𝐹𝑥, 𝑧
𝑛
− 𝑥⟩. Then, (122) reduces to formula

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
󵄩󵄩󵄩󵄩

2
≤ (1 − 𝜎

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩

2
+ 𝛿
𝑛
. (123)

It is easily seen that ∑∞
𝑛=1

𝜎
𝑛
= ∞, and (using (120))

lim sup
𝑛→∞

𝛿
𝑛

𝜎
𝑛

=
1

𝜏 − 𝛾𝐿
lim sup
𝑛→∞

⟨𝛾𝑉𝑥 − 𝜇𝐹𝑥, 𝑧
𝑛
− 𝑥⟩ ≤ 0.

(124)

Hence, by Lemma 7, we conclude that 𝑥
𝑛
→ 𝑥 as 𝑛 → ∞.

This completes the proof.

Using the results proved in [35] (see also [32]), we obtain
the following results.

Corollary 12. Let 𝐶, 𝐻, Θ
𝑘
, 𝜑
𝑘
, Ψ
𝑘
, 𝐴
𝑘
, 𝐹, and 𝑉 be the

same as inTheorem 11. Let 𝑆 and 𝑇 be nonexpansive mappings
on 𝐶 with 𝑆𝑇 = 𝑇𝑆. Assume that F := Fix(𝑆) ∩ Fix(𝑇) ∩
⋂
∞

𝑛=1
GMEP(Θ

𝑘
, 𝜑
𝑘
, Ψ
𝑘
) ∩Fix(𝐾) ̸= 0, where𝐾 is defined as in
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Lemma 9. Let {𝛼
𝑛
}, {𝛽
𝑛
}, and {𝑟

𝑘,𝑛
}
𝑁

𝑘=1
be sequences satisfying

(𝐶1)–(𝐶3). Then, the sequence {𝑥
𝑛
} defined by

𝑢
𝑛
= 𝑆
(Θ
𝑁
,𝜑
𝑁
)

𝑟
𝑁,𝑛

(𝐼 − 𝑟
𝑁,𝑛

Ψ
𝑁
) 𝑆
(Θ
𝑁−1
,𝜑
𝑁−1
)

𝑟
𝑁−1,𝑛

× (𝐼 − 𝑟
𝑁−1,𝑛

Ψ
𝑁−1

) ⋅ ⋅ ⋅ 𝑆
(Θ
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟
1,𝑛
Ψ
1
) 𝑥
𝑛
,

𝑦
𝑛 = 𝑆
𝐺
𝑀

𝜆
𝑀

(𝐼 − 𝜆𝑀𝐴𝑀) 𝑆
𝐺
𝑀−1

𝜆
𝑀−1

× (𝐼 − 𝜆
𝑀−1

𝐴
𝑀−1

) ⋅ ⋅ ⋅ 𝑆
𝐺
1

𝜆
1

(𝐼 − 𝜆
1
𝐴
1
) 𝑢
𝑛
,

𝑥𝑛+1 = 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛)

× 𝑃
𝐶
[

[

𝛼
𝑛
𝛾𝑉𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐹)

1

𝑛2

𝑛−1

∑

𝑖=0

𝑛−1

∑

𝑗=0

𝑆
𝑖
𝑇
𝑗
𝑦
𝑛
]

]

,

∀𝑛 ≥ 1,

(125)

converges strongly to 𝑥 ∈ F, where 𝑥 solves uniquely the
variational inequality (40).

Corollary 13. Let 𝐶, 𝐻, Θ
𝑘
, 𝜑
𝑘
, Ψ
𝑘
, 𝐴
𝑘
, 𝐹, and 𝑉 be the

same as in Theorem 11. Let S = {𝑇(𝑡) : 𝑡 > 0} be a
strongly continuous nonexpansive semigroup on 𝐶. Assume
that Ω := Fix(S) ∩ ⋂

∞

𝑛=1
GMEP(Θ

𝑘
, 𝜑
𝑘
, Ψ
𝑘
) ∩ Fix(𝐾) ̸= 0,

where𝐾 is defined as in Lemma 9. Let {𝛼
𝑛}, {𝛽𝑛}, and {𝑟𝑘,𝑛}

𝑁

𝑘=1

be sequences satisfying (𝐶1)–(𝐶3). Then, the sequence {𝑥𝑛}

defined by

𝑢𝑛 = 𝑆
(Θ
𝑁
,𝜑
𝑁
)

𝑟
𝑁,𝑛

(𝐼 − 𝑟𝑁,𝑛Ψ𝑁) 𝑆
(Θ
𝑁−1
,𝜑
𝑁−1
)

𝑟
𝑁−1,𝑛

× (𝐼 − 𝑟
𝑁−1,𝑛

Ψ
𝑁−1

) ⋅ ⋅ ⋅ 𝑆
(Θ
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟
1,𝑛
Ψ
1
) 𝑥
𝑛
,

𝑦
𝑛
= 𝑆
𝐺
𝑀

𝜆
𝑀

(𝐼 − 𝜆
𝑀
𝐴
𝑀
) 𝑆
𝐺
𝑀−1

𝜆
𝑀−1

× (𝐼 − 𝜆
𝑀−1

𝐴
𝑀−1

) ⋅ ⋅ ⋅ 𝑆
𝐺
1

𝜆
1

(𝐼 − 𝜆
1
𝐴
1
) 𝑢
𝑛
,

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
)

× 𝑃
𝐶
[𝛼
𝑛
𝛾𝑉𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐹)

1

𝑡𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑦𝑛𝑑𝑠] ,

∀𝑛 ≥ 1,

(126)

where {𝑡
𝑛} is an increasing sequence in (0,∞) with

lim𝑛→∞(𝑡𝑛/𝑡𝑛+1) = 1, converges strongly to 𝑥 ∈ F,
where 𝑥 solves uniquely the variational inequality (40).

Corollary 14. Let 𝐶, 𝐻, Θ𝑘, 𝜑𝑘, Ψ𝑘, 𝐴𝑘, 𝐹, and 𝑉 be the
same as in Theorem 11. Let S = {𝑇(𝑡) : 𝑡 > 0} be a
strongly continuous nonexpansive semigroup on 𝐶. Assume
that Ω := Fix(S) ∩ ⋂

∞

𝑛=1
GMEP(Θ𝑘, 𝜑𝑘, Ψ𝑘) ∩ Fix(𝐾) ̸= 0,

where𝐾 is defined as in Lemma 9. Let {𝛼
𝑛
}, {𝛽
𝑛
}, and {𝑟

𝑘,𝑛
}
𝑁

𝑘=1

be sequences satisfying (𝐶1)–(𝐶3). Then, the sequence {𝑥
𝑛
}

defined by

𝑢𝑛 = 𝑆
(Θ
𝑁
,𝜑
𝑁
)

𝑟
𝑁,𝑛

(𝐼 − 𝑟𝑁,𝑛Ψ𝑁) 𝑆
(Θ
𝑁−1
,𝜑
𝑁−1
)

𝑟N−1,𝑛

× (𝐼 − 𝑟𝑁−1,𝑛Ψ𝑁−1) ⋅ ⋅ ⋅ 𝑆
(Θ
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟1,𝑛Ψ1) 𝑥𝑛,

𝑦
𝑛
= 𝑆
𝐺
𝑀

𝜆
𝑀

(𝐼 − 𝜆
𝑀
𝐴
𝑀
) 𝑆
𝐺
𝑀−1

𝜆
𝑀−1

× (𝐼 − 𝜆
𝑀−1

𝐴
𝑀−1

) ⋅ ⋅ ⋅ 𝑆
𝐺
1

𝜆
1

(𝐼 − 𝜆
1
𝐴
1
) 𝑢
𝑛
,

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑃
𝐶

× [𝛼𝑛𝛾𝑉𝑥𝑛 + (𝐼 − 𝛼𝑛𝜇𝐹)

×(𝑎
𝑛 ∫

∞

0

exp (−𝑎
𝑛
𝑠) 𝑇 (𝑠) 𝑦𝑛)𝑑𝑠] , ∀𝑛 ≥ 1,

(127)

where {𝑎
𝑛
} is a decreasing sequence in (0,∞)with lim

𝑛→∞
𝑎
𝑛
=

0, converges strongly to 𝑥 ∈ Ω, where 𝑥 solves uniquely the
variational inequality (40).

4. Some Applications

In this section, as applications, we will apply Theorem 11 to
findminimum-norm solutions 𝑥 = 𝑃Ω(0) of some variational
inequalities. Namely, find a point 𝑥which solves uniquely the
following quadratic minimization problem:

‖𝑥‖
2
= min
𝑥∈Ω

‖𝑥‖
2
. (128)

Minimum-norm solutions have been applied widely in sev-
eral branches of pure and applied sciences, for example,
defining the pseudoinverse of a bounded linear operator,
signal processing, and many other problems in a convex
polyhedron and a hyperplane (see [36, 37]).

Recently, some iterative methods have been studied to
find the minimum-norm fixed point of nonexpansive map-
pings and their generalizations (see, e.g. [38–49] and the
references therein).

Using Theorem 11 and Corollaries 12, 13, and 14, we
immediately have the following results, respectively.

Theorem 15. Let 𝐶 and 𝐻 be the same as in Theorem 11. Let
S = {𝑇(𝑡) : 𝑡 ∈ 𝑆} be a nonexpansive semigroup on 𝐶 such
thatF := Fix(S) ̸= 0. Let {𝛼

𝑛
} and {𝛽

𝑛
} be sequences satisfying

(𝐶1)–(𝐶3). Then, the sequence {𝑥
𝑛
} defined by

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑃
𝐶
[(1 − 𝛼

𝑛
) 𝑇 (𝜇

𝑛
) 𝑥
𝑛
] ,

∀𝑛 ≥ 1,

(129)

converges strongly to 𝑥 ∈ F, where 𝑥 = 𝑃F(0) is theminimum-
norm fixed point of F, where 𝑥 solves uniquely the quadratic
minimization problem (128).

Theorem 16. Let 𝐶 and𝐻 be the same as in Corollary 12. Let
𝑆 and 𝑇 be nonexpansive mappings on 𝐶 with 𝑆𝑇 = 𝑇𝑆 such



16 Journal of Applied Mathematics

thatF := Fix(𝑆) ∩ Fix(𝑇) ̸= 0. Let {𝛼
𝑛
} and {𝛽

𝑛
} be sequences

satisfying (𝐶1)–(𝐶3). Then, the sequence {𝑥
𝑛
} defined by

𝑥𝑛+1 = 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛) 𝑃𝐶

× [

[

(1 − 𝛼
𝑛
)
1

𝑛2

𝑛−1

∑

𝑖=0

𝑛−1

∑

𝑗=0

𝑆
𝑖
𝑇
𝑗
𝑥
𝑛
]

]

, ∀𝑛 ≥ 1,

(130)

converges strongly to 𝑥 ∈ F, where 𝑥 = 𝑃F(0) is theminimum-
norm fixed point of F, where 𝑥 solves uniquely the quadratic
minimization problem (128).

Theorem 17. Let 𝐶 and𝐻 be the same as in Corollary 13. Let
S = {𝑇(𝑡) : 𝑡 > 0} be a strongly continuous nonexpansive
semigroup on 𝐶 such that F := Fix(S) ̸= 0. Let {𝛼

𝑛
} and

{𝛽
𝑛
} be sequences satisfying (𝐶1)–(𝐶3).Then, the sequence {𝑥

𝑛
}

defined by

𝑥𝑛+1 = 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛) 𝑃𝐶 [(1 − 𝛼𝑛)
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑥𝑛𝑑𝑠] ,

∀𝑛 ≥ 1,

(131)

where {𝑡
𝑛
} is an increasing sequence in (0,∞) with

lim
𝑛→∞

(𝑡
𝑛
/𝑡
𝑛+1

) = 1, converges strongly to 𝑥 ∈ F,
where 𝑥 = 𝑃F(0) is the minimum-norm fixed point of F,
where 𝑥 solves uniquely the quadratic minimization problem
(128).

Theorem 18. Let 𝐶 and𝐻 be the same as in Corollary 14. Let
S = {𝑇(𝑡) : 𝑡 > 0} be a nonexpansive semigroup on 𝐶 such
thatF := Fix(S) ̸= 0. Let {𝛼

𝑛
} and {𝛽

𝑛
} be sequences satisfying

(𝐶1)–(𝐶3). Then, the sequence {𝑥
𝑛
} defined by

𝑥𝑛+1 = 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛) 𝑃𝐶

× [(1 − 𝛼
𝑛
) (𝑎
𝑛 ∫

∞

0

exp (−𝑎
𝑛
𝑠) 𝑇 (𝑠) 𝑥𝑛𝑑𝑠)] ,

∀𝑛 ≥ 1,

(132)

where {𝑎
𝑛
} is a decreasing sequence in (0,∞)with lim

𝑛→∞
𝑎
𝑛
=

0, converges strongly to 𝑥 ∈ F, where 𝑥 = 𝑃F(0) is the
minimum-norm fixed point of F, where 𝑥 solves uniquely the
quadratic minimization problem (128).
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