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We propose a fourth-order total bounded variation regularization model which could reduce undesirable effects effectively. Based
on this model, we introduce an improved split Bregman iteration algorithm to obtain the optimum solution. The convergence
property of our algorithm is provided. Numerical experiments show the more excellent visual quality of the proposed model
compared with the second-order total bounded variation model which is proposed by Liu and Huang (2010).

1. Introduction

Image restoration problem is one of the earliest and most
classic linear inverse problems [1–3]. In this class of problems,
a noisy indirect observation 𝑓 of an original image 𝑢 is
modeled as

𝑓 = 𝐴𝑢 + 𝑛, (1)

where 𝐴 is a bounded linear operator representing the
convolution and 𝑛 denotes the additive noise.

Equation (1) is a typically ill-posed inverse problem;
that is, a small change in 𝑓 will lead to huge deviation in
the solution 𝑢. Hence, to keep the numerical stability, the
regularizationmethod known as adding a regularization term
to the energy function has been developed. The original
scheme introduced by Tikhonov and Arsenin [4] is given by

min
𝑢

∫
Ω

|𝐿𝑢|
2 +
𝜆

2

󵄩󵄩󵄩󵄩𝐴𝑢 − 𝑓
󵄩󵄩󵄩󵄩
2

2
, (2)

where the nonnegative function ∫
Ω

|𝐿𝑢|2 which regularizes
the solution by enforcing certain prior constrains on original
image is known as regularization/penalty and the ‖𝐴𝑢 − 𝑓‖2

2

which measures the violation of the relation between 𝑢
and its observation 𝑓 is known as fidelity. The scale 𝜆 is
called the regularization parameter; it compromises fidelity
with penalty. By this Tikhonov regularization method, we

can compute stable approximations to the original solution.
However, this smoothness penalty model does not preserve
the edge, sparsity pattern, and texture well because of its
isotropic smoothing properties. To overcome this shortcom-
ing, Rudin et al. [5] proposed the total variation (TV) based
regularization scheme (the ROF model)

min
𝑢

∫
Ω

|𝐿𝑢| +
𝜆

2

󵄩󵄩󵄩󵄩𝐴𝑢 − 𝑓
󵄩󵄩󵄩󵄩
2

2
, (3)

where Ω ⊆ R2 denotes a bounded subset with Lipschitz
boundary, 𝑢 ∈ L1(Ω), and 𝐿𝑢 represents the distributional
derivative of 𝑢. Many computational methods [5–11] for
solving (3) sprang up in recent years. For themoment wemay
think of the nonsmooth penalty term ∫

Ω

|𝐿𝑢| as theW1,1(Ω)
seminorm. More precisely,

∫
Ω

|𝐿𝑢| = sup {∫
Ω

𝑢 div 𝜑 d𝑥 | 𝜑 ∈ 𝐶1
𝐶
(Ω,R𝑑) ,

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨 ≤ 1} .

(4)

As a result, the bounded variation (BV) seminorm is endowed
with ‖𝑢‖BV = ‖𝑢‖L1 + ∫

Ω

|𝐿𝑢|. Then the Banach space BV(Ω)
is essentially an extension of W1,1(Ω). This model has been
extremely successful in a wide variety of image restoration
problems, such as image denoising [5, 12], signal processing
[13, 14], image deblurring [15], image decomposition, and
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texture extraction [16]. However, this model also usually
produces staircase effects and new edges that do not exist in
the true image.

In [17, 18], the authors concentrate especially on the full
norm ‖𝑢‖BV + 𝜌‖𝑢‖

2

2
as the regularization term, compared

with the TV regularization, which is preferable due to its
ability to preserve edges in the original image during the
reconstruction process. Then specify the original problem to
the following variation model [18]:

min
𝑢

∫
Ω

|𝐿𝑢| +
𝛼

2
‖𝑢‖
2

2
+
𝛽

2

󵄩󵄩󵄩󵄩𝐴𝑢 − 𝑓
󵄩󵄩󵄩󵄩
2

2
,

over 𝑢 ∈ K (Ω) ∩X (Ω) ,
(5)

where 𝛼 ≥ 0, 𝛽 > 0,K is a closed, convex subset of
L2(Ω), and X = L2(Ω) ∩ BV(Ω). The space X endowed
with the norm ‖𝑢‖X = ‖𝑢‖L2 + ‖𝑢‖BV is a Banach space.
A quadratic regularization term is utilized in model (5)
comparing with model (3), it serves two advantages. One
advantage is that, for 𝛼 > 0, it provides a coercive term for the
subspace of constant function which is in the kernel of the 𝐿-
operator (in this model 𝐿 represents the gradient operator).
The other advantage of the quadratic regularization term is
that it provides the probability to discriminate the structure
of stability results from that of the nonquadratic BV term.

As mentioned in [19–21], this technique preserves edges
well, but the obtained images for this model are often piece-
wise constant. To prevent the staircase effect, we penalize
jumps more; this can be achieved by taking the second
derivation into account. So in this paper we present an
improved model; that is, the second-order diffusive term
is replaced by fourth-order diffusive term in the model
(5); new model substantially reduces the staircase effect,
while preserving sharp jump discontinuities (edges). Here we
rewrite the proposed model:

min
𝑢

∫
Ω

󵄨󵄨󵄨󵄨󵄨∇
2𝑢
󵄨󵄨󵄨󵄨󵄨 +
𝛼

2
‖𝑢‖
2

2
+
𝛽

2

󵄩󵄩󵄩󵄩𝐴𝑢 − 𝑓
󵄩󵄩󵄩󵄩
2

2
,

over 𝑢 ∈ L2 (Ω) ∩ BV2 (Ω) ,
(6)

where the Frobenius norm of the Hessian matrix ∇2𝑢 is (see
[22])

󵄨󵄨󵄨󵄨󵄨∇
2𝑢
󵄨󵄨󵄨󵄨󵄨 = (𝑢

2

𝑥𝑥
+ 𝑢2
𝑦𝑦
+ 𝑢2
𝑥𝑦
+ 𝑢2
𝑦𝑥
)
1/2

, (7)

and the BV2 is defined as follows [23].

Definition 1. Let Ω ⊂ R2 be an open subset with Lipschitz
boundary. BV2(Ω) is a subspace of functions 𝑢 ∈ L1(Ω) such
that the following equation is satisfied:

∫
Ω

󵄨󵄨󵄨󵄨󵄨∇
2𝑢
󵄨󵄨󵄨󵄨󵄨

= sup {∫
Ω

𝑢 div2𝜓 d𝑥 | 𝜓 ∈ 𝐶2
𝑐
(Ω,R2×2) ,

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨 ≤ 1}

< ∞,

(8)

where

div2𝜓 =
2

∑
ℎ,𝑘=1

𝜕
𝑘
𝜕
ℎ
𝜓ℎ𝑘,

󵄨󵄨󵄨󵄨𝜓 (𝑥)
󵄨󵄨󵄨󵄨 = √

2

∑
ℎ,𝑘=1

(𝜓ℎ𝑘)
2

. (9)

𝐶2
𝑐
(Ω) stands for the set of functions in 𝐶2(Ω) with compact

support in Ω.

The proof of the existence, uniqueness, convergence, and
stability of our proposed model (6) can be founded in [18].

The organization of the rest of paper is as follows. In
Section 2, we give a detailed description of the Bregman
iteration method. In Section 3, we elaborate on the analysis
of the extended split Bregman iteration method for the
proposed model. In Section 4, the convergence analysis is
displayed. Numerical experiments intended for demonstrat-
ing the effectiveness of our model are provided in Section 5.
Finally, concluding remarks are given in Section 6.

2. Bregman-Related Algorithms

Bregman iteration is a concept that originated in function
analysis for finding extrema of convex function [24], which
was initially introduced and studied by Osher et al. for image
processing [25]. Nowwe will show the general formulation of
Bregman iteration technique.

2.1. Bregman Iteration. In [26], Goldstein and Osher consid-
ered the generalized constrained minimizations of the form

min
𝑢

𝐽 (𝑢) subject to 𝐻(𝑢) = 0, (10)

where 𝐽 and 𝐻 defined in R𝑛 are convex functions. The
associated unconstrained problem is

min
𝑢

𝐽 (𝑢) + 𝜆𝐻 (𝑢) , (11)

where 𝜆 is the positive parameter which should be chosen
extremely large.

Definition 2. The Bregman distance of function 𝐽 between 𝑢
and V is

𝐷
𝑝

𝐽
(𝑢, V) = 𝐽 (𝑢) − 𝐽 (V) − ⟨𝑝, 𝑢 − V⟩, 𝑝 ∈ 𝜕𝐽 (V) , (12)

where ⟨⋅, ⋅⟩ stands for duality product and 𝑝 is in the
subdifferential of 𝐽 at V with

𝜕𝐽 (V) := {𝑝 ∈ BV(Ω)∗ | 𝐽 (𝑢) ≥ 𝐽 (V) + ⟨𝑝, 𝑢 − V⟩} . (13)

We assume that 𝐻 is differentiable then problem (11) can be
iteratively solved by [24]

𝑢𝑘+1 = arg min
𝑢

𝐷
𝑝
𝑘

𝐽
(𝑢, 𝑢𝑘) + 𝜆𝐻 (𝑢) ,

𝑝𝑘+1 = 𝑝𝑘 − 𝜆∇𝐻(𝑢𝑘+1) .

(14)

The convergence analysis of this Bregman iterative scheme
was provide in [25]. The computational performance of
Bregman iteration relays on how fast the subproblem

arg min
𝑢

𝐷
𝑝
𝑘

𝐽
(𝑢, 𝑢𝑘) + 𝜆𝐻 (𝑢) (15)
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can be solved. Let 𝐻(𝑢, 𝑓) = (1/2) ‖𝐴𝑢 − 𝑓‖2
2
, where 𝐴 is

a linear operator. As show in [25, 27], iteration (14) can be
reformulated as a simplified form

𝑢𝑘+1 = arg min
𝑢

𝐽 (𝑢) + 𝜆𝐻(𝑢, 𝑓
𝑘) ,

𝑓𝑘+1 = 𝑓𝑘 + (𝑓 − 𝐴𝑢𝑘+1) , 𝑓
0
= 𝑓.

(16)

This Bregman iteration which was proposed by Osher et
al. for TV based image denoising [25] has two advantages
[26]; the first one is that this method converges very quickly,
especially for problem where 𝐽(𝑢) contains L1-regularization
term. The second advantage is that the parameter 𝜆 in (14)
remains constant; so for the purpose of fast convergence,
we can choose 𝜆 which minimizes the condition number of
the subproblem. Due to the highefficiency and robustness of
Bregman iteration method, it has been widely used for image
reconstruction [27–29].

2.2. Split Bregman. Goldstein and Osher [26] proposed the
split Bregman iteration based on the split formulation pro-
vided in [30] to attack the general L1-regularized optimiza-
tion problem (11). In a recent paper [31], this method is used
to solve general variational models for image restoration.The
crucial point of the split Bregman method is that it could
separate the L1 and L2 portions in (11). They converted (11)
into the constrained optimization problem

min
𝑢

‖𝑑‖
1
+ 𝜆𝐻 (𝑢) such that 𝑑 = 𝜙 (𝑢) , (17)

where 𝐻(𝑢) and 𝜙(𝑢) stand for the convex functions. Then
transform it into an unconstrained problem

min
𝑢

‖𝑑‖
1
+ 𝜆𝐻 (𝑢) +

𝛾

2

󵄩󵄩󵄩󵄩𝑑 − 𝜙(𝑢)
󵄩󵄩󵄩󵄩
2

2
. (18)

This problem is similar to (11); so they enforced the simplified
Bregman iterative algorithm to problem (18)

(𝑢𝑘+1, 𝑑𝑘+1) = min
𝑢,𝑑

‖𝑑‖
1
+ 𝜆𝐻 (𝑢) +

𝛾

2

󵄩󵄩󵄩󵄩󵄩𝑑 − 𝜙(𝑢) − 𝑏
𝑘
󵄩󵄩󵄩󵄩󵄩
2

2

,

𝑏𝑘+1 = 𝑏𝑘 + (𝜙 (𝑢𝑘+1) − 𝑑𝑘+1) .

(19)

This is called two-phase split Bregman iterative algorithm.
Then pay attention to the subproblem

(𝑢𝑘+1, 𝑑𝑘+1) = min
𝑢,𝑑

‖𝑑‖
1
+ 𝜆𝐻 (𝑢) +

𝛾

2

󵄩󵄩󵄩󵄩󵄩𝑑 − 𝜙 (𝑢) − 𝑏
𝑘
󵄩󵄩󵄩󵄩󵄩
2

2

.

(20)

Due to the “split” of the L1 and L2 components of this func-
tion, the minimization problem was performed by iteratively
minimizing with respect to 𝑢 and 𝑑 separately

Step 1: 𝑢𝑘+1 = min
𝑢

𝜆𝐻(𝑢) +
𝛾

2
‖𝑑𝑘 − 𝜙(𝑢) − 𝑏𝑘‖

2

2
,

Step 2: 𝑑𝑘+1 = min
𝑢

‖𝑑‖
1
+
𝛾

2
‖𝑑 − 𝜙(𝑢𝑘+1) − 𝑏𝑘‖

2

2
.

The speed of the split Bregman method is relayed on how
quickly the two steps can be solved. A wide variety optimiza-
tion techniques can be used to solve Step 1, for instance, the
Fourier transform method and conjugate gradient method.
Step 2 could be attacked with the extremely fast shrinkage
formula, namely,

𝑑𝑘+1
𝑗
= shrink(𝜙(𝑢)

𝑗
+ 𝑏𝑘
𝑗
,
1

𝛾
) , (21)

where

shrink (𝑥, 𝜏) = 𝑥
|𝑥|
∗max (|𝑥| − 𝜏, 0) . (22)

3. The Proposed Algorithm

Due to [5], 𝐿
1
estimation procedures are more appropriate

for image restoration, and TV norm is essentially 𝐿
1
norm

of derivatives. However, the fourth-order total variation term
∫
Ω

|∇2𝑢| in model (6) is continuous expression; by utilizing
the similar method of discretizing total variation in [32], we
can deduce the discrete fourth-order total variation (let 𝐷
represent the operator ∇2):

∫
Ω

|𝐷𝑢| = ‖𝐷𝑢‖
1
. (23)

So the proposed model (6) can be rewritten as follows:

min
𝑢

‖𝐷𝑢‖
1
+
𝛼

2
‖𝑢‖
2

2
+
𝛽

2

󵄩󵄩󵄩󵄩𝐴𝑢 − 𝑓
󵄩󵄩󵄩󵄩
2

2
. (24)

Then we perform the split Bregman iteration to solve
problem (24); this yields a constrained problem

min
𝑢

‖𝑑‖
1
+
𝛼

2
‖𝑢‖
2

2
+
𝛽

2

󵄩󵄩󵄩󵄩𝐴𝑢 − 𝑓
󵄩󵄩󵄩󵄩
2

2
, s.t. 𝑑 = 𝐷𝑢. (25)

Obviously, problem (25) is equivalent to the following uncon-
straint problem:

min
𝑢

‖𝑑‖
1
+
𝛼

2
‖𝑢‖
2

2
+
𝛽

2

󵄩󵄩󵄩󵄩𝐴𝑢 − 𝑓
󵄩󵄩󵄩󵄩
2

2
+
𝜆

2
‖𝑑 − 𝐷𝑢‖

2

2
. (26)

Concretely, the extended split Bregman iterative for solving
(26) is depicted as

𝑢𝑘+1 = arg min
𝑢

𝛼

2
‖𝑢‖
2

2
+
𝛽

2

󵄩󵄩󵄩󵄩𝐴𝑢 − 𝑓
󵄩󵄩󵄩󵄩
2

2
+
𝜆

2

󵄩󵄩󵄩󵄩󵄩𝐷𝑢 − 𝑑
𝑘 + 𝑏𝑘

󵄩󵄩󵄩󵄩󵄩
2

2

,

𝑑𝑘+1 = arg min
𝑢

‖𝑑‖
1
+
𝜆

2

󵄩󵄩󵄩󵄩󵄩𝑑 − 𝐷𝑢
𝑘+1 − 𝑏𝑘

󵄩󵄩󵄩󵄩󵄩
2

2

,

(27)

with the update formula for 𝑏𝑘

𝑏𝑘+1 = 𝑏𝑘 + (𝐷𝑢𝑘+1 − 𝑑𝑘+1) . (28)

For more precisely, we derive our algorithm as follows.
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(a) (b) (c)

Figure 1: Images used for synthetic degradations: (a) “Cameraman,” (b) “Boat,” (c) “Lena.”

Table 1: Computational cost, ISNR value, and MSE value for different deblur cases.

Blur type CPU time (s) ISNR (dB) MSE (dB)
SBI PSBI Blurred SBI PSBI Blurred SBI PSBI

Motion 3.1512 4.8672 8.6206 21.4132 31.2089 443.8974 36.8159 2.9369
Out-of-focus 2.9952 4.3992 8.0647 18.7751 28.8994 501.1467 50.5383 4.9883
Uniform 3.0264 4.8828 8.5342 17.4389 25.1493 449.3335 68.5647 11.7966
Gaussian 3.1200 7.3164 9.1581 16.5027 21.9641 394.0131 84.6321 24.4465

Algorithm 3. We have the following steps.

(1) Set input value 𝑢0 = 0, 𝑑0 = 𝑏0 = 0. Set 𝑛 := 0.

(2) Update 𝑢𝑘+1 from

𝑢𝑘+1 = (𝛼𝐼 + 𝛽𝐴𝑇𝐴 + 𝜆𝐷𝑇𝐷)
−1

× (𝛽𝐴𝑇𝑓 + 𝜆𝐴𝑇 (𝑑𝑘 − 𝑏𝑘)) .

(29)

(3) Update 𝑑𝑘+1 from

𝑑𝑘+1 = shrink(𝐷𝑢𝑘+1 + 𝑏𝑘, 1
𝜆
) . (30)

(4) Update 𝑏𝑘+1 from

𝑏𝑘+1 = 𝑏𝑘 + (𝐷𝑢𝑘+1 − 𝑑𝑘+1) . (31)

(5) If stopping criterion holds, output the 𝑢𝑘+1. Other-
wise, set 𝑛 := 𝑛 + 1 and go to Step 2.

4. Convergence Analysis

In this section, we concentrate on the rigorous convergence
proof of our iterative algorithm. Our analysis below is similar
to that in [33, 34], where the authors presented the analysis of
the unconstrained split Bregman iteration in detail.

We note that the subproblems (27) are convex and
differentiable; so the first-order optimality conditions for𝑢𝑘+1

and 𝑑𝑘+1 are obtained as follows:

0 = 𝛼𝑢𝑘+1 + 𝛽𝐴𝑇 (𝐴𝑢𝑘+1 − 𝑓)

+ 𝜆𝐷𝑇 (𝐷𝑢𝑘+1 − 𝑑𝑘 + 𝑏𝑘) ,

0 = 𝑝𝑘+1 + 𝜆 (𝑑𝑘+1 − 𝐷𝑢𝑘+1 − 𝑏𝑘) ,

𝑏𝑘+1 = 𝑏𝑘 + (𝐷𝑢𝑘+1 − 𝑑𝑘+1) ,

(32)

where 𝑝𝑘 ∈ 𝜕‖𝑑𝑘‖
1
. The condition (32) will be used for

analyzing the convergence property of our algorithm.

Theorem 4. Assume that there exists a unique solution 𝑢∗ of
problem (26) and 𝛼 > 0, 𝛽 > 0, and 𝜆 > 0. Then the sequence
{𝑢𝑘} generated by extended split Bregman iteration (27)–(40)
holds:

lim
𝑘→∞

𝛼

2

󵄩󵄩󵄩󵄩󵄩𝑢
𝑘
󵄩󵄩󵄩󵄩󵄩
2

2

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩𝐴𝑢
𝑘 − 𝑓

󵄩󵄩󵄩󵄩󵄩
2

2

+
󵄩󵄩󵄩󵄩󵄩𝐷𝑢
𝑘
󵄩󵄩󵄩󵄩󵄩1

=
𝛼

2

󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩
2

2
+
𝛽

2

󵄩󵄩󵄩󵄩𝐴𝑢
∗ − 𝑓

󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩𝐷𝑢
∗󵄩󵄩󵄩󵄩1,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩𝑢
𝑘 − 𝑢∗

󵄩󵄩󵄩󵄩󵄩2 = 0.

(33)

Proof. Reference [17] has shown that problem (26) exists a
unique 𝑢∗ so the first order optimality condition holds

0 = 𝐷𝑇𝑝∗ + 𝛼𝑢∗ + 𝛽𝐴𝑇 (𝐴𝑢∗ − 𝑓) , (34)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2:Deblurring of “Cameraman.” (a)–(d)Gaussian blurred image, linearmotion blurred image, out-of-focus blurred image and uniform
blurred image, respectively. (e)–(h) Images deblurred by SBI. (i)–(l) Images deblurred by PSBI.

Table 2: Image deblurring using SBI and PSBI for “Boat.”

Blur type CPU time (s) ISNR (dB) MSE (dB)
SBI PSBI Blurred SBI PSBI Blurred SBI PSBI

Out-of-focus 2.9796 4.6488 7.2471 17.8352 28.6621 381.1651 40.9274 3.4444
Gaussian 3.2448 7.3008 8.3851 16.0370 22.4141 297.3680 61.4972 14.4226

where 𝑝∗ ∈ 𝜕‖𝑑∗‖
1
and 𝑑∗ = 𝐷𝑢∗; let 𝑏∗ = 𝑝∗/𝜆; then (32) is

equivalent to

0 = 𝛼𝑢∗ + 𝛽𝐴𝑇 (𝐴𝑢∗ − 𝑓) + 𝜆𝐷𝑇 (𝐷𝑢∗ − 𝑑∗ + 𝑏∗) ,

0 = 𝑝∗ + 𝜆 (𝑑∗ − 𝐷𝑢∗ − 𝑏∗) ,

𝑏∗ = 𝑏∗ + (𝐷𝑢∗ − 𝑑∗) .

(35)

This illustrates that 𝑢∗, 𝑑∗, and 𝑏∗ are a fixed points of (27).
Let 𝑢𝑘, 𝑑𝑘, and 𝑏𝑘 denote the sequence generated by

algorithm (27), and 𝑢𝑘
𝑒
= 𝑢𝑘 − 𝑢∗, 𝑑𝑘

𝑒
= 𝑑𝑘 − 𝑑∗, and 𝑏𝑘

𝑒
=

𝑏𝑘 − 𝑏∗ represent the errors, respectively. Then subtracting

every equation in (32) from the corresponding equations in
(35), we give the result

0 = 𝛼𝑢𝑘+1
𝑒
+ 𝛽𝐴𝑇 (𝐴𝑢𝑘+1

𝑒
) + 𝜆𝐷𝑇 (𝐷𝑢𝑘+1

𝑒
− 𝑑𝑘
𝑒
+ 𝑏𝑘
𝑒
) ,

0 = (𝑝𝑘+1 − 𝑝∗) + 𝜆 (𝑑𝑘+1
𝑒
− 𝐷𝑢𝑘+1
𝑒
− 𝑏𝑘
𝑒
) ,

𝑏𝑘+1
𝑒
= 𝑏𝑘
𝑒
+ (𝐷𝑢𝑘+1

𝑒
− 𝑑𝑘+1
𝑒
) ,

(36)

where 𝑝𝑘+1 ∈ 𝜕‖𝑑𝑘+1‖
1
; we take the inner product of the

first and second equations in (36) with respect to 𝑢𝑘
𝑒
and 𝑑𝑘

𝑒
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Table 3: Image deblurring using SBI and PSBI for “Lena.”

Blur type CPU time (s) ISNR (dB) MSE (dB)
SBI PSBI Blurred SBI PSBI Blurred SBI PSBI

Motion 3.1824 4.4460 8.5843 17.6570 27.3921 300.0612 46.4993 5.1319
Uniform 2.9952 4.8672 8.7268 15.7435 25.7129 289.5325 71.4055 7.2947

(a) (b) (c)

(d) (e) (f)

Figure 3: Comparison with SBI method. First column: out-of-focus blurred image and Gaussian blurred image. Second column: images
deblurred by SBI. Third column: images deblurred by PSBI.

separately; then followed by the same manipulations applied
to the third equation of (36), we obtain

0 = 𝛼
󵄩󵄩󵄩󵄩󵄩𝑢
𝑘+1

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

+ 𝛽
󵄩󵄩󵄩󵄩󵄩𝐴𝑢
𝑘+1

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

+ 𝜆
󵄩󵄩󵄩󵄩󵄩𝐷𝑢
𝑘+1

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

+ 𝜆⟨𝐷𝑇𝑏𝑘
𝑒
− 𝐷𝑇𝑑𝑘

𝑒
, 𝑢𝑘+1
𝑒
⟩ ,

0 = ⟨𝑝𝑘+1 − 𝑝∗, 𝑑𝑘+1
𝑒
⟩ + 𝜆

󵄩󵄩󵄩󵄩󵄩𝑑
𝑘+1

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

− 𝜆⟨𝐷𝑢𝑘+1
𝑒
+ 𝑏𝑘
𝑒
, 𝑑𝑘+1
𝑒
⟩ ,

󵄩󵄩󵄩󵄩󵄩𝑏
𝑘+1

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

−
󵄩󵄩󵄩󵄩󵄩𝑏
𝑘

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

= 2 ⟨𝑏𝑘
𝑒
, 𝐷𝑢𝑘+1
𝑒
− 𝑑𝑘+1
𝑒
⟩

+
󵄩󵄩󵄩󵄩󵄩𝐷𝑢
𝑘+1

𝑒
− 𝑑𝑘+1
𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

.

(37)

Obviously, the third equation of (37) can be rewritten as

𝜆

2

󵄩󵄩󵄩󵄩󵄩𝑏
𝑘

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

−
󵄩󵄩󵄩󵄩󵄩𝑏
𝑘+1

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

= −
𝜆

2

󵄩󵄩󵄩󵄩󵄩𝐷𝑢
𝑘+1

𝑒
− 𝑑𝑘+1
𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

− 𝜆⟨𝑏𝑘
𝑒
, 𝐷𝑢𝑘+1
𝑒
− 𝑑𝑘+1
𝑒
⟩ .

(38)

Combining the first two equations of (37) with (38), we have

𝜆

2
(
󵄩󵄩󵄩󵄩󵄩𝑏
𝑘

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

−
󵄩󵄩󵄩󵄩󵄩𝑏
𝑘+1

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

) +
𝜆

2
(
󵄩󵄩󵄩󵄩󵄩𝑑
𝑘

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

−
󵄩󵄩󵄩󵄩󵄩𝑑
𝑘+1

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

)

=
𝜆

2

󵄩󵄩󵄩󵄩󵄩𝐷𝑢
𝑘+1

𝑒
− 𝑑𝑘
𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

+ ⟨𝑝𝑘+1 − 𝑝∗, 𝑑𝑘+1 − 𝑑∗⟩

+ 𝛼
󵄩󵄩󵄩󵄩󵄩𝑢
𝑘+1

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

+ 𝛽
󵄩󵄩󵄩󵄩󵄩𝐴𝑢
𝑘+1

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

.

(39)

By summing the equation bilaterally from 𝑘 = 0 to𝑁, we get

𝜆

2
(
󵄩󵄩󵄩󵄩󵄩𝑏
0

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

−
󵄩󵄩󵄩󵄩󵄩𝑏
𝑁+1

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

) +
𝜆

2
(
󵄩󵄩󵄩󵄩󵄩𝑑
0

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

−
󵄩󵄩󵄩󵄩󵄩𝑑
𝑁+1

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

)

=
𝜆

2

𝑁

∑
𝑘=0

󵄩󵄩󵄩󵄩󵄩𝐷𝑢
𝑘+1

𝑒
− 𝑑𝑘
𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

+
𝑁

∑
𝑘=0

⟨𝑝𝑘+1 − 𝑝∗, 𝑑𝑘+1 − 𝑑∗⟩

+ 𝛼
𝑁

∑
𝑘=0

󵄩󵄩󵄩󵄩󵄩𝑢
𝑘+1

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

+ 𝛽
𝑁

∑
𝑘=0

󵄩󵄩󵄩󵄩󵄩𝐴𝑢
𝑘+1

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

.

(40)
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(a) (b) (c)

(d) (e) (f)

Figure 4: Close-ups of selected section of Figure 3. First column: out-of-focus blurred image and Gaussian blurred image. Second column:
images deblurred by SBI. Third column: images deblurred by PSBI.

Because 𝑝𝑘+1 ∈ 𝜕‖𝑑𝑘+1‖
1
, 𝑝∗ ∈ 𝜕‖𝑑∗‖

1
, and ‖ ⋅ ‖

1
is convex,

then we have

⟨𝑝𝑘+1 − 𝑝∗, 𝑑𝑘+1 − 𝑑∗⟩ ≥ 0 ∀𝑘. (41)

The fact that all terms involved in (40) are nonnegative leads
to the following expression:

𝜆

2
(
󵄩󵄩󵄩󵄩󵄩𝑏
0

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

+
󵄩󵄩󵄩󵄩󵄩𝑑
0

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

) ≥
𝜆

2

𝑁

∑
𝑘=0

󵄩󵄩󵄩󵄩󵄩𝐷𝑢
𝑘+1

𝑒
− 𝑑𝑘
𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

+ 𝛼
𝑁

∑
𝑘=0

󵄩󵄩󵄩󵄩󵄩𝑢
𝑘+1

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

+ 𝛽
𝑁

∑
𝑘=0

󵄩󵄩󵄩󵄩󵄩𝐴𝑢
𝑘+1

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

+
𝑁

∑
𝑘=0

⟨𝑝𝑘+1 − 𝑝∗, 𝑑𝑘+1 − 𝑑∗⟩ .

(42)

With the assumption 𝛼 > 0, 𝛽 > 0, and 𝜆 > 0 and letting
𝑁 → ∞, inequality (42) suggests the following conclusions:

+∞

∑
𝑘=0

󵄩󵄩󵄩󵄩󵄩𝑢
𝑘+1

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

< +∞,

+∞

∑
𝑘=0

󵄩󵄩󵄩󵄩󵄩𝐴𝑢
𝑘+1

𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

< +∞,

+∞

∑
𝑘=0

󵄩󵄩󵄩󵄩󵄩𝐷𝑢
𝑘+1

𝑒
− 𝑑𝑘
𝑒

󵄩󵄩󵄩󵄩󵄩
2

2

< +∞,

+∞

∑
𝑘=0

⟨𝑝𝑘+1 − 𝑝∗, 𝑑𝑘+1 − 𝑑∗⟩ < +∞.

(43)

And hence

lim
𝑘→+∞

󵄩󵄩󵄩󵄩󵄩𝑢
𝑘+1 − 𝑢∗

󵄩󵄩󵄩󵄩󵄩2 = 0, (44)

lim
𝑘→+∞

󵄩󵄩󵄩󵄩󵄩(𝐴𝑢
𝑘+1 − 𝑓) − (𝐴𝑢∗ − 𝑓)

󵄩󵄩󵄩󵄩󵄩2 = 0, (45)

lim
𝑘→+∞

󵄩󵄩󵄩󵄩󵄩𝐷𝑢
𝑘+1 − 𝑑𝑘

󵄩󵄩󵄩󵄩󵄩2 = 0, (46)

lim
𝑘→+∞

⟨𝑝𝑘 − 𝑝∗, 𝑑𝑘 − 𝑑∗⟩ = 0. (47)

The Bregman distance satisfies

𝐷
𝑝

𝐽
(𝑢, V) + 𝐷

𝑞

𝐽
(V, 𝑢) = ⟨𝑞 − 𝑝, 𝑢 − V⟩ ,

∀𝑝 ∈ 𝜕𝐽 (V) , 𝑞 ∈ 𝜕𝐽 (𝑢) .
(48)

Associating this equation with (47), we get

lim
𝑘→+∞

󵄩󵄩󵄩󵄩󵄩𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩1 −
󵄩󵄩󵄩󵄩𝑑
∗󵄩󵄩󵄩󵄩1 − ⟨𝑝

∗, 𝑑𝑘 − 𝑑∗⟩ = 0. (49)
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Figure 5: Comparison with SBI method. First column: motion blurred image and uniform blurred image. Second column: images deblurred
by SBI. Third column: images deblurred by PSBI.

Again, together with (46) and the continuous property of
‖ ⋅ ‖
1
, the following expression hold:

lim
𝑘→+∞

󵄩󵄩󵄩󵄩󵄩𝐷𝑢
𝑘
󵄩󵄩󵄩󵄩󵄩1 −
󵄩󵄩󵄩󵄩𝐷𝑢
∗󵄩󵄩󵄩󵄩1

− ⟨𝑝∗, 𝐷𝑢𝑘 − 𝐷𝑢∗⟩ = 0, 𝑝∗ ∈ 𝜕
󵄩󵄩󵄩󵄩𝐷𝑢
∗󵄩󵄩󵄩󵄩1.

(50)

With the similar skills, we have

lim
𝑘→+∞

󵄩󵄩󵄩󵄩󵄩𝐴𝑢
𝑘 − 𝑓

󵄩󵄩󵄩󵄩󵄩
2

2

−
󵄩󵄩󵄩󵄩𝐴𝑢
∗ − 𝑓

󵄩󵄩󵄩󵄩
2

2

− 2 ⟨𝐴𝑇 (𝐴𝑢∗ − 𝑓) , 𝑢𝑘 − 𝑢∗⟩ = 0,

lim
𝑘→+∞

󵄩󵄩󵄩󵄩󵄩𝑢
𝑘
󵄩󵄩󵄩󵄩󵄩
2

2

−
󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩
2

2
= lim
𝑘→+∞

⟨2𝑢∗, 𝑢𝑘 − 𝑢∗⟩ .

(51)

Combining (50)-(51), we obtain

lim
𝑘→+∞

(
󵄩󵄩󵄩󵄩󵄩𝐷𝑢
𝑘
󵄩󵄩󵄩󵄩󵄩1 +
𝛼

2

󵄩󵄩󵄩󵄩󵄩𝑢
𝑘
󵄩󵄩󵄩󵄩󵄩
2

2

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩𝐴𝑢
𝑘 − 𝑓

󵄩󵄩󵄩󵄩󵄩
2

2

)

− (
󵄩󵄩󵄩󵄩𝐷𝑢
∗󵄩󵄩󵄩󵄩1 +

𝛼

2

󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩
2

2
+
𝛽

2

󵄩󵄩󵄩󵄩𝐴𝑢
∗ − 𝑓

󵄩󵄩󵄩󵄩
2

2
)

− ⟨𝐷𝑇𝑝∗ + 𝛼𝑢∗ + 𝛽𝐴𝑇 (𝐴𝑢∗ − 𝑓) , 𝑢𝑘 − 𝑢∗⟩ = 0.

(52)

Finally, from (44) and (52), the main results are shown as
follows:

lim
𝑘→+∞

(
󵄩󵄩󵄩󵄩󵄩𝐷𝑢
𝑘
󵄩󵄩󵄩󵄩󵄩1 +
𝛼

2

󵄩󵄩󵄩󵄩󵄩𝑢
𝑘
󵄩󵄩󵄩󵄩󵄩
2

2

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩𝐴𝑢
𝑘 − 𝑓

󵄩󵄩󵄩󵄩󵄩
2

2

)

=
󵄩󵄩󵄩󵄩𝐷𝑢
∗󵄩󵄩󵄩󵄩1 +

𝛼

2

󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩
2

2
+
𝛽

2

󵄩󵄩󵄩󵄩𝐴𝑢
∗ − 𝑓

󵄩󵄩󵄩󵄩
2

2
,

lim
𝑘→+∞

󵄩󵄩󵄩󵄩󵄩𝑢
𝑘 − 𝑢∗

󵄩󵄩󵄩󵄩󵄩2 = 0.

(53)

This proves Theorem 4.

5. Numerical Experiments

In this section, a number of experiments are performed to
demonstrate the effectiveness and efficiency of our proposed
split Bregman iteration (PSBI) algorithm for the fourth-order
diffusive model (6), which will be compared with the split
Bregman iteration (SBI) for second-order diffusive model
provided in [17]. All experiments are generated in MATLAB
7.10 environment on a desktop with Windows 7 operating
system, 3.00GHz Intel Pentium(R) D CPU, and 1.00GB
memory.
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Figure 6: Close-ups of selected section of Figure 5. First column: motion blurred image and uniform blurred image. Second column: images
deblurred by SBI. Third column: images deblurred by PSBI.

The performance of all algorithms is measured by the
improved signal-to-noise ratio (ISNR) and mean squared
error (MSE) defined as

ISNR = 10log
10
(

󵄩󵄩󵄩󵄩𝑓 − 𝑢0
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑢 − 𝑢0
󵄩󵄩󵄩󵄩
2
) ,

MSE =
󵄩󵄩󵄩󵄩𝑢 − 𝑢0

󵄩󵄩󵄩󵄩
2

𝑚𝑛
,

(54)

where 𝑓, 𝑢
0
, and 𝑢 denote the degraded, original, and recov-

ered images, and𝑚 and 𝑛 are the sizes of image, respectively.
The higher ISNR or the lower MSE, the better quality
of the deblurred images. Moreover, the stopping criterion
of all algorithms measured by the difference between the
consecutive iterations of the deblurred image satisfies the
following inequality:

󵄩󵄩󵄩󵄩󵄩𝑢
𝑘+1 − 𝑢𝑘

󵄩󵄩󵄩󵄩󵄩2
󵄩󵄩󵄩󵄩𝑢
𝑘+1
󵄩󵄩󵄩󵄩2

≤ 5 × 10−4. (55)

Three classical grayscale images with resolution of 256 ×
256 pixels in Figure 1 are used for synthetic degradations
in our experiments. The blur kernels used for blurring are
Gaussian blur (size of 7×7 pixels, variance of 3), linearmotion
blur (length of 10 pixels and direction of 30 degrees), out-
of-focus blur (size of 10 × 10 pixels, defocus radius of 4)

and uniform blur (size of 7 × 7 pixels). Periodic boundary
conditions are considered in the following experiments.

In the first experiment, the original image “Cameraman”
with complex background is blurred byGaussian blur, out-of-
focus blur, linear motion blur, and uniform blur, respectively.
The blurred images are showed in Figures 2(a)–2(d), Figures
2(e)–2(h) show the deblurred results corresponding to the
split Bregman iteration method for all the blur cases, and the
selected parameter values corresponding to the SBI method
are the same with those the authors given out in [17]. In order
to give explicit comparison, we show the restored images
obtained by our PSBI method in Figures 2(i)–2(l), and the
selected parameter values are 𝛼 = 1𝑒 + 5, 𝛽 = 1𝑒 +
12, and 𝜆 = 2.1𝑒 + 6, respectively. Through comparing the
“sky” in those deblurred images we can see that the PSBI
method recovers more details (removes the stair effect) than
SBImethod. However, due to the fourth-order diffusive term,
our proposed method costs a little more time than the SBI
method. Table 1 gives the CPU times, ISNR values, and MSE
values of the SBI method and PSBI method for all the blur
kernels mentioned above, which shows that our algorithm
works well for images with complex background.

In the next test, we use Gaussian blur and out-of-focus
blur to degrade the “Boat” image and then run the two
algorithms many times to obtain the best results. In PSBI
method, the selected parameters and iterations are 𝛼 =
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1.1𝑒 + 5, 𝛽 = 1𝑒 + 12, 𝜆 = 2𝑒 + 6, and ite = 46 for
Gaussian blur and 𝛼 = 1𝑒 + 5, 𝛽 = 1𝑒 + 12, 𝜆 = 2.15𝑒 +
6, and ite = 25 for out-of-focus blur, respectively. Figure 3
shows the recovered results of the two methods. And for the
purpose of better illustrations, we provide a close-up of image
region in Figure 4.We can see from Figure 4 that the restored
images estimated by PSBI are better when compared to the
ones deblurred by SBI; for example, see the “letter” in the
stern of “Boat.”Meanwhile, Table 2 illustrates the ISNR values
obtained by PSBI are higher than those obtained by SBI while
the MSE values are lower. So, it is clear that our method can
effectively reduce the “staircase” which always appeals in the
two-order diffusive model.

Figures 5 and 6 show the comparison between PSBI and
SBI algorithm for image “Lena.” Firstly we blur the “Lena”
by linear motion blur and uniform blur and then select the
deblurred result that looks best after carefully tuning the
parameters; for linear motion blur, the parameter values and
iterations are 𝛼 = 1𝑒 + 05, 𝛽 = 1.15𝑒 + 12, 𝜆 = 2.2𝑒 +
6, and ite = 28, and for uniform blur, they are 𝛼 = 1𝑒 +
05, 𝛽 = 1𝑒 + 12, 𝜆 = 2.1𝑒 + 6, and ite = 25. It can
be seen from Figures 5 and 6 that many staircase effects in
the smooth regions can be detected obviously in the images
restored by the SBI model while seldom appear in our results,
and the upper-left corners in image “Lena” deblurred by PSBI
are more visual comparing with that obtained by SBI model.
Table 3 shows that the restored images obtained by ourmodel
have higher ISNR values and lower MSE values than the
second-order model.

6. Conclusion

In this paper, we propose the fourth-order total bounded
variation regularization based image deblurring model and
exploit the split Bregman iteration method to solve this
new model. The convergence analysis of our algorithm is
provided. Numerical experiments show that our algorithm
works well for images with complex background or simple
background. In our synthetic experiments, the fourth-order
diffusive model yields better results than the second-order
diffusive model. It is believed that the proposed model can
be extended to further applications in image processing and
computer vision.
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