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Most preferred ordered weighted average (MP-OWA) operator is a new kind of neat (dynamic weight) OWA operator in the
aggregation operator families. It considers the preferences of all alternatives across the criteria and provides unique aggregation
characteristics in decision making. In this paper, we propose the parametric form of the MP-OWA operator to deal with the
uncertainty preference information, which includes MP-OWA operator as its special case, and it also includes the most commonly
used maximum, minimum, and average aggregation operators. A special form of parametric MP-OWA operator with power
function is proposed. Some properties of the parametric MP-OWA operator are provided and the advantages of them in decision
making problems are summarized. The new proposed parametric MP-OWA operator can grasp the subtle preference information
of the decision maker according to the application context through multiple aggregation results. They are applied to rank search
engines considering the relevance of the retrieved queries. An search engine ranking example illustrates the application of
parametric MP-OWA operator in various decision situations.

1. Introduction

The ordered weighted averaging (OWA) operator, which
was introduced by Yager [1], provides for aggregation lying
betweenmaximumandminimumoperators and has received
more andmore attention since its appearance [2, 3].TheOWA
operator has been used in a wide range of applications, such
as neural networks [4, 5], database systems [6, 7], fuzzy logic
controllers [8, 9], decision making [10–12], expert systems
[13–15], database querymanagement and datamining [16, 17],
and lossless image compression [18, 19].

Until now, according to the weight assignment methods,
the existing OWA operators can be classified into two catego-
ries: one is the static OWA operators having weights depend-
ing on the serial position, and the other is dynamic or neat
OWA operators having weights depending on the aggregated
elements. The static OWA operators include the maximum
entropy operator [20], minimum variance operator [21], the
maximumRényi entropy operator [22], least square deviation
operator and chi-square operator [23], exponential OWA
operator [24], linguistic ordered weighted averaging operator
[5, 25], and intuitionistic fuzzy ordered weighted distance
operator [26–28].

For neat OWA operator with dynamic weights, Yager
[29, 30] proposed the families of neat OWA operator called
basic defuzzification distribution (BADD) OWA operator
and parameterized and-like and or-like OWA operators.
Marimin et al. [31, 32] used neat OWA operator to aggregate
the linguistic labels for expressing fuzzy preferences in
group decision making problem. Peláez and Doña [33, 34]
introducedmajority additive OWA (MA-OWA) operator and
quantified MA-OWA (QMA-OWA) operator to model the
majority idea in group decisionmaking problem. Liu and Lou
[35] extended BADD OWA operator to additive neat OWA
(ANOWA) operator for decision making problem. Wu et al.
[36] introduced an argument-dependent approach based on
maximizing the entropy.

Recently, Emrouznejad [3] proposed a new kind of neat
OWAoperator calledmost preferredOWA (MP-OWA) oper-
ator, which considers the preferences of alternatives across
all the criteria. It has an interesting characteristic that the
aggregation combines static OWA operator with dynamic
OWAoperator together.That is, because the weights correlate
with internal aggregated elements in the way of neat OWA
operator, and the aggregated elements must be ordered
decreasingly when aggregating, which is the same as that
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of static-weight OWA operator, consequently, the MP-OWA
operator not only has the advantage of neat OWA operator
in which the weighting vector is relevant with the aggregated
elements values rather than the positions, but also utilizes
the most preferred information, which is connected with
the maximum frequency of all scales for each criteria. Some
extension researches aboutMP-OWA operator and the appli-
cation can be found in the literature [3, 4, 11, 37, 38].

In this paper, we propose parametric MP-OWA operator
families, which combine the characteristics of MP-OWA
operator with ordinary neat OWA operator together. We
also propose the family of parametric MP-OWA operator
with power function; it is quite useful as it includes the
currentMP-OWAoperator as a special case and also includes
multiple situations because of the aggregation results ranging
between the minimum and the maximum. Meanwhile, some
properties of the parametric MP-OWA operator and the
MP-OWA operator family with power function are provided
and analyzed, which can be used as the basis to apply our
new parametric MP-OWA operator in practice. Moreover,
we discuss the advantages of our new parametric MP-
OWA operator, which not only helps decision makers realize
viewing the decision making problem completely through
considering the preference relation and the parameter (𝑟),
but also offers another kind of method for decision making
problems based on preference information. We apply the
proposed method to decision making problem concentrated
on ranking search engines and get different rankings through
changing the values of parameter (𝑟), which can help decision
makers recognize the best search engines indirectly as well. It
is necessary to stress that the proposed method can develop
an amazingly wide range of decision making problems with
preference relations such as information aggregation and
group decision making.

This paper is organized as follows: Section 2 reviews some
basic concepts of neatOWAoperator andMP-OWAoperator.
Section 3 gives a general form of parametric MP-OWA oper-
ator and develops a particular member of MP-OWA operator
with power function; some properties and advantages are
also discussed. Section 4 gives an example of ranking search
engines using the proposed approach. Section 5 summarizes
the main results and draws conclusions.

2. Preliminaries

2.1. Neat OWA Operator. Yager [29] proposed neat OWA
operator, whichmeans theweighting vector not only depends
on position indexes of the aggregated elements, but also the
aggregated values.

Assume 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
is a collection of numbers; the

aggregation of neat OWA operator is indicated as follows:

𝐹 (𝑥
1
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2
, . . . , 𝑥

𝑛
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, (1)
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is the 𝑖th largest value of 𝑥

𝑖
and 𝑤
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is the weights to

be a function of the ordered aggregated elements 𝑦
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(1) 𝑤
𝑖
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In this case, (1) can be rewritten as follows:
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is the same for the assignment 𝑍 = 𝑌.
Later, Yager and Filev [30] introduced the first family

of neat OWA operator namely BADD OWA operator. The
weighting vector is another collection of elements V

𝑖
(𝑖 =

1, 2, . . . , 𝑛), such that
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where 𝛼 ∈ [0, +∞). It can be easily seen that BADD OWA
operator has properties as follows:

(1) V
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= 1.
From (5), the weighting vector of BADD OWA operator

is expressed as follows:
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(6)

Accordingly, the aggregation expression is denoted as
follows:
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Liu [39] proposed a generalization BADD OWA operator
with weighted functional average, which is also called addi-
tive neat OWA (ANOWA) operator, where
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where 𝑓(𝑥
𝑖
) can be any form of a continuous function.When

𝑓(𝑥
𝑖
) takes the form of power function, that is 𝑓(𝑥

𝑖
) = 𝑥
𝛼

𝑖
, it

turns into BADD OWA operator.
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2.2. The MP-OWA Operator. The MP-OWA operator, which
was proposed by Emrouznejad [3], is based on the most
popular criteria for all alternatives and considers the pref-
erences of alternatives across all criteria. Suppose 𝑍 =

{𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑚
; 𝑚 ⩾ 2} is a set of alternatives to be ranked,
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, . . . , 𝐶
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𝑟
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∈ 𝑆 is the scale value of alternative
𝐴
𝑗
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𝑖
. Then, the matrix of preference rating given

to alternatives for each criteria is shown in Table 1.
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𝑘𝑖
(𝑘 ∈ [1, 𝑟], 𝑖 ∈ [1, 𝑛]) of
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𝑘
given to criteria 𝐶

𝑖
is summarized in Table 2.
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Accordingly, the weighting vector of MP-OWA operator
can be expressed as follows:
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The aggregation is expressed as follows:
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where 𝑦
𝑘𝑖
is the 𝑖th largest value of 𝑧

𝑘𝑖
.

From (11), it is clear that the weight is independent of the
ordering of set 𝑉; the more frequency of 𝑆

𝑘
given to criteria

𝐶
𝑗
is, the bigger the corresponding weight is.That is, theMP-

OWA operator overemphasizes the opinions of the majority
and ignores those of the minority.

3. Parametric MP-OWA Operator

In this section, we firstly propose the general form of
parametric MP-OWA operator, and some propositions are
proposed.Then, we develop a particular family of parametric
MP-OWA operator with power function, and some proper-
ties are also discussed.

3.1. The General Form of Parametric MP-OWA Operator.
Similar to the extensions of OWA operator to the parametric
form of BADD operator and ANOWA operator [30, 39], we
will extend the MP-OWA operator to a parametric format,
that can represent the preference information more flexibly,
and MP operator becomes a special case of it.

Table 1: Matrix of preference rating of 𝑛 criteria with 𝑚 alternatives.

Criteria
𝐶
1

⋅ ⋅ ⋅ 𝐶
𝑖

⋅ ⋅ ⋅ 𝐶
𝑛

Alternatives

𝑍
1

𝑆
11

⋅ ⋅ ⋅ 𝑆
1𝑖

⋅ ⋅ ⋅ 𝑆
1𝑛

...
...

...
...

...
...

𝑍
𝑗

𝑆
𝑗1

⋅ ⋅ ⋅ 𝑆
𝑗𝑖

⋅ ⋅ ⋅ 𝑆
𝑗𝑛

...
...

...
...

...
...

𝑍
𝑚

𝑆
𝑚1

⋅ ⋅ ⋅ 𝑆
𝑚𝑖

⋅ ⋅ ⋅ 𝑆
𝑚𝑛

Table 2: Matrix of frequency that scale gives to criteria.

Criteria
𝐶
1

⋅ ⋅ ⋅ 𝐶
𝑖

⋅ ⋅ ⋅ 𝐶
𝑛

Scales

𝑆
1

𝑁
11

⋅ ⋅ ⋅ 𝑁
1𝑖

⋅ ⋅ ⋅ 𝑁
1𝑛

...
...

...
...

...
...

𝑆
𝑘

𝑁
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⋅ ⋅ ⋅ 𝑁
𝑘𝑖

⋅ ⋅ ⋅ 𝑁
𝑘𝑛

...
...

...
...

...
...

𝑆
𝑟

𝑁
𝑟1

⋅ ⋅ ⋅ 𝑁
𝑟𝑖

⋅ ⋅ ⋅ 𝑁
𝑟𝑛
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1
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2
, . . . , 𝑍

𝑚
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𝑍
𝑗
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, . . . , 𝑧
𝑗𝑛

) (𝑗 ∈ [1, 𝑚]). V
𝑖

= max{𝑁
𝑘𝑖

, 𝑘 ∈

[1, 𝑟]} (𝑖 ∈ [1, 𝑛]), and 𝑓(V
𝑖
) ⩾ 0, where 𝑁

𝑘𝑖
is the frequency

of each scale for criteria. The vector of the maximum
frequency function can be written as follows:

𝑉
𝑓

= (𝑓 (V
1
) , 𝑓 (V

2
) , . . . , 𝑓 (V

𝑛
))
𝑇

. (13)

The weighting vector is defined as follows:
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Here, 𝑓(V
𝑖
) can be substituted for many specific functions.

It is obvious that 𝑤
𝑖
satisfies the normalization properties

of 𝑤
𝑖

⩾ 0 and ∑
𝑛

𝑖=1
𝑤
𝑖

= 1.
The parametric MP-OWA operator aggregation is

𝐹
𝑓

(𝑍) =

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

𝑤
𝑖
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where 𝑦
𝑗𝑖
is the 𝑖th largest value of 𝑧

𝑗𝑖
.

In (14), if 𝑓(V
𝑖
) = V

𝑖
(𝑖 ∈ [1, 𝑛]), (15) is the same as

(12); that is, MP-OWA operator becomes a special case of the
parametric MP-OWA operator.

Next, we will give some properties of our new proposed
parametric MP-OWA operator.

Definition 2. Assume 𝐹
𝑓
is a parametric MP-OWA operator

with a weighting vector 𝑊
𝑓
; the degree of orness (𝑊

𝑓
) is

defined as follows:
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𝑛 − 1

𝑓 (V
𝑖
)

∑
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𝑓 (V
𝑗
)

. (16)
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Next, some propositions of the parametric MP-OWA
operator are described as:

Proposition 3. Assume 𝐹
𝑓
is the aggregation result with par-

ametric MP-OWA operator and 𝑓(V
𝑖
) is the 𝑖th value of the

set 𝑉.
(1) Boundary. If 𝑋 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) is the aggregated

elements, then
min
1⩽𝑖⩽𝑛

{𝑓 (𝑥
𝑖
)} ⩽ 𝐹

𝑓
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ⩽ max
1⩽𝑖⩽𝑛

{𝑓 (𝑥
𝑖
)} . (17)

(2) Commutativity. If 𝑥
𝑖
and 𝑥

(𝑘)

𝑖
are the 𝑖th largest values

of the aggregated sets 𝑋 and 𝑋
𝐾, respectively, then

𝐹
𝑓

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝐹
𝑓

(𝑥
(𝑘)

1
, 𝑥
(𝑘)

2
, . . . , 𝑥

(𝑘)

𝑛
) , (18)

where (𝑥
(𝑘)

1
, 𝑥
(𝑘)

2
, . . . , 𝑥

(𝑘)

𝑛
) is any permutation of the

arguments (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
).

(3) Monotonicity. If 𝑥
𝑖
and 𝑦

𝑖
are the 𝑖th largest values of

the aggregated sets 𝑋 and 𝑌, respectively, and 𝑦
𝑖

⩽ 𝑥
𝑖
,

then
𝐹 (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ⩽ 𝐹 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) , (19)

where the vector 𝑉 is the same as both aggregated
vectors.

(4) Idempotency. If 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is the aggregated

elements, and 𝑥
𝑖

= 𝑥 (𝑖 = 1, 2, . . . , 𝑛), then
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1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝑥. (20)

Apparently, if we set 𝑓(V
𝑖
) = V

𝑖
(𝑖 ∈ [1, 𝑛]), parametric

MP-OWA operator turns into MP-OWA operator, and the
conclusions of Proposition 3 are also correct.

Proposition 4. Assume 𝐹 is the MP-OWA operator aggrega-
tion result and V

𝑖
is the 𝑖th value of set 𝑉.
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1
, 𝑥
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, . . . , 𝑥
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1
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2
, . . . , 𝑥

(𝑘)

𝑛
) is any permutation of the

arguments (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
).

(3) Monotonicity. If 𝑥
𝑖
and 𝑦

𝑖
are the 𝑖th largest values of

the aggregated sets 𝑋 and 𝑌, respectively, and 𝑦
𝑖

⩽ 𝑥
𝑖
,

for each 𝑖 (𝑖 = 1, 2, . . . , 𝑛), then
𝐹 (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ⩽ 𝐹 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) , (23)

where 𝑉 is the same vector as both aggregated values of
𝑦
𝑖
and 𝑥

𝑖
.

(4) Idempotency. If 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is the aggregated

elements, and 𝑥
𝑖

= 𝑥 (𝑖 = 1, 2, . . . , 𝑛), then
𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝑥. (24)

3.2. Parametric MP-OWA Operator with Power Function.
Similar to ANOWA operator (8), which takes the form of
power function and becomes BADDOWAoperator, we study
the family of parametric MP-OWA operator with power
function, and the function𝑓(V

𝑖
) is given in the following form

as:

𝑓 (V
𝑖
) = V
𝑟

𝑖
, (25)

where 𝑟 is a real number.
From (14), the weighting vector of parametric MP-OWA

operator can be rewritten as follows:

𝑊
𝑓

= (

𝑓 (V
1
)

∑
𝑛

𝑗=1
𝑓 (V
𝑗
)

,

𝑓 (V
2
)

∑
𝑛

𝑗=1
𝑓 (V
𝑗
)

, . . . ,

𝑓 (V
𝑛
)

∑
𝑛

𝑗=1
𝑓 (V
𝑗
)

)

𝑇

= (

V𝑟
1

∑
𝑛

𝑗=1
V𝑟
𝑗

,

V𝑟
2

∑
𝑛

𝑗=1
V𝑟
𝑗

, . . . ,

V𝑟
𝑛

∑
𝑛

𝑗=1
V𝑟
𝑗

)

𝑇

.

(26)

Accordingly, from (15), the aggregation can be expressed
as follows:

𝐹
𝑓

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) =

𝑛

∑

𝑖=1

𝑤
𝑖
𝑦
𝑖

=

𝑛

∑

𝑖=1

V𝑟
𝑖

∑
𝑛

𝑗=1
V𝑟
𝑗

𝑦
𝑖
, (27)

where 𝑦
𝑖
is the 𝑖th largest value of 𝑥

𝑖
.

Regarding (16), the orness equation can also be described
as follows:

orness (𝑊
𝑓

) =

𝑛

∑

𝑖=1

𝑛 − 𝑖

𝑛 − 1

𝑤
𝑖

=

𝑛

∑

𝑖=1

𝑛 − 𝑖

𝑛 − 1

V𝑟
𝑖

∑
𝑛

𝑗=1
V𝑟
𝑗

, (28)

when 𝑟 = 1 in (25), parametric MP-OWA operator becomes
ordinary MP-OWA operator.

Remark 5. Generally speaking, in the parametric MP-OWA
operator (15), 𝑓(V

𝑖
) can take any function forms, such as

power function, exponential function, or other function
forms. Here, we only take the form of power function. The
reasons for this decision are as follows: (1) Power function for
parametric MP-OWA operator with 𝑓(V

𝑖
) = V𝛼

𝑖
can deduce

the ordinary MP-OWA operator very naturally with 𝛼 = 1.
But parametric MP-OWA operator with other forms cannot
do it. (2) The parameter in power function and other func-
tions does not have any common, which makes parametric
MP-OWA operator different from both in expressions and
final aggregation results, so that, they do not need to be put
together and compared with each other. (3) Because we have
extended theMP-OWAoperator to the parametric format, we
can compare the results on various parameter values. But the
comparisons of both different function formats and different
parameter values of each format will be complicated; neither
much facts, nor much help to problem understanding can be
observed.

From (13), themaximum frequency vector𝑉
𝑓
with power

function can also be denoted as follows:

𝑉
𝑓

= (𝑓 (V
1
) , 𝑓 (V

2
) , . . . , 𝑓 (V

𝑛
))
𝑇

= (V
𝑟

1
, V
𝑟

2
, . . . , V

𝑟

𝑛
)
𝑇

.

(29)
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For parametric MP-OWA operator, 𝑓(V
𝑖
) = V𝑟
𝑖
is a mono-

tonic function with argument V
𝑖
. If parameter 𝑟 > 0, 𝑓(V

𝑖
)

increases with V
𝑖
. With the increasing of V

𝑖
, larger (smaller)

aggregated elements will be given more (less) emphasis. If
𝑟 < 0, 𝑓(V

𝑖
) decreases with V

𝑖
. With the increasing of V

𝑖
,

larger (smaller) aggregated elements will be given less (more)
emphasis.

Therefore, if the decision maker wants to put more
emphasis on large aggregated elements and less emphasis on
small aggregated elements, he or she can choose 𝑟 > 0; if he or
shewants to putmore emphasis on small aggregated elements
and less emphasis on large elements, 𝑟 < 0 can be selected.

Some properties of parametric MP-OWA operator with
power function 𝑓(V

𝑖
) = V𝑟
𝑖
are discussed in the following.

Theorem 6. Assume 𝐹
𝑓
is the parametric MP-OWA operator,

𝑓(V
𝑖
) = V𝑟
𝑖
is the 𝑖th value of set 𝑉 and 𝑥

𝑖
is the 𝑖th value of set

𝑋.
(1) For 𝑟 → −∞, the orness is (𝑛 − 𝑘)/(𝑛 − 1), and

𝐹
𝑓

(𝑋) = ((𝑛 − 𝑘)/(𝑛 − 1))𝑥
𝑘
, where 𝑘 is the index of the

min
1⩽𝑖⩽𝑛

{V
𝑖
}.

(2) For 𝑟 = 0, the orness is 1/2, and 𝐹
𝑓

(𝑋) = avg{𝑥
𝑖
}.

(3) For 𝑟 → +∞, the orness is (𝑛 − 𝑙)/(𝑛 − 1), and
𝐹
𝑓

(𝑋) = ((𝑛 − 𝑙)/(𝑛 − 1))𝑥
𝑙
, where 𝑙 is the index of

themax
1⩽𝑖⩽𝑛

{V
𝑖
}.

Proof. See Appendix A.

Remark 7. By using different values of parameter 𝑟 for para-
metricMP-OWAoperator, people can get different weighting
vectors for decision making. For example, if the decision
makers have no subjective preference for aggregated ele-
ments, they can select 𝑟 = 0 or MP-OWA operator. If
they want to underweight large aggregated elements and
overweight small aggregated elements, parameter 𝑟 < 0 is
the right choice; when the parameter 𝑟 decreases to a certain
negative number, the weights according to large aggregated
elements reach zero; that is, the decision makers would
neglect the influence of large aggregated elements and stress
the small elements to the ultimate aggregation results. On the
contrary, they can choose 𝑟 > 0.

Theorem 8. Assume 𝐹
𝑓
is the parametric MP-OWA operator,

𝑓(V
𝑖
) is the 𝑖th values of the set 𝑉, and 𝑓(V

𝑖
) = V𝑟
𝑖

(𝑖 ∈ [1, 𝑛]).
If 𝑟
1

> 𝑟
2
, then orness(𝑊

𝑟
1

) > orness(𝑊
𝑟
2

).

Proof. See Appendix B.

3.3. Advantages of the Parametric MP-OWAOperator in Deci-
sion Making. Compared with the MP-OWA operator, the
advantages of the parametricMP-OWAoperator are summa-
rized as follows:

(1) It extends the MP-OWA operator to a parametric
form, which brings about more flexibility in prac-
tice. The parametric MP-OWA operator can generate
multiple weighting vectors through changing the
values of the parameter 𝑟; people may select appro-
priate weighting vector to reflect their preferences,

which provide more flexibility for decision making.
However, the MP-OWA operator obtains merely one
weighting vector, which does not reflect any attitude
of the decision makers to the aggregated elements,
and people could not change the ultimate aggregation
result any more.

(2) It provides a power function as a specific form to
compute the weighting vector. Decision makers can
choose different values of parameter 𝑟 according to
their interest and actual application context.

(3) It offers another kind of method for problems con-
centrated on ranking search engines. Parametric MP-
OWAoperator is based on the use ofmultiple decision
making process, where a group of queries retrieved
from selected search engines are used to look for an
optimal ranking of the search engines. It can also
identify which are the best search engines at the same
time.

(4) It is necessary to stress that the proposed method can
develop an amazingly wide range of decision making
problems with preference relations, such as informa-
tion aggregation and group decision making.

4. The Application of Parametric
MP-OWA Operator in Ranking Internet
Search Engine Results

4.1. Background. Emrouznejad [3] used OWA operator to
measure the performance of search engines by factors such as
average click rate, total relevancy of the returned results, and
the variance of the clicked results. In their study, a number
of students were asked to execute the sample search queries.
They classified the results into three categories: relevant,
undecided, and irrelevant documents, whose values are 2, 1,
and 0, respectively. Each participant was asked to evaluate the
result items and the results are shown denoted as matrix 𝑍 in
Table 3.

The frequencies of all scales for each query are shown in
Table 4.

4.2. Computing Process. To further understand what the
influence of parametric MP-OWA operator on the results of
decision making will be, the weighting vectors, aggregation
results, and ranking lists are computed and compared with
the MP-OWA operator.

From (10), it is obvious that the maximum frequency of
each query in Table 4 is

𝑉 = (9, 7, 5, 8, 6, 5, 4, 7, 6, 4, 6, 6)
𝑇

. (30)

Next, we will use 𝑟 = −4, −3, −2, −1, 0, 1, 2, 3, 4 of power
function for parametricMP-OWAoperator to rank the search
engines, and the ranks are compared with those of MP-OWA
operator. Take 𝑟 = 2, for example; the computing process is
as follows.

From (25), we get

𝑓 (V
𝑖
) = V
2

𝑖
, 𝑖 ∈ [1, 12] , (31)
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Table 3: Matrix of judgment for sample queries.

Queries/search engines 1 2 3 4 5 6 7 8 9 10 11 12
LookSmart 2 1 0 2 0 2 0 2 0 0 2 1
Lycos 2 1 0 2 1 1 2 2 0 1 1 2
Altavista 2 2 1 2 1 0 2 1 2 2 1 0
Msn 2 1 2 0 0 2 1 2 2 1 1 2
Yahoo 1 2 2 2 1 1 0 0 2 2 1 1
Teoma 2 2 0 1 1 2 0 2 2 2 1 0
WiseNut 2 1 2 2 1 0 1 2 2 0 0 0
MetaCrawler 1 2 0 2 2 2 0 2 0 1 2 2
ProFusion 2 2 2 0 1 1 2 2 2 0 1 2
WebFusion-Max 2 2 1 2 0 2 2 1 1 1 2 2
WebFusion-OWA 2 2 2 2 2 1 1 1 1 2 2 2

Table 4: The frequencies of all scales for each query.

Queries/scales 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 4 2 3 2 4 1 3 3 1 3
1 2 4 2 1 6 4 3 3 2 4 4 2
2 9 7 5 8 2 5 4 7 6 4 6 6

From (29), the maximum frequency vector with power
function is

𝑉
𝑓(𝑟=2)

= (V
2

1
, V
2

2
, . . . , V

2

12
)

𝑇

= (81, 49, 25, 64, 36, 25, 16, 49, 36, 16, 36, 36)
𝑇

.

(32)

Take the result 𝑉
𝑓(𝑟=2)

into (26); obtain the corresponding
weighting vector 𝑊

𝑓
as follows:

𝑊
𝑓(𝑟=2)

= (

𝑓 (V
1
)

∑
12

𝑗=1
𝑓 (V
𝑗
)

,

𝑓 (V
2
)

∑
12

𝑗=1
𝑓 (V
𝑗
)

, . . . ,

𝑓 (V
12

)

∑
12

𝑗=1
𝑓 (V
𝑗
)

)

𝑇

= (0.17, 0.10, 0.05, 0.14, 0.08, 0.05, 0.03, 0.10,

0.08, 0.03, 0.08, 0.08)
𝑇

.

(33)

Take the result 𝑊
𝑓(𝑟=2)

into (33) and the matrix 𝑍 of
Table 3 into (27); the aggregation result is

𝐹
𝑓(𝑟=2)

= 𝑍𝑊
𝑓

= (1.17, 1.39, 1.44, 1.44, 1.39, 1.41,

1.28, 1.44, 1.48, 1.55, 1.74)
𝑇

.

(34)

It is noticed that matrix 𝑍 of Table 3 must be ordered
decreasingly in each row before information aggregation.

With the same method, we get other aggregation results
with parameter 𝑟 = −4, −3, −2, −1, 0, 1, 3, 4, which are
displayed in Table 5, the last column of which is calculated
with the MP-OWA operator by Emrouznejad [3].

Correspondingly, the aggregation results of parametric
MP-OWA operator with parameter 𝑟 = −4, −3, −2, −1, 0, 1,

2, 3, 4 and MP-OWA operator are listed in Table 6. And the
ranks given to each search engine using parametricMP-OWA
operator with power function and MP-OWA operator are
shown in Table 7.

4.3. Comparisons and Some Discussions

(1) From Table 5, it is seen that if 𝑟 > 0, the larger
(smaller) of the values 𝑟 are, the larger (smaller) of
the values 𝑓(V

𝑖
) are, and the weights of search engines

become larger (smaller) correspondingly. That is,
more (less) emphasis would be put on larger (smaller)
aggregated elements. For example, no matter 𝑟 =

4, 3, 2, or 1, V
1

= 9 has the largest weights, whereas
V
4

= V
7

= 4 has the smallest weights.
(2) When 𝑟 = 4, 𝑤

10
= 0.01; that is, there is almost

no emphasis put on the smallest aggregated element.
As the monotonicity of function 𝑓(V

𝑖
) with V

𝑖
, if 𝑟

continues to increase, there will appear more zero
weights, and the aggregation results may lose more
information.

(3) If 𝑟 ⩽ 0, the larger (smaller) of the values V
𝑖
are,

the smaller (larger) of the values 𝑓(V
𝑖
) are, and the

weights of search engines become smaller (larger)
correspondingly. That is, more (less) emphasis would
be put on smaller (bigger) aggregated elements. For
example, no matter what 𝑟 = 0, −1, −2, −3, or −4,
V
1

= 9 has the smallest weights, whereas V
4

= V
7

= 4

has the largest weights.
(4) When 𝑟 = −1, 𝑤

1
= 0; that is, there is no emphasis

put on the largest aggregated element. As the mono-
tonicity of function 𝑓(V

𝑖
) with V

𝑖
, if 𝑟 continues to
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Table 5: Weights given to search engines with different values of parameter 𝑟.

Methods/weights Parametric Mp-OWA operator parameter 𝑟 MP-OWA operator
𝑉
0

−4 −3 −2 −1 0 1 2 3 4

𝑤
1

9 0.01 0.02 0.03 0.05 0.08 0.12 0.17 0.23 0.29 0.12
𝑤
2

7 0.03 0.04 0.05 0.07 0.08 0.10 0.10 0.11 0.11 0.10
𝑤
3

5 0.10 0.11 0.10 0.10 0.08 0.07 0.05 0.04 0.03 0.07
𝑤
4

8 0.02 0.03 0.04 0.06 0.08 0.11 0.14 0.16 0.18 0.11
𝑤
5

6 0.05 0.06 0.07 0.08 0.08 0.08 0.08 0.07 0.06 0.08
𝑤
6

5 0.10 0.11 0.10 0.10 0.08 0.07 0.05 0.04 0.03 0.07
𝑤
7

4 0.25 0.21 0.16 0.12 0.08 0.05 0.03 0.02 0.01 0.05
𝑤
8

7 0.03 0.04 0.05 0.07 0.08 0.10 0.10 0.11 0.11 0.10
𝑤
9

6 0.05 0.06 0.07 0.08 0.08 0.08 0.08 0.07 0.06 0.08
𝑤
10

4 0.25 0.21 0.16 0.12 0.08 0.05 0.03 0.02 0.01 0.05
𝑤
11

6 0.05 0.06 0.07 0.08 0.08 0.08 0.08 0.07 0.06 0.08
𝑤
12

6 0.05 0.06 0.07 0.08 0.08 0.08 0.08 0.07 0.06 0.08

Table 6: Aggregation results given to search engines with different values of parameter 𝑟.

Methods/search engines Parametric Mp-OWA operator with parameter 𝑟 MP-OWA operator
−4 −3 −2 −1 0 1 2 3 4

LookSmart 0.77 0.82 0.87 0.93 1 1.08 1.17 1.27 1.38 1.08
Lycos 1.1 1.13 1.16 1.2 1.25 1.32 1.39 1.47 1.55 1.32
Altavista 1.21 1.24 1.26 1.29 1.33 1.38 1.44 1.51 1.58 1.38
MSN 1.21 1.24 1.26 1.29 1.33 1.38 1.44 1.51 1.58 1.38
Yahoo 1.1 1.13 1.16 1.2 1.25 1.32 1.39 1.47 1.55 1.32
Teoma 0.95 1.03 1.1 1.17 1.25 1.33 1.41 1.49 1.57 1.33
WiseNut 0.80 0.86 0.92 1 1.08 1.18 1.28 1.38 1.48 1.18
MetaCrawler 1.21 1.24 1.26 1.29 1.33 1.38 1.44 1.51 1.58 1.38
ProFusion 1.46 1.45 1.42 1.41 1.42 1.44 1.48 1.53 1.59 1.44
WebFusion-Max 1.51 1.51 1.5 1.49 1.5 1.52 1.55 1.6 1.65 1.52
WebFusion-OWA 1.59 1.61 1.62 1.64 1.67 1.70 1.74 1.78 1.82 1.70

decrease, there will appearmore zero weights, and the
aggregation would lose more information.

(5) When 𝑟 = 1, the weights and the aggregation results
are the same as those ofMP-OWAoperator, which are
labeled in bold in Tables 5 and 6.
It is shown that MP-OWA operator is a special
case of parametric MP-OWA operator with function
function on condition of 𝑟 = 1.

(6) Here, we only list a few values of parametricMP-OWA
operator with power function, but we have included
all the ranking with this method.
Because when 𝑟 > 0, although the weight and the
aggregation results of each search engines both
change steadily, the rank remains the same; when 𝑟 ⩽

0, the rank shows the similar regularity as well. In
other words, with different values of parameter 𝑟, we
get two kinds of aggregation results; the conditions are
𝑟 > 0 and 𝑟 ⩽ 0.

(7) It can also be seen that the ranks of most search
engines on each method keep the same, especially
the WebFusion-OWA, WebFusion-Max, ProFusion,

and LookSmart. It is noticeably that no matter what
methods we use, search engines WebFusion-OWA,
WebFusion-Max, ProFusion, and LookSmart remains
in the first, second, and third place, respectively. From
the result, we also deduce the best search engines
indirectly.

5. Conclusions

We have presented a new kind of neat OWA operator based
on MP-OWA operator in aggregation families when con-
sidering the decision maker’s preference for all alternatives
across the criteria. It is very useful for decision makers, since
it not only considers the preference of alternatives across all
the criteria, but also provides multiple aggregation results
according to their preferences and application context to
choose. We have discussed several properties and have stud-
ied particular cases such as minimum, average, and maxi-
mum aggregation results.

We have analyzed the applicability of parametric MP-
OWA operator that gets more comprehensive results than
MP-OWA operator. We have concentrated on an application
in ranking search engines based onmultiple decisionmaking



8 Journal of Applied Mathematics

Table 7: Comparison of ranks given to search engines with different values of parameter 𝑟.

Methods/search engines Parametric Mp-OWA operator with parameter 𝑟 MP-OWA operator
−4 −3 −2 −1 0 1 2 3 4

WebFusion-OWA 1 1 1 1 1 1 1 1 1 1
WebFusion-Max 2 2 2 2 2 2 2 2 2 2
ProFusion 3 3 3 3 3 3 3 3 3 3
Altavista 4 4 4 4 4 4 4 4 4 4
Msn 5 5 5 5 5 5 5 5 5 5
MetaCrawler 6 6 6 6 6 6 6 6 6 6
Teoma 9 9 9 9 9 7 7 7 7 7
Lycos 7 7 7 7 7 8 8 8 8 8
Yahoo 8 8 8 8 8 9 9 9 9 9
WiseNut 10 10 10 10 10 10 10 10 10 10
LookSmart 11 11 11 11 11 11 11 11 11 11

process, where a group of queries are used to look for an
optimal search engines list. And the decisionmakers can real-
ize viewing the decisionmaking problem completely through
considering the preference relation and the corresponding
parameter 𝑟. It is observed that no matter what values of the
parameter 𝑟 are, the ranking of some search engines keeps
the same. It also implies which the best search engines are.
Finally, it should be noted that the proposed method can also
be applied to a wide range of decision making problems with
preference relations, such as information aggregation and
group decision making.

In our future research, we expect to further propose
parametricMP-OWAoperator through employing other type
of preference information such as linguistic variables and
type-2 fuzzy set.Wewill develop different type of applications
not only in decision theory but also in other fields such as
engineering and economics.

Appendices

A. Proof of Theorem 6

Proof. (1) For 𝑟 → −∞, we get

lim
𝑟→−∞

V𝑟
𝑖

V𝑟
𝑗

= lim
𝑟→−∞

(

V
𝑖

V
𝑗

)

𝑟

=

{
{

{
{

{

0, if V
𝑖

> V
𝑗
,

1, if V
𝑖

= V
𝑗
,

+∞, if V
𝑖

< V
𝑗
.

(A.1)

From (A.1), it is also right that

lim
𝑟→−∞

(

V
𝑖

V
𝑗

)

−𝑟

=

{
{

{
{

{

+∞, if V
𝑖

> V
𝑗
,

1, if V
𝑖

= V
𝑗
,

0, if V
𝑖

< V
𝑗
.

(A.2)

Accordingly, from (A.2), when 𝑛 is a large integer, it is
obvious that

lim
𝑟→−∞

V𝑟
𝑖

∑
𝑛

𝑗=1
V𝑟
𝑗

= lim
𝑟→−∞

1

∑
𝑛

𝑗=1
(V
𝑖
/V
𝑗
)

−𝑟
=

{
{

{
{

{

0, if V
𝑖

> V
𝑗
,

0, if V
𝑖

= V
𝑗
,

1, if V
𝑖

< V
𝑗
.

(A.3)

When 𝑟 → −∞, combining (A.3) with (28), we obtain

orness (𝑊) = lim
𝑟→−∞

𝑛

∑

𝑖=1

𝑛 − 𝑖

𝑛 − 1

V𝑟
𝑖

∑
𝑛

𝑗=1
V𝑟
𝑗

= lim
𝑟→−∞

𝑛

∑

𝑖=1

𝑛 − 𝑖

𝑛 − 1

1

∑
𝑛

𝑗=1
(V
𝑖
/V
𝑗
)

−𝑟

=

𝑛 − 𝑗

𝑛 − 1

,

(A.4)

where 𝑗 is the index of minimum V
𝑖
.

Accordingly, combine (A.3) with (27), and the aggrega-
tion result is

𝐹
𝑓

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = min {𝑥

𝑖
} = 𝑥
𝑘
, (A.5)

where 𝑘 is the index of minimum 𝑥
𝑖
.

(2) For 𝑟 = 0, from (28), we get

orness (𝑊) =

𝑛

∑

𝑖=1

𝑛 − 𝑖

𝑛 − 1

1

∑
𝑛

𝑗=1
(V
𝑖
/V
𝑗
)

−𝑟

=

𝑛

∑

𝑖=1

𝑛 − 𝑖

𝑛 − 1

1

𝑛

=

1

2

,

(A.6)

such that from (27), the aggregation result is

𝐹
𝑓

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) =

𝑛

∑

𝑖=1

1

𝑛

𝑥
𝑖

= avg {𝑥
𝑖
} . (A.7)

(3) For 𝑟 → +∞, we obtain

lim
𝑟→+∞

V𝑟
𝑖

V𝑟
𝑗

= lim
𝑟→+∞

1

(V
𝑖
/V
𝑗
)

𝑟
=

{
{

{
{

{

+∞, if V
𝑖

> V
𝑗
,

1, if V
𝑖

= V
𝑗
,

0, if V
𝑖

< V
𝑗
.

(A.8)
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From (A.8), it is also right that

lim
𝑟→+∞

(

V
𝑖

V
𝑗

)

−𝑟

=

{
{

{
{

{

0, if V
𝑖

> V
𝑗
,

1, if V
𝑖

= V
𝑗
,

+∞, if V
𝑖

< V
𝑗
.

(A.9)

From the conclusion of (A.9), when 𝑛 is a large integer, it
is obvious that

lim
𝑟→+∞

V𝑟
𝑖

∑
𝑛

𝑗=1
V𝑟
𝑗

= lim
𝑟→+∞

1

∑
𝑛

𝑗=1
(V
𝑖
/V
𝑗
)

−𝑟
=

{
{

{
{

{

1, if V
𝑖

> V
𝑗
,

0, if V
𝑖

= V
𝑗
,

0, if V
𝑖

< V
𝑗
.

(A.10)

Combining (28) with (A.10), the orness level is

orness (𝑊) = lim
𝑟→+∞

𝑛

∑

𝑖=1

𝑛 − 𝑖

𝑛 − 1

V𝑟
𝑖

∑
𝑛

𝑗=1
V𝑟
𝑗

,

= lim
𝑟→+∞

𝑛

∑

𝑖=1

𝑛 − 𝑖

𝑛 − 1

1

∑
𝑛

𝑗=1
(V
𝑖
/V
𝑗
)

−𝑟
,

=

𝑛 − 𝑗

𝑛 − 1

,

(A.11)

where 𝑗 is the index of maximum V
𝑖
.

Accordingly, combine (27) with (A.10), and the aggrega-
tion result is

𝐹
𝑓

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = max {𝑥

𝑖
} = 𝑥
𝑙
. (A.12)

The proof of Theorem 6 is completed.

B. Proof of Theorem 8

Proof. In (29), let vector 𝑉 satisfy V
1

⩾ V
2

⩾ ⋅ ⋅ ⋅ ⩾ V
𝑛
, which

can be written as follows:

𝑊
𝜆

= (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇

,

= (

V𝑟
1

∑
𝑛

𝑗=1
V𝑟
𝑗

,

V𝑟
2

∑
𝑛

𝑗=1
V𝑟
𝑗

, . . . ,

V𝑟
𝑛

∑
𝑛

𝑗=1
V𝑟
𝑗

)

𝑇

.

(B.1)

From (B.1), the derivative of function 𝑤
𝑖
with variable 𝑟 is

as follows:

𝜕𝑤
𝑖

𝜕𝑟

=

V𝑟
𝑖
ln V
𝑖
∑
𝑛

𝑖=1
V𝑟
𝑖

− V𝑟
𝑖

∑
𝑛

𝑖=1
V𝑟
𝑖
ln V
𝑖

(∑
𝑛

𝑖=1
V𝑟
𝑖
)
2

. (B.2)

Accordingly, from (28) and (B.2), the derivative of orness
𝛼 with variable 𝑟 is formed as follows:

𝜕𝛼

𝜕𝑟

=

𝑛

∑

𝑖=1

𝑛 − 𝑖

𝑛 − 1

𝜕𝑤
𝑖

𝜕𝑟

=

𝑛

∑

𝑖=1

𝑛 − 𝑖

𝑛 − 1

V𝑟
𝑖
ln V
𝑖
∑
𝑛

𝑖=1
V𝑟
𝑖

− V𝑟
𝑖

∑
𝑛

𝑖=1
V𝑟
𝑖
ln V
𝑖

(∑
𝑛

𝑖=1
V𝑟
𝑖
)
2

=

1

𝑛 − 1

1

(∑
𝑛

𝑖=1
V𝑟
𝑖
)
2

× [(𝑛 − 1) (0 + V
𝑟

1
V
𝑟

2
ln V
1

V
2

+ ⋅ ⋅ ⋅ + V
𝑟

1
V
𝑟

𝑛
ln V
1

V
𝑛

)

+ (𝑛 − 2) (V
𝑟

2
V
𝑟

1
ln V
2

V
1

+ 0 + ⋅ ⋅ ⋅ + V
𝑟

2
V
𝑟

𝑛
ln V
2

V
𝑛

)

+ (𝑛 − 3) (V
𝑟

3
V
𝑟

1
ln

V
3

V
1

+ ⋅ ⋅ ⋅

+V
𝑟

3
V
𝑟

2
ln

V
3

V
2

+ ⋅ ⋅ ⋅ + 0) + ⋅ ⋅ ⋅ + 0]

=

1

𝑛 − 1

1

(∑
𝑛

𝑖=1
V𝑟
𝑖
)
2

𝑛

∑

𝑖=1

∑

𝑖<𝑗

(V
𝑟

𝑖
V
𝑟

𝑗
)

V
𝑖

V
𝑗

.

(B.3)

Since V
1

⩾ V
2

⩾ ⋅ ⋅ ⋅ ⩾ V
𝑛
, it is concluded that 𝜕𝛼/𝜕𝑟 > 0.

Namely, orness 𝛼 increases monotonically with parameter 𝑟.
So when 𝑟

1
> 𝑟
2
, orness(𝑊

𝑟
1

) > orness(𝑊
𝑟
2

).
The proof of Theorem 8 is completed.
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[33] J. I. Peláez and J.M.Doña, “Majority additive-orderedweighting
averaging: a new neat ordered weighting averaging operator
based on the majority process,” International Journal of Intel-
ligent Systems, vol. 18, no. 4, pp. 469–481, 2003.
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