Hindawi Publishing Corporation
Journal of Applied Mathematics

Volume 2013, Article ID 268347, 15 pages
http://dx.doi.org/10.1155/2013/268347

Research Article

Hindawi

Existence and Numerical Simulation of Solutions for
Fractional Equations Involving Two Fractional Orders with

Nonlocal Boundary Conditions

Jing Zhao, Peifen Lu, and Yiliang Liu

Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis and College of Sciences, Guangxi University for Nationalities,

Nanning, Guangxi 530006, China

Correspondence should be addressed to Yiliang Liu; yiliangliul00@126.com

Received 26 March 2013; Accepted 6 June 2013

Academic Editor: Naseer Shahzad

Copyright © 2013 Jing Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study a boundary value problem for fractional equations involving two fractional orders. By means of a fixed point theorem, we
establish sufficient conditions for the existence and uniqueness of solutions for the fractional equations. In addition, we describe

the dynamic behaviors of the fractional Langevin equation by using the G, algorithm.

1. Introduction

Fractional differential equations arise in many engineer-
ing and scientific disciplines as the mathematical model-
ing of systems and processes in various fields, such as
physics, mechanics, chemical technology, population dynam-
ics, biotechnology, and economics (see, e.g., [1-7]). As one of
the important topics in the research on differential equations,
the boundary value problem has attained a great deal of
attention from many researchers (see [8-18]) and the refer-
ences therein. As pointed out in [19], the nonlocal boundary
condition can be more useful than the standard condition to
describe some physical phenomena. There are several note-
worthy papers (see [20-22]) dealing with nonlocal boundary
value problems of fractional differential equations.

In [19], Benchohra et al. investigated the existence and
uniqueness of the solutions for the differential equations with
nonlocal conditions:

‘Du(t) + f (t,u(t)) =0,
u(0) =g (u),

l<a<2, 0<t<T,

¢))
u(T) =ur,

where “D denotes Caputo’s fractional derivative of order «
with the lower limit zero.

In [22], Zhong and Lin studied the existence and unique-
ness of solutions in the nonlocal and multiple-point bound-
ary value problem for fractional differential equation:

Diu(t)+ f(tu®)=0, 0<t<l 1<g<2,

, m-2 , (2)
u@ =u+g@, ' Q)=u+ Y b (&),
i=1

where “D? denotes Caputos fractional derivative of order g
with the lower limit zero.

In this paper we will study the fractional Langevin
equation where the fractional derivative is in Caputo sense. In
1908 the French physicist Langevin introduced the concept of
the equation of motion with a random variable, which reads
as

d’x(t)  dx(t)

it e +F@®)+E@), (3)

where m is the mass of the particle, y is the coeflicient of
viscosity, F(x) is the external force, and &(¢) is the random
force. The Langevin equation is always regarded as the first
stochastic differential equation.

Langevin equation has been widely used to describe the
evolution of physical phenomena in fluctuating environm-



ents [23-25]. For instance, Brownian motion is well described
by the Langevin equation when the random fluctuation
force is assumed to be white noise. In case the random
fluctuation force is not white noise, the motion of the particle
is described by the generalized Langevin equation [26]. For
systems in complex media, ordinary Langevin equation does
not provide the correct description of the dynamics. Various
generalizations of Langevin equations have been proposed to
describe dynamical processes in a fractal medium. One such
generalization is the generalized Langevin equation [27-32]
which incorporates the fractal and memory properties with a
dissipative memory kernel into the Langevin equation.

Fractional order models are more accurate than integer-
order models as fractional order models allow more degrees
of freedom. The presence of memory term in such models not
only takes into account the history of the process involved
but also carries its impact to present and future development
of the process. Fractional differential equations are also
regarded as an alternative model to nonlinear differential
equations [33]. In consequence, the subject of fractional dif-
ferential equations is gaining much importance and attention.
For some recent work on fractional differential equations, see
(1, 34-46].

In [47], Ahmad et al. studied nonlinear Langevin equa-
tion involving two fractional orders in different intervals:

‘D (‘D" +A)x(t) = f(Lx(t),x' (1)),
0<t<l, 0<B<1, (4)

x (1) =0,

l<a<?2,

x(0) =0, x(1)=0, 0<ny<l,
where ‘D* and DP denote Caputo’s fractional derivative of
order « and f3 with the lower limit zero.

In [48], A. Chen and Y. Chen studied existence of solu-
tions to nonlinear Langevin equation involving two fractional

orders with boundary value conditions:

DF (D + N u(t) = f(tut),u (1),

0<t<T, O0<a<l 1<B<2, (5)

u(0)=-u(T),  u'(0)=u'(T)=0,
where ‘D" and DP denote Caputo’s fractional derivative of
order « and f3 with the lower limit zero.

The fractional calculus has been studied for more than
three hundred years. In recent few decades, the fractional
calculus has been widely used in many fields such as chaotic
dynamics, viscoelasticity, acoustics, and physical chemistry.
In [49], Guo studied the numerical solution of fractional par-
tial differential equations. In [50], Guo studied the numerical
simulation of the fractional Langevin equation.

As far as we know, there are no papers discussing the
existence and numerical simulation of solutions for fractional
equations involving two fractional orders with nonlocal
boundary conditions.

Motivated by the works mentioned above, in this paper,
we establish the existence and uniqueness of solutions by the
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fixed point theorem and use G, algorithm to describe the
dynamic behaviors for the following problem:

D (‘D" + A )u(t) = f(Lu®),u' 1),
0<t<l,
au(0) + Biu(l) = g, (w), (6)

ayu’ (0) + Byu’ (1) = g, (),

u (0) = nu' (0),

l<a<2, 0<pB<l,

n#0,

where D% and DP denote Caputo’s fractional derivative of
order a and S8 with the lower limit zero, f: [0,1] x R* — R
is a given continuous function and A is a real number, and
g1»9, + C([0,1],R) — R are two continuous functions,
afs,[ (o + B+ B # B (o, + ;). Evidently, problem (6) not
only includes boundary value problems mentioned above but
also extends them to a much wider case.

The organization of this paper is as follows. In Section 2,
we will give some lemmas which are essential to prove our
main results. In Section 3, main results are given. In Section 4,
we will give the numerical simulation for the fractional
Langevin equation.

2. Preliminaries

In this section, we introduce notations, definitions, and pre-
liminary facts. Throughout this paper, set € = C([0,1],R)
denotes the Banach space of all continuous functions from
[0,1] — R with the norm [lxllg = sup,Ix(t). We
also introduce the Banach space u ¢ C'([0,1], R) endowed
with the norm defined by [lullc = max{sup,cylu(t)l,
SuPte[o,1]|”,(t)|}-

For the convenience of the readers, let us recall the fol-
lowing useful definitions and fundamental facts of fractional
calculus theory.

Definition 1 (see [1, 6]). The Riemann-Liouville derivative of
order y with the lower limit zero for a function f: [0,c0) —
R can be written as

f6)

gy e L A (T
AL T (n-y)dt" Io S @)

t>0, n-1<y<n

Definition 2 (see [1, 6]). The fractional (arbitrary) order
integral of the function f : [0,00) — Rof order p > 0is
defined by

1 * -

PP f(x) = —— j (x = P f (s) ds. ()
L(p) Jo

Definition 3 (see [1]). Leta > 0,n = [a] + 1. If f € AC"[a, b],

the Caputo fractional derivative of order « of f is defined by

1 J't f(”) (S)

I'(n-«)

CDaf(t) —

>

M (t _S)oc+1—n (9)

t>0, n—-1l<a<n.
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Definition 4 (see [6]). Let p € (n— 1,n], n € N and the
the Griinwald-Letnikov fractional derivative of order p of f
defined by

DPf (= lim —Z( Y (r>f(t—rh), (10)

nhta r=0

where (2) = p(p-1)(p-2)---(p—r+1)/rl

Lemma 5 (see [1]). Let p € (m—1,m], m € N and the Caputo
derivative of order p for a function f : [0,00) — R.If for
t€[0,1], f € AC™[0,1] or f € C"[0, 1],

m— 1

UECICRPIORD) k,f(" (0). (1)

We also easily prove the following lemmas.

Lemma 6. Let 0 € L([0,1],R), g > 1/(a + B). ‘D*u €
CY([0,1],R), u € C*([0,1],R) satisfying the following differ-
ential equation:

‘D (‘D*+ N u(t)=0(t),

0<t<l, 1l<ac<2, 0<f<1,
oqu (0) + fiu(l) = g, (u), (12)
ayu’ (0) + By’ (1)

u (0) = nu' (0),

=g, (W),
n#0,

is a solution of the following integral equation:

u (t)
1 ‘ a-1
@ o€
—s)F o (s)ds - Au(r
[ (ﬁ)j (-9 o ()ds—hu (D) |d
+ af, (n+1t) —t* (o + ) g, ()
afy, [(ee + By)m+ Bi] = By (o + B) '
B Bi(n+t) =t [(ay + B)m+ ] 9, W)
ofy [(a + )+ Bi] = By (e + ) ?
+ Bit® (o + By) — i B, (17 + 1)
T (o) [af, ((ay + Bi) m+ 1) = By (ap + )]

X Ll a-o*!

BT N _
X[F(ﬁ) L (-5 "o(s)ds—Au(r)|dr

3
+ By By (1 +1) =t (g + By) m+ )]
[(a—1) [ap, ((a + i) 11+ Br) = Br (o + Br)]
X J-Ol (1-7)**
[r(/s)J (t-s)F o (s)ds - Mu(r)|d
(13)

Proof. According to Lemma 5 and applying the operator I*
to both sides of (12), for some constants ¢, ¢;, and ¢,, we get

P (D" + M) u(t) = IPo (1); (14)
then the above equation can be written as
(‘D +A)u(t) =Ifo(t) + (15)

and applying the operator I* to both sides of the above
equation, we obtain

I*Du(t) = I* [IPo () - Au ()] + g3 (16)
then the above equation can be written as
u) =1"[IPo ) - Au@®)] + " +c +ot,  (17)

that can be written as (13). The proof is completed. O

Definition 7. 'The function u € C'([0,1],R) satistying (13) is a
generalized solution of the nonlocal boundary value problem

(6).

Lemma 8 (Krasnoselskii). Let B be a closed convex and
nonempty subset of X. Suppose that & and N are general
nonlinear operators which map B into X such that

(1) Zx+ Ny € B whenever x,y € B;
(2) & is a contraction mapping;

(3) N is compact and continuous.

Then there exists z € B such that z = Lz + N z.

3. Main Results

In order to apply Lemma 8 to prove our main results, we first
give F, S, T as follows. Let Q, = {u € CcY([0,1],R) : lula <
rh,r > 0.



Define an operator F : C' — C' by
(Fu) (t) = (Su) () + (Tw) (),

(Su) (t)
_ L ¢ el
B I'(x) .[0 (t=7)
X [L JT (T—s)ﬂ_lf(s,u(s),u' (s))ds
T(B) Jo
—Au (T) ] dr,
(Tu) ()

_ apy(n+t)—t* (e + By)
af, [(e + B)n+Bi] = By (a + B,

B (n+t) =t [(a + Bi)n + ]
af, [(e + B) n+ Bi] = By (o + B)

N Bit® (o + Bo) =Py By (11 +t)
T (o) [af, ((a + By) 1+ By) = By (ay + By)]

X Ll (1-7)*"

)91 (u)

g, (1)

X [ﬁ LT (T—S)B_lf(s,u(s),u' (s))ds

—Au(T) ] dr

. By [By (n+1) =t (et + B1) 1 + )]
T —1)[af, ((a + 1)+ 1) = By (g + B,)]

x Jol (1-1)*7?

SR '
X[F(ﬁ)Jo (t-3) f(s,u(s),u(s))ds

—Au(T) ] dr.
(18)

Lemma 9. The function u € C'([0,1],R) is a generalized
solution of the nonlocal boundary value problem (6) if Fu(t) =
u(t), forall t € [0, 1].

Proof. Firstly, we show that u € C'.

Assuming u € C' is a generalized solution of the problem
(6), there exist three constants ¢, ¢;, and ¢,. Equation (13) can
be written as

u(t) = IPf (tu(),u' (1)) - Alu(t)
" 19)
I'l+a)

+

+¢ +of,
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and differentiating both sides of the above equation, we get

u' () = I f (Lu(e) il (8) - A1 u (D)
(20)

a—1

+ Sf
I'(x)

+ 6.

It is clear that every term of the above equation belongs to C;
thenu € C'.

Secondly, we show that u is the generalized solution of the
problem (6).

Let u be a generalized solution of the problem (6) and

o

u(t) = 1P f ()0 (1)) = MPu () + r(CIOt+ O

+¢ + ot

Applying the operator “D” to both sides of the above
equation, we obtain

‘Du(t) = ‘D" [1“*‘* f(bu@),u' ) - Aru(t)
Qt"
+m + (s} + Czt]

= DI f(tu(),u' (1)

Gt
T'l+a«)

—ADI*u(t) + ‘D"
+ D + ‘Dt
=P (tu(),u (1) - (),

(D +Nut)=1Pf(tu),u ),
(22)

and then applying the operator D to both sides of the above
equation, we obtain

D (D + ) u) = DI f(tut).u )

(23)

fbu@,u' ).

By simple calculations, it is clear that u satisfies conditions
(6); then it is a generalized solution for the problem (6). The
proof is completed. O
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For convenience, let us set

Ay = (o + )+ By
A 1
? apBy (o + B+ Bl = By (o + Bo)
1
Ay = L (1-7)*"
X [L JT(T—s)ﬁflf(s u(s),u (s))ds
T(B) Jo o
—Au(r)]dr,
1
Ay = L (1-7)%7
X [L JT(T—s)ﬁflf(s u(s),u (s))ds
T(B) Jo S
—Au(r)]dr,

1
As= L (1-0!

T

’ [ﬁ L =9 f (s 7(9),v (9) ds

v (1) ] dr,
1
Ag= L (1-7)*"

X [ﬁ LT (r- s)ﬁ_lf(s,v(s) v (s))ds

v (T) ] dr.

Clearly, for any t € [0, 1],

(Sw)’ (t)

_; ! _ a2
TT(-1) L(t 2

L PN '
X[F(,B)L (t-5s) f(s,u(s),u(s))ds

—Au (1) ] dr,

(Tw)' (t)
= (“ﬁz —at™! (o + ﬁz)) Ay g, (u)
+ (=B + ot AL ) Aygy ()

[“/31‘%“71 (o + By) = “ﬁlﬁz] AN,
I'(«)

B <ﬁ1 - “ta_1A1) ANy
I'(x—-1)

+

+

(25)
Now, we make the following hypotheses.

(H1) There exist two real-valued functions g € LV ([0,1],
R) for some r € (0, 1), such that

'f (t, u, u') - f(t, v, v')|

<2g(t) rnax{lu -, |u/ - v'|} ,

(26)

for almost all t € [0,1], u,v € R.

(H2) There exist two positive constants I;, [, such that [; +
I, = L < 1. Moreover, g,(0) =0, g,(0) = 0 and

|gl (u) - g (V)l < hllu-vie,
|9, W) — g, W) < Lllu - Vi, (27)
Yu,v € C' ([0,1],R).

Theorem10. Let f: [0, 1]xRxR — R be ajointly continuous
function and the assumptions (H1) and (H2) hold. In addition,
assume that

A2 max{Y, +(n+1)

X (afy Ay L+ BiA,L+ B BA,Y,)
+ By (0 + By) ALY, Y, (28)
+ (0 + B,) aB ALY + aff,ALL
+al AL+ BN Y} < 1,

where p € (0,1),1 < « < 2,0 < B < 1, 5#0, g" =

1 1/(1-p) 7 31-p
(J, (genPds)' 2.

Then the problem (6) has at most one solution.

Proof. The proof will be given in two steps.

Step 1. F is bounded.
Now we show that FQ), ¢ Q,.



6
Let M = supyc(o ;1 f(s,0,0)|. For any u € Q,, we have

! 1

A5 = J (1-0%
0

1 jT p-1 !
X|——= | (=9 flsu(s),u (s))ds
[F(ﬁ) 0 ( )
—Au (1) ] dr

< Ll (1-7)*"

1 T _ ﬁ—l
g e
X ('f (s,u(s) ul (s)) - f (0, 0)|

+|f (5,0,0)| ) ds

+ [Au (7)| ] dr

1 T B
|t Lo
X (Zg (s) max{lu QIR |u' (s)|}+M) ds
+|)L|r]d'r
! I T LN =
< JO 1-1) () L (t—95) "2g(s)rdsdr
! _ oc—lL ! Bl
+J0 1-1) N0 L (r—s)" Mdsdr

1
N J (1= )% Al rdr
0

2r ! -l ’ Y
Sf(ﬁ)Jo 1-1) L (t—95)F "g(s)dsdr

l ! a1 ’ AY:!
+F(ﬁ)Jo(1 T) L(T )\ dsdr

1
+]Al rj (1-7)%"'dr
0

([ e
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X (JOT (g (s))l/(l_P)ds>l_P] dr

1-7)*" j-OT (r-s)f ldsdr

@ b

1

P j (1= dr
0

2rg” Jl oc1< prlfre-Dip )p
< 1-1) —— | dr
T'(B) Jo B+p-1

MB(B+1,a) . A7

AL (B) «
L 2g' p"B(B+pa)
ST (Brp-1)f

M@ D,
F(a+p+1) «

(29)

Clearly, we also can get

MT (x—1) |A|r

2rg" pPB(B+ p,a—1) . s
F(la+p) a-1

o Bep-1)f
[(Fu) (£)]

= ‘% J: t-7)""

2,

X f(s,u(s),u’ (s))ds

X[r(lﬁ)

—Au () ] dr

+(aBy (1 +1) =% (0 + B,)) Mgy (1)
—(Bi(n+t) =t A1) Ayg, ()

(Bit™ (o + B,) =By By (1 +1)) Ay s
T (x)

By [By (n+1) —t“A, ]
+ Ta-1) AN,

+

1 ! a—1
< Jo 1-1)

I'(x)
f (r - 5!
0

x f (s,u (s),u’ (s)) ds

X[r(lm

—Au () ] dr
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+ap, (’7 + 1) Aol lull + Ay AL (ull

N By (ay + By) Ay, + By (1 +1)
I'(x) IF'(a-1)

A2A4
A3
< Tl @ +af, (n+ 1) ALr + A A, Lr

N By (ay + By) A\, + BBy (1 +1)
T'(x) IF'a-1)

AyAy

()
< F(;) +(afy(n+1)+Ay)A,Lr

N By (ay + ) A, @, + Bopy (1 +1)
I'(x) I'(e—1)

A, Dy,
|(Fu)' (1)]

_ 1 ! a2
_’F((x—l) L =

X ! ! —5)F!
[F(ﬁ) J -9

x f (s, u(s),u (s)) ds

—Au (1) ] dr

X (“/32 —at™! (o, + ﬁz)) Asgy (u)
+ (=B + ot AL ) Ayg, ()

N [“ﬁlta_l (aq + o) - “ﬁlﬁz] AyA,
I'(a)

B, [/31 _“tWIAl]AzA4
T(a-1)

1 ! a—2
< I'(x—-1) Jo (1-7)

x f (s,u (s),u' (s)) ds
—Au (1) ] dr

+af ALl lull + oA [ ALL lul

afy (e, + B,) AN 4 BB Ay
T'(x) I'(x—-1)

A
4 +af, AL+ oA ALy

" T(x-1)
N afy (a + B,) Ay s + BBiAA
I'(x) IF'(a-1)
<D +o(By+ Ay)A,Lr
*T@-1 2 1)
. afy (a + B,) A, @ + B\, @y
I'(a) I(a-1) "
(30)
For convenience, we let
= max {00 4 (@B, (1 1)+ A)) AL
¥ = max m+(xﬁ2n+ +A,)A,Lr
+ By (0 + B,) A, @4
T'(x)
+ BBy (1 + I)A o O, (31)

Fa-1) % *T(a-1)
+(x(/32+A1)A2Lr

+ afy (e, + B,) A, @, +/52[’)1A2®4}
I'(x) T(aw-1) })’

where we have used the Holder inequality and the following
equalities:

T(B+1)T (@)

T(a+p+1)" (32)

B(B+1,a)= Ll (1-1)*"Pdr =

Therefore, ||(Fu)(t)| < y.

Step 2. F is a contraction operator.
For convenience, we get

(Su) (£) = (Sv) (#)]

_ ; f _ oa—1
“r(a) L ¢-1)

B '
X[r(ﬁ)L (t-3s) f(s,u(s),u(s))ds

—Au (1) ] dr



1 ! a-1
‘mL ¢-7)

X [ﬁ JOT (- s)ﬁ_lf(s,v(s),v' (s)) ds

-Av (1) ] dr

LI R
X[F(ﬁ) L (t—19)" "2g(s)

X max{lu -, |u' - v'|}d5] dr

|/\| ! _ el _
+mjo Q- u-v|dr

< u—-vl

X (; Jl 1-7)*! JT (T—s)/HZg (s)dsdr
T(x)T(B) Jo 0

ALY e )
+F((x) L 1-7)% dr

< Jlu—vl

[ oo () o a

T 1-p
1/(1-p) Al
x <L (g(s)) ds) dr + 1"(04+1)]

< ||u_V"< 29" pT (B+p) N (Al )
CET(arfrp)(Bep1F Tt

=Y flu—vll.

(33)
Clearly, we can also get
|(Sw)' (£) = (sv)' (8)]
< lu—v| < 29 P (B p)
i LT+ prp-1)(B+p-1)" ©Y
MY &
m) =Y flu—vl.
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For u, v € C1([0, 1], R) and for each t € [0, 1], we obtain

[(Fu) (t) — (Fv) (£)]
= |Sut) + (B, (1 +1) =" (ay + B,)) Ay gy ()

—(By(n+t) —t"A ) Ayg, ()

. (Bit” (ay + By) — By By (1 +1)) AyA
I'(x)

N B [Bi (1 +1t) —tA4]
I'(ae—-1)

Ay

— | Sv(t) + (af, (7 +1t) = t* (o + B;)) Argy (V)

—(Bi(n+t)=tA)Ayg, (v)

+ (Bit™ (o + By) =By By (n+1)) Ay s
I'(x)

N By [By (n+1) —t"A4]

I'(ax—-1)

A2A4:|

< |(Su) () = (Sv) (0)]
+ l(“ﬁz (n+t) =t (ay + /32))| Ayl lu=v|
+ l(ﬁl (n+t)- taA1)| Al lu =

(Bit" (o + Bo) —aBi By (1 +1)) Ay (A5 = As)
I'(x)

+/32 [By (n+1)—t"A,]
I'(a—1)

+

AZ (A4 _A6)

< |(Su) (1) = (Sv) (8)]
+af, (n+1t) Al lu—v|
+ By (1 +) Agly e~ vl
+ Bt (ay + By) ALY lu—v|
+ Boy (7 + 1) MY, Jlu—v]
<=l (Y, + (7 + 1)
X (af, AL+ BiA,L+ BiBALY,)
+ By (@ + Bo) AsYy),
|(Fuw)' (£) = (Fv)' (8)]
< |(sw)’ (1) = (Sw)’ ()
+ (s = ot oy + B2)) Az (g1 () - 91 )

+ (_/31 +at* A 1) A, (g, () =g, (v)) |
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[“ﬁltDH (2 +B,) - “/31[32] Ay (As—As)
" T'@)

+ﬁ2 [,31 - ‘xt(x_lAl] Ay (Ay—Ay)
I'(a—1)

<Y lu = v+ afy Al lu—vi
+al AL |lu—v|
+ ot (o + By) AyYy lu - v
+ B ALY lu— v
<lu—=v (Y, + (e + By) af ALY,
+ af, AL+ oA AL+ B BALYS).
(35)

Since A < 1, we have |F(1) — F(W)| < Allu — v|;; that
is, F is a nonlinear contraction. Hence, by using Lemma 8,
the conclusion of the theorem holds by Banach fixed point
theorem.

The proof is completed. O

Theorem11. Let f: [0,1]xRxXR — R beajointly continuous
function and the assumptions (H1) and (H2) hold. In addition,

(H3) assume that there exist a constant | € (0, 1) and a real-
valued function m € LY([0, 1], R") such that

'f(t,u,u')| <m(t), V(t,u,u') €[0,1] X RXR,
(36)

with sup |m (t)| = ||m| .
te[0,1]

Then the problem (6) has at least one solution on [0, 1] if
&2 max{(n+1)(af,A,L+BA,L+BRAY,)
+ By (o + By) ALY,
(o, + By) afi ALY, + afi, A, L

(37)

+al AL+ B A, Y} < 1.

Proof. Step 1. There exists a positive constant # > 0 such that
Su+TueQ,.

For u € Q,, by the same arguments of the first step of the
proof in Theorem 10, we have ||Su + Tu|| < y. In virtue of the
definition of y and a simple calculation, we obtain

v <M+Er, (38)

where M is a constant. By the assumptions, & < 1. Therefore,
there exists a positive constant r large enough such that

y<M+ér<r. (39)

Hence, there exists a positive constant r such that Su + Tu €
Q

7.

Step 2. T is a contraction operator.

9
For u,v € C'([0,1], R) and for each t € [0, 1], we obtain
|(Tw) () = (Tv) (2)]
<lu=v((n+1) (afyA,L + BiALL+ B ALY)
1B, (o + o) A,Y,),
[(Tw)' (8) - (Tv)' (1)
< fu—vli((ey + By) aPiALY,
+ aff,A,L+ah AL+ /g’lﬁzAzYz) .
(40)

Since & < 1, we have |T(«) = T(V)|| < &|lu — v|; that is, T
is a nonlinear contraction.

Step 3. S is continuous and compact.
Firstly, we show that the operator S is continuous. For

{u,} € Q,,uy € Q, such that u, — u,in Q ; then

|Sun () = Su, (t)|

_ L ! _ a—1
_‘F(oc)Jo(t 2

1 T -
[@ J, =91 (s 90,10, 9) s
_Aun (T) :| dT
1 t el
@ | e
T ~ ﬁ 1
X[r(m J, =9
Xf(s>“o (s), ug (s))ds
—Au, (T)]d‘r
1 t el
< v b €0
1 T e
“T(p) J, @9

X [f (s, u, (s),u, (s))

-f (5’ Uy ($)» M(’) (S))] dsdr

t
tro L t — 1) (u, (1) - uy (1)) dr

< L Jt (t-7)~"

X —) JT (r-s)P!
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x 29 (s) max {|u,, (s) — uy (s)|»
'u; (s) - u(') (s)|} dsdrt
'(') J, 6= )= )]
J (t T)zx 1

F(ﬁ),[ (- s)ﬁ 1Zg(s) ||u —u0||dsdT
M 1
+ T(x) J;) (t - T)

o ||un - u0|| dr

2

1
a—1
ool (2 [ @ -t

X r (r- s)ﬁflg(s) dsdt
0

Al )
F (a+1)
<Y, ||lu, — ] -
(41)
Similarly, we get
|81, (£) = Suy (8)] < Y, g, = )] (42)

we get sequences u,(t) and uy(¢), which converge on [0, 1]
with lim,, _, o 14, (t) = 1, (t) and lim,, _, o u! (£) = u)(t).
Since

IS4, = Suo|

=max 4§ sup [Su, (t) — Su, (1|,
<‘te[og]| " o ) (43)

sup |(Su ) () - (Sup)' (t)|}
te[0,1]

Combining (41) and (42), we can get ||Su,, — Suyl| — 0. Thus
S is continuous in C*([0, 1], R).

Secondly, we show that the operator S is equicontinuous.
Let M, = max o ,1{l f(s, u,u')|,u € Q,}. For any u € Q,, for
all s;,s, € [0,1],0 <5y < s, < 1, we obtain

|(Sw) (s5) = (Sw) (s,)]

‘Hmj(fﬂ“

L P '
X[F(ﬁ)L (t-3) f(s,u(s),u(s))ds

Journal of Applied Mathematics

—Au (1) ] dr

Sﬁl S, uls u’s S
[H@J“ P f (su(s),u (5))d

—Au (1) ] dr
1 sy w N
SNML[@‘ﬂI—@—ﬂIJ
[ L (p) J =9 |f (su(e).u' )] ds
+me@w
1 S el
" m Ll (s;-1)
[MMJ“ S F (su(s),u (9))]ds
+ M |u(7)] ] dr
< )y [0 0]

(v | oo )ar

) (s, - T)‘H] Al rdr

F(oc) 0
R S p1
+I‘(oc)L (s, - 7) (F([S)J (t-y5) Mds)d
1 (e .
+ Tix) L (s, -7) ! A rdr
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e R

“T@r(B+1)
7 (s5 =55 = (s,-5)")
" I'(x+1)
Mr _ a—1 [;
F(oc)F(ﬁ+1)J (51 =0 wdr

L (s, - 5)"
I'(x+1)

M (52—51)W1 B
= T()T(B+1) J dr

st = (55— Sl)a +(s; - Sz)a)

I'(x+1)

N Al 7 (sg‘

+ W)FL(TBqtl)(J': (s; - T)(“_l)/pd‘r>p

s, 1-p
o <J Tﬂ/u—de)
S1

Mr(SZ - 51)0(71
T (I (B+2)

+ <Mr [Pp(sl - Sz)Mp_l]

1-p( (B+1-p)/(1-p) (B+1-p)/(1-p)\} 7P
« (1—17) P(52ﬁ+ p)/(1-p _Slﬁ+ P P) ])

X(HMHﬁ+nw+p—lfw+1—m“ﬂ“

|A| r (52 — (s =) + (51 - Sz)a)
TF(ax+1) ’
(44)
Clearly, we also easily get
'(Su)' (s,) — (Su)’ (sl)'
1 51 oa— oa—
e M GRS
M, *
(F(ﬁ 0 +|A|r)dr
M, (s, - 51)‘”/3_1 M, (s, = s1)" 1 ﬁ
T (a+p) F(oc)F(/3+1)
IAlr(s, = 51)"
al (- 1)
(45)

Obviously the right hand side of the above inequality
tends to zero independently of u € Q,,ast, —t, — 0; we

1

get that S is relatively compact on Q,. Hence, by the Arzel4-
Ascoli theorem, S is compact on Q,..

Thus, all the assumptions of Lemma 8 are satisfied and
the conclusion of Lemma 8 implies that the boundary value
problem (6) has at least one solution on [0, 1].

The proof is completed. O

4. Algorithm for the Fractional Langevin
Equation and Examples

In this paper, we will give the numerical simulation for the
fractional Langevin equation.

The definition of fractional order has many kinds; the
different definitions will bring different algorithm forms
and will cause different proof of the algorithm stability
and different method of accuracy analysis. In the practical
application, there are three kinds of fractional derivative
definitions, such as Griinwald-Letnikov, Riemann-Liouvlle,
and Caputo Fractional derivatives.

Remark 12 (see [51]). Form -1 < o« < m,m € N, f(t) €
C"a,b],

Lo )= f). (46)
Remark 13 (see [49]). For f(k)(a)
m—1 (k

f k—a
Zr(k )( - a)

k=0

=0,k=0,1,....,m

GLDtxf (t) _

(47)
+ D f)= "D r ).

In [52], shifted Griinwald-Letnikov formula is defined by

D" (1)
p (C-aumepl ' (48)
—&gr})h—a Z w, ~(k-p)h), a>0.
We get the following approximation:
[(t=a)/h+p] @
DOz ) wf(t-(k-p)h)
k=0 (49)
=(,D f(t))Gs(p).

We put a call shifted Griinwald discrete format, simply “Gg,
algorithm” for short.

In addition, Oldham and Spanier [53] found the following
approximation format in 1974:

D) = }}iﬂ)h[(t a)f 1mf <t - <] + = )h)
“E G-

1 1 -1

DTO=m
j=0

(50)
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The approximation format has the rapid convergence
properties. So they put forward an improved Grinwald-
Letnikov fractional derivative definition (take p = «/2 to
(48)):

-

JDVF (6) = lim

['(-a)
[(t—a)/h+a/2] r(i-
X Z (J. “)f(t—(j—l(x)h>.
= TG+ 2
(51)
For a = 0, the above equation can be written as
DO ==
(52)
[t/h+a/2) (5 _
x Y U “)f(t—(j— 1o¢>h).
= T (j+1) 2

Therefore, they put forward “fractional center difference
quotient” approximation format called in general “G, algo-
rithm?”

In this paper, we use the three-point interpolation for-
mula:

(b= (5= o)) = (5 ) 5= G-
+<1—%2)f(t—jh) (53)

H(5-2)re-Grom.

8 4

Then “G, algorithm” can be expressed as:

(aD(xf (tn))G2

—a o 1
=h Zwﬁ ) {fn_j + 2% (fn—j+1 - fn—j—l) (54)

j=0

1
+§“2 (fn—j+1 - 2fn—j + fn—j—l)} .
Remark 14 (see [49]). G, algorithm is based on Griinwald-
Letnikov definition, not only used for numerical calculation
of fractional derivative (o > 0), but also used for numerical
calculation of fractional integral (e« < 0).

As we all know, the fractional Langevin equation form is

DP(D*+ N u)= f () +&(), (55)

where0 <t <1,1<a<2,0<f<1,Aisaconstant, f(t)is
an external force, and &(t) is a random force.
The above equation can be written as

‘Dhuty= ),
(56)
D () =u(t) - Av(t).
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According to G, algorithm, the Caputo fractional deriva-
tives above can be written as

‘DPur)

h—ﬁ [t/th,B/Z] r (_] _ ﬁ)

(-4

TR & TG o
57
‘Du(t)
L h—zx [t/h+a/2] I (] _ (x) o
= e 4 T(j+ 1)”<t_ (J - E>h>'

The previous equations are approximated by the three-point
interpolation formula and can be written as

“Dfu(t,)

n-1
= hiﬁ%wﬁﬁ) {un,j + iﬁ (un,ﬁ1 - un,j,l)
=

1
+§ﬁ2 (un—j+1 - 2un—j + un—j—l)} >
(58)
‘D (t,)

n-1
— ( ) 1
=h “Zw].a {un_j e (un_],rl - un_j_l)
j=0

1,
+§oc (un—j+1 - 2un_j + ”n-]’—1)} s
where

w§.ﬁ)=(—l)j<[;>, (j=01,2,..),

(£)-EE-Dc(pmie)

(59)
w§a>:(_1)j<3f>, (j=0,1,2..),
(5) et o
il J!

With the above algorithm we will give some examples.

Example 1. Consider the following fractional differential
equations:

D" (‘D' +0.125) u () = L.1121u () + £,
0<t<1,  (60)
u(0)=0, (°D"*+0.125)u(0) = 0.
Obviously, we get

|f(t,u(t),u’ (t))| < 11121 |jul + 1,
(61)
If (bu), v ®) - fF(Eve),v' @) <g" lu-vl.
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x10710

u(t)

t

FIGURE I: The displacement without a Wiener process, the numerical
simulation of (60), where « = 1.5, 8 = 0.8.

Letting p=0.9,g" =0.05,L =1, +, =001, a; = 8, = o, =
B, =2,1=15,and g,(u) = g,(u) = 0, we have

af, [(on +B)n+ Bl = 24# B, (0 + B,) = 8,
A2 max{Y; +(n+1)
X (af,L + BiALL+ B BALYs)
+ By (o + B) ALY, (62)
Y, + (a, + B,) (aA,L + affA,Y)
+al AL+ ByBiAL Y}
= max {0.3531,0.3975} = 0.3975 < 1.

Thus, by Theorem 10, we can get that the problem (60) has at
most one solution.
With the above algorithm we get Figures 1 and 2.

Example 2. Consider the following fractional differential
equations:

CD0.723 (CD1.625 + 0351) u (t)
= 111216 + 130358, o0<t<1, (63)

u(0) =0, (°D"*+0351)u(0)=0.
Obviously, we get

|f (bu),d ®)] < lul’,
|f (tu®,d ) - f(Lv©),v ©) < g lu-vl.

(64)
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t

FIGURE 2: The displacement with a Wiener process, the numerical
simulation of (60), where & = 1.5, 8 = 0.8.

x107°
1

03r
02

0.1

0 0.2 0.4 0.6 0.8 1
t

FIGURE 3: The displacement without a Wiener process, the numeri-
cal simulation of (63), where « = 1.625, 5 = 0.723.

Letting p=0.9,g" =005, L =1+, =00, 0, = 3, =, =
B, =1,1=1,and g,(u) = g,(u) = 0, we have

apy [(an + Bi)n+ Pl = 4.875# By (ay + By) = 2,
A= max{Y; +(n+1)
x (o, L+ BiAsL + BBy ALYs)
+ B (o + ) ALY Y, (65)
+ (0 + By) (@A ,L + aff A, Y)
+aA AL+ ﬂZﬁlAZYZ}
= max {0.8257,0.9842} = 0.9842 < 1.

Thus, by Theorem 10, we can get that the problem (63) has at
most one solution.

With the above algorithm we get Figures 3 and 4.
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0 0.2 0.4 0.6 0.8 1
t

FIGURE 4: The displacement with a Wiener process, the numerical
simulation of (63), where & = 1.625, 3 = 0.723.
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