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The Lie-algebraic approach has been applied to solve the bond pricing problem in single-factor interest rate models. Four of the
popular single-factor models, namely, the Vasicek model, Cox-Ingersoll-Ross model, double square-root model, and Ahn-Gao
model, are investigated. By exploiting the dynamical symmetry of their bond pricing equations, analytical closed-form pricing
formulae can be derived in a straightfowardmanner. Time-varyingmodel parameters could also be incorporated into the derivation
of the bond price formulae, and this has the added advantage of allowing yield curves to be fitted. Furthermore, the Lie-algebraic
approach can be easily extended to formulate new analytically tractable single-factor interest rate models.

1. Introduction

In this paper we apply the Lie-algebraic method to tackle the
bond pricing problem in single-factor interest rate models.
In particular, we investigate the bond pricing equation of the
form

𝐻(𝑡) 𝐵 (𝑟, 𝑡)

≡ {
1

2
𝜎(𝑡)
2
𝑟
] 𝜕
2

𝜕𝑟2
+ 𝜇 (𝑟, 𝑡)

𝜕

𝜕𝑟
− 𝑟}𝐵 (𝑟, 𝑡) =

𝜕𝐵 (𝑟, 𝑡)

𝜕𝑡
,

(1)

where ] is a real parameter, 𝜇(𝑟, 𝑡) is a real function of both
spot interest rate 𝑟 and time-to-maturity 𝑡, 𝜎(𝑡) is the time-
varying volatility, and 𝐵(𝑟, 𝑡) denotes the price of a zero-
coupon bond of duration 𝑇 with a value of unity at maturity;
that is, 𝐵(𝑟, 0) = 1. By exploiting the dynamical symmetry
𝑆𝑈(1, 1) ⊕ ℎ(1) of the bond pricing equation, we derive
analytically tractable single-factor interest rate models in a
unified manner and obtain their closed-form bond pricing
formulae. It is found that not only four of the popular single-
factor models, namely the Vasicek model [1], Cox-Ingersoll-
Ross model [2], double square-root model [3], and Ahn-
Gao model [4], can be derived in a straightforward manner,
but also new analytically tractable models can be formulated

systematically. Moreover, time-varying model parameters
can be incorporated into the derivation of the bond pricing
formulae without difficulty. This has the added advantage of
allowing yield curves to be fitted, and thus a “no-arbitrage”
yield curve model can be developed to match the current
market data.

The Lie-algebraic method was introduced by Lo and
Hui [5–7] to the field of finance for the pricing of financial
derivatives with time-dependentmodel parameters.This new
method is very simple and consists of two basic ingredi-
ents: (1) identifying the dynamical symmetries of the given
pricing partial differential equations and (2) applying the
Wei-Norman theorem [8] to solve the equations and obtain
analytical closed-form pricing formulae. For demonstration,
the Lie-algebraic approach has already been applied to price
European options for the constant elasticity of variance
processes and corporate discount bonds with default risk,
multiasset financial derivatives, and so forth. It should be
noted that the Lie-algebraic method is different from the
Lie group analysis which was introduced by Ibragimov and
his coauthors [9, 10] to tackle partial differential equations
occurring in financial problems. The Lie group analysis is a
mathematical theory developed by Sophus Lie and classifies
partial differential equations in terms of their symmetry
groups, thereby identifying the set of equations which could
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be integrated or reduced to low-order equations by group
theoretic algorithms. (Details of the Lie group analysis and
its application to partial differential equations can be found
in, for example, Hydon (2000) and Bluman et al. (2010)
[11, 12].) Further applications of the Lie group analysis
in mathematical finance were subsequently explored by a
number of papers, for example, Goard [13], Pooe et al. [14],
Goard et al. [15], Leach et al. [16], and Sinkala et al. [17]. A
recent review of the applications of the Lie theory to problems
in mathematical finance and economics can be found in [18].

2. Lie-Algebraic Approach

We consider a possible set of differential operators realizing
the Lie algebra 𝑆𝑈(1, 1) ⊕ ℎ(1) [19]:

𝑊
1
= 𝑟
𝛾 𝜕

𝜕𝑟
− 𝜆𝑟
𝛼
, 𝑊

2
=

1

1 − 𝛾
𝑟
1−𝛾

, 𝑊
3
= 1,

𝐾
−
≡

1

2
𝑊
2

1
=

1

2
𝑟
2𝛾 𝜕
2

𝜕𝑟2
+ (

1

2
𝛾𝑟
2𝛾−1

− 𝜆𝑟
𝛼+𝛾

)
𝜕

𝜕𝑟

+
1

2
𝜆𝑟
𝛼
(𝜆𝑟
𝛼
− 𝛼𝑟
𝛾−1

) ,

𝐾
0
≡

1

4
(𝑊
1
𝑊
2
+ 𝑊
2
𝑊
1
) =

1

2 (1 − 𝛾)
𝑟
𝜕

𝜕𝑟

+
1

4
−

𝜆

2 (1 − 𝛾)
𝑟
𝛼+1−𝛾

,

𝐾
+
≡

1

2
𝑊
2

2
=

1

2(1 − 𝛾)
2
𝑟
2(1−𝛾)

,

(2)

where 𝛼, 𝛾, and 𝜆 are real adjustable parameters (see
Appendix A). Then we try to look for appropriate linear
combinations of these operators, namely, 𝐻(𝑡) ≡ 𝐴

−
(𝑡)𝐾
−
+

𝐴
0
(𝑡)𝐾
0
+ 𝐴
+
(𝑡)𝐾
+
+ 𝐴
1
(𝑡)𝑊
1
+ 𝐴
2
(𝑡)𝑊
2
+ 𝐴
3
(𝑡)𝑊
3
, where

the coefficients are arbitrary scalar functions of 𝑡 only, to
produce the bond pricing equation given in (1). Here are some
illustrative examples.

(1) For 𝐴
−
(𝑡) = 𝜎(𝑡)

2, 𝐴
0
(𝑡) = −4𝐴

3
(𝑡) = −2𝜅(𝑡),

𝐴
+
(𝑡) = 0, 𝐴

1
(𝑡) = 𝜅(𝑡)𝜃(𝑡), 𝐴

2
(𝑡) = −1, 𝛾 = 𝜆 = 0, and 𝛼

being arbitrary, we recover the bond pricing equation of the
Vasicek model:

{
1

2
𝜎(𝑡)
2 𝜕
2

𝜕𝑟2
+ 𝜅 (𝑡) [𝜃 (𝑡) − 𝑟]

𝜕

𝜕𝑟
− 𝑟}𝐵 (𝑟, 𝑡) =

𝜕𝐵 (𝑟, 𝑡)

𝜕𝑡
.

(3)

By applying the Wei-Norman theorem, we can derive the
bond price 𝐵(𝑟, 𝑡) as (see Appendix B)

𝐵 (𝑟, 𝑡) = 𝑈
0
(𝑡) 𝑈
𝐼
(𝑡) 𝐵 (𝑟, 0) , 𝐵 (𝑟, 0) = 1, (4)

where

𝑈
0
(𝑡) = exp {𝑐

1
(𝑡) 𝐾
+
} exp {𝑐

2
(𝑡) 𝐾
0
} exp {𝑐

3
(𝑡) 𝐾
−
} ,

𝑈
𝐼
(𝑡) = exp {𝑔

1
(𝑡)𝑊
1
} exp {𝑔

2
(𝑡)𝑊
2
} exp {𝑔

3
(𝑡)𝑊
3
} ,

𝑐
1
(𝑡) = 0,

𝑐
2
(𝑡) = −2∫

𝑡

0

𝜅 (𝜏) 𝑑𝜏,

𝑐
3
(𝑡) = ∫

𝑡

0

𝜎(𝜏)
2 exp {𝑐

2
(𝜏)} 𝑑𝜏,

𝑔
1
(𝑡) = ∫

𝑡

0

[𝜅 (𝜏) 𝜃 (𝜏) exp {
1

2
𝑐
2
(𝜏)}

+𝑐
3
(𝜏) exp {−

1

2
𝑐
2
(𝜏)}] 𝑑𝜏,

𝑔
2
(𝑡) = −∫

𝑡

0

exp {−
1

2
𝑐
2
(𝜏)} 𝑑𝜏,

𝑔
3
(𝑡) = ∫

𝑡

0

[
1

2
𝜅 (𝜏) + 𝑔

1
(𝜏) exp {−

1

2
𝑐
2
(𝜏)}] 𝑑𝜏.

(5)

As a result, the bond price 𝐵(𝑟, 𝑡) can be expressed as

𝐵 (𝑟, 𝑡) = exp {
1

4
𝑐
2
(𝑡) + 𝑔

3
(𝑡) + 𝑔

2
(𝑡)

× [𝑔
1
(𝑡) +

1

2
𝑐
3
(𝑡) 𝑔
2
(𝑡)]}

× exp {𝑔
2
(𝑡) exp [

1

2
𝑐
2
(𝑡)] 𝑟} .

(6)

In the special case of constant model parameters, that is,
𝜎(𝑡) = 𝜎

0
, 𝜅(𝑡) = 𝜅

0
, and 𝜃(𝑡) = 𝜃

0
, the 𝑐

𝑖
(𝑡) and 𝑔

𝑖
(𝑡) can

be analytically determined as

𝑐
1
(𝑡) = 0,

𝑐
2
(𝑡) = −2𝜅

0
𝑡,

𝑐
3
(𝑡) =

𝜎
2

0

2
{
1 − exp (−2𝜅

0
𝑡)

𝜅
0

} ,

𝑔
1
(𝑡) = (𝜅

0
𝜃
0
−

𝜎
2

0

2𝜅
0

){
1 − exp (−2𝜅

0
𝑡)

𝜅
0

}

+
𝜎
2

0

2𝜅
0

{
exp (𝜅

0
𝑡) − 1

𝜅
0

} ,

𝑔
2
(𝑡) = −{

exp (𝜅
0
𝑡) − 1

𝜅
0

} ,

𝑔
3
(𝑡) =

1

2
𝜅
0
𝑡 − (𝜃

0
−

𝜎
2

0

2𝜅
2

0

) 𝑡 + (𝜃
0
−

𝜎
2

0

2𝜅
2

0

)

× {
exp (𝜅

0
𝑡) − 1

𝜅
0

} +
𝜎
2

0

4𝜅
0

{
exp (𝜅

0
𝑡) − 1

𝜅
0

}

2

,

(7)
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and the bond price 𝐵(𝑟, 𝑡) is reduced to the well-known
closed-form expression [1]:

𝐵 (𝑟, 𝑡) = exp{(𝜃
0
−

𝜎
2

0

2𝜅
2

0

)[
1 − exp (−𝜅

0
𝑡)

𝜅
0

− 𝑡]

−
𝜎
2

0

4𝜅
0

[
1 − exp (−𝜅

0
𝑡)

𝜅
0

]

2

−[
1 − exp (−𝜅

0
𝑡)

𝜅
0

− 𝑡] 𝑟} .

(8)

(2) For 𝐴
−
(𝑡) = 𝜎(𝑡)

2, 𝐴
0
(𝑡) = −4𝐴

3
(𝑡) = −2𝜆̃(𝑡),

𝐴
+
(𝑡) = −1/2, 𝐴

1
(𝑡) = −𝜅(𝑡), 𝐴

2
(𝑡) = 0, 𝛾 = 1/2, 𝜆 = 0,

and 𝛼 being arbitrary, the bond pricing equation of the double
square-root model is reproduced:

{
1

2
𝜎(𝑡)
2
𝑟
𝜕
2

𝜕𝑟2
+ [

1

4
𝜎(𝑡)
2
− 𝜅 (𝑡)√𝑟 − 2𝜆̃ (𝑡) 𝑟]

𝜕

𝜕𝑟
− 𝑟}

× 𝐵 (𝑟, 𝑡) =
𝜕𝐵 (𝑟, 𝑡)

𝜕𝑡
.

(9)

As in the Vasicek model, we apply the Wei-Norman theorem
to determine the bond price 𝐵(𝑟, 𝑡) as (see Appendix B)

𝐵 (𝑟, 𝑡) = 𝑈
0
(𝑡) 𝑈
𝐼
(𝑡) 𝐵 (𝑟, 0) , 𝐵 (𝑟, 0) = 1, (10)

where

𝑈
0
(𝑡) = exp {𝑐

1
(𝑡) 𝐾
+
} exp {𝑐

2
(𝑡) 𝐾
0
} exp {𝑐

3
(𝑡) 𝐾
−
} ,

𝑈
𝐼
(𝑡) = exp {𝑔

1
(𝑡)𝑊
1
} exp {𝑔

2
(𝑡)𝑊
2
} exp {𝑔

3
(𝑡)𝑊
3
} ,

𝑑𝑐
1
(𝑡)

𝑑𝑡
= −1 − 2𝜆̃ (𝑡) 𝑐

1
(𝑡) +

1

2
𝜎(𝑡)
2
𝑐
1
(𝑡)
2
, 𝑐
1
(0) = 0,

𝑐
2
(𝑡) = ∫

𝑡

0

{−2𝜆̃ (𝜏) + 𝜎(𝜏)
2
𝑐
1
(𝜏)} 𝑑𝜏,

𝑐
3
(𝑡) =

1

2
∫

𝑡

0

𝜎(𝜏)
2 exp {𝑐

2
(𝜏)} 𝑑𝜏,

𝑔
1
(𝑡) =

1

√2

∫

𝑡

0

𝜅 (𝜏) [𝑐
1
(𝜏) 𝑐
3
(𝜏) exp {−

1

2
𝑐
2
(𝜏)}

− exp {
1

2
𝑐
2
(𝜏)}] 𝑑𝜏,

𝑔
2
(𝑡) = −

1

√2

∫

𝑡

0

𝜅 (𝜏) 𝑐
1
(𝜏) exp {−

1

2
𝑐
2
(𝜏)} 𝑑𝜏,

𝑔
3
(𝑡)

= ∫

𝑡

0

[
1

2
𝜆̃ (𝜏) +

1

√2

𝜅 (𝜏) 𝑐
1
(𝜏) exp {−

1

2
𝑐
2
(𝜏)} 𝑔

1
(𝜏)] 𝑑𝜏.

(11)

Accordingly, the bond price 𝐵(𝑟, 𝑡) is given by

𝐵 (𝑟, 𝑡)

= exp {𝑔
3
(𝑡) + 𝑔

1
(𝑡) 𝑔
2
(𝑡)

+
1

2
𝑐
3
(𝑡) 𝑔
2
(𝑡)
2
+

1

4
𝑐
2
(𝑡)}

× exp {𝑔
2
(𝑡) exp [

1

2
𝑐
2
(𝑡)]√2𝑟 + 𝑐

1
(𝑡) 𝑟} .

(12)

In the special case of constant model parameters, that is,
𝜎(𝑡) = 𝜎

0
, 𝜅(𝑡) = 𝜅

0
, and 𝜆̃(𝑡) = 𝜆̃

0
, the 𝑐

𝑖
(𝑡) and 𝑔

𝑖
(𝑡) can

be analytically determined as

𝑐
1
(𝑡) = −

2 (exp {𝛾𝑡} − 1)

(𝛾 + 2𝜆̃
0
) (exp {𝛾𝑡} − 1) + 2𝛾

=
2𝜆̃
0
− 𝛾

𝜎
2

0

+
2𝛾

𝜎
2

0
[1 − 𝐶

0
exp {𝛾𝑡}]

,

𝑐
2
(𝑡) = − 2𝜆̃

0
𝑡

+ 2 ln{

2𝛾 exp [(1/2) (𝛾 + 2𝜆̃
0
) 𝑡]

(𝛾 + 2𝜆̃
0
) (exp {𝛾𝑡} − 1) + 2𝛾

}

= 𝛾𝑡 + 2 ln{
2𝛾

(𝛾 − 2𝜆̃
0
) [1 − 𝐶

0
exp {𝛾𝑡}]

} ,

𝑐
3
(𝑡) = −

1

2
𝜎
2

0
𝑐
1
(𝑡) ,

𝑔
1
(𝑡) =

√2𝜅
0
𝜆̃
0

𝛾2
exp {−

1

2
𝛾𝑡} (1 − exp {

1

2
𝛾𝑡})

2

−
𝜅
0

√2𝛾

(exp {
1

2
𝛾𝑡} − exp {−

1

2
𝛾𝑡}) ,

𝑔
2
(𝑡) =

√2𝜅
0

𝛾2
exp {−

1

2
𝛾𝑡} (1 − exp {

1

2
𝛾𝑡})

2

,

𝑔
3
(𝑡) = (

1

2
𝜆̃
0
−

𝜅
2

0

𝛾2
) 𝑡 −

𝜅
2

0
𝜆̃
0

𝛾4
exp {−𝛾𝑡}

× (1 − exp {
1

2
𝛾𝑡})

4

+
𝜅
2

0

2𝛾3
(exp {𝛾𝑡} − exp {−𝛾𝑡})

(13)

with 𝛾 = √4𝜆̃
2

0
+ 2𝜎
2

0
and 𝐶

0
= (2𝜆̃

0
+ 𝛾)/(2𝜆̃

0
− 𝛾).

Consequently, we are able to recover the well-known closed-
form expression of the bond price 𝐵(𝑟, 𝑡) [3]:

𝐵 (𝑟, 𝑡) = Ψ (𝑡) exp {Ω (𝑡) 𝑟 + Γ (𝑡)√𝑟} , (14)
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where

Ψ (𝑡) = √
1 − 𝐶
0

1 − 𝐶
0
exp {𝛾𝑡}

× exp(𝛼
1
+ 𝛼
2
𝑡 +

𝛼
3
+ 𝛼
4
exp {(1/2) 𝛾𝑡}

1 − 𝐶
0
exp {𝛾𝑡}

) ,

Ω (𝑡) =
2𝜆̃
0
− 𝛾

𝜎
2

0

+
2𝛾

𝜎
2

0
[1 − 𝐶

0
exp {𝛾𝑡}]

,

Γ (𝑡) =

2𝜅
0
(2𝜆̃
0
+ 𝛾) (1 − exp {(1/2) 𝛾𝑡})

2

𝛾𝜎
2

0
[1 − 𝐶

0
exp {𝛾𝑡}]

,

(15)

with

𝛼
1
= −

𝜅
2

0

𝛾3𝜎
2

0

(4𝜆̃
0
+ 𝛾) (2𝜆̃

0
− 𝛾) ,

𝛼
2
=

2𝜆̃
0
+ 𝛾

4
−

𝜅
2

0

𝛾2
,

𝛼
3
=

4𝜅
2

0

𝛾3𝜎
2

0

(2𝜆̃
2

0
− 𝜎
2

0
) ,

𝛼
4
= −

8𝜅
2

0
𝜆̃
0

𝛾3𝜎
2

0

(2𝜆̃
0
+ 𝛾) .

(16)

(3) For 𝐴
−
(𝑡) = 𝜎(𝑡)

2, 𝐴
0
(𝑡) = −4𝐴

3
(𝑡)/3, 𝐴

+
(𝑡) =

𝐴
1
(𝑡) = 0,𝐴

2
(𝑡) = −1, 𝛾 = 0, and 𝜆 = 𝛼 = −1, a bond pricing

equation with a special time-dependent nonlinear drift term
can be obtained:

{
1

2
𝜎(𝑡)
2 𝜕
2

𝜕𝑟2
+ [

1

2
𝐴
0
(𝑡) 𝑟 +

𝜎(𝑡)
2

𝑟
]

𝜕

𝜕𝑟
− 𝑟}𝐵 (𝑟, 𝑡)

=
𝜕𝐵 (𝑟, 𝑡)

𝜕𝑡

(17)

which can be straightforwardly solved as in the Vasicek
model. As a result, the bond price 𝐵(𝑟, 𝑡) can be expressed
as (see Appendix B)

𝐵 (𝑟, 𝑡) = exp {
3

4
𝑐
2
(𝑡) + 𝑔

3
(𝑡) + 𝑔

2
(𝑡)

× (𝑔
1
(𝑡) +

1

2
𝑐
3
(𝑡) 𝑔
2
(𝑡))}

× exp {𝑔
2
(𝑡) exp(

1

2
𝑐
2
(𝑡)) 𝑟}

× {1 + [𝑔
1
(𝑡) + 𝑐

3
(𝑡) 𝑔
2
(𝑡)] exp(

1

2
𝑐
2
(𝑡))

1

𝑟
} ,

(18)

where

𝑐
2
(𝑡) = ∫

𝑡

0

𝐴
0
(𝜏) 𝑑𝜏,

𝑐
3
(𝑡) = ∫

𝑡

0

𝜎(𝜏)
2 exp {𝑐

2
(𝜏)} 𝑑𝜏,

𝑔
1
(𝑡) = ∫

𝑡

0

𝑐
3
(𝜏) exp {−

1

2
𝑐
2
(𝜏)} 𝑑𝜏,

𝑔
2
(𝑡) = −∫

𝑡

0

exp {−
1

2
𝑐
2
(𝜏)} 𝑑𝜏,

𝑔
3
(𝑡) = ∫

𝑡

0

[−
3

4
𝐴
0
(𝜏) + 𝑔

1
(𝜏) exp {−

1

2
𝑐
2
(𝜏)}] 𝑑𝜏.

(19)

(4) For 𝐴
−
(𝑡) = 𝜎(𝑡)

2, 𝐴
0
(𝑡) = −4𝐴

3
(𝑡)/3, 𝐴

+
(𝑡) =

𝐴
2
(𝑡) = 0, 𝐴

1
(𝑡) = 1, 𝛾 = 2, and 𝜆 = 𝛼 = 1, we can derive the

bond pricing equation:

{
1

2
𝜎(𝑡)
2
𝑟
4 𝜕
2

𝜕𝑟2
+ [𝑟
2
−

1

2
𝐴
0
(𝑡) 𝑟]

𝜕

𝜕𝑟
− 𝑟}𝐵 (𝑟, 𝑡)

=
𝜕𝐵 (𝑟, 𝑡)

𝜕𝑡
,

(20)

which has both the 𝑟
2 dependence of volatility and a time-

dependent nonlinear drift term. By performing the same
analysis as in the other three cases, the bond price 𝐵(𝑟, 𝑡) is
found to be given by (see Appendix B)

𝐵 (𝑟, 𝑡) = 1 − 𝑔
1
(𝑡) exp {−

1

2
𝑐
2
(𝑡)} 𝑟, (21)

where

𝑐
2
(𝑡) = ∫

𝑡

0

𝐴
0
(𝜏) 𝑑𝜏,

𝑔
1
(𝑡) = ∫

𝑡

0

exp {
1

2
𝑐
2
(𝜏)} 𝑑𝜏.

(22)

Next we apply the same analysis to derive the Cox-
Ingersoll-Ross model and Ahn-Gao model from an alterna-
tive set of differential operators realizing the subalgebra L of
the Lie algebra 𝑆𝑈(1, 1) ⊕ ℎ(1):

𝐾
−
=

1

2
𝑟
2𝛾 𝜕
2

𝜕𝑟2
+ (

1

2
𝛾 − 𝜆) 𝑟

2𝛾−1 𝜕

𝜕𝑟
+ 𝛼𝑟
2𝛾−2

,

𝐾
0
=

1

2 (1 − 𝛾)
𝑟
𝜕

𝜕𝑟
+

1

4
−

𝜆

2 (1 − 𝛾)
,

𝐾
+
=

1

2(1 − 𝛾)
2
𝑟
2(1−𝛾)

,

𝑊
3
= 1,

(23)

where 𝛼, 𝛾, and 𝜆 are real adjustable parameters (see
Appendix A). The subalgebra L is actually the reductive Lie
algebra 𝑈(1, 1).
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(1) By choosing 𝛼 = 0, 𝛾 = 1/2, and 𝜆 = 1/4 − 𝜅𝜃/𝜎
2, the

bond pricing equation of the Cox-Ingersoll-Ross model with
constant model parameters can be expressed in terms of the
differential operators realizing the subalgebra L as

𝜕𝐵 (𝑟, 𝑡)

𝜕𝑡
= {

1

2
𝜎
2
𝑟
𝜕
2

𝜕𝑟2
+ 𝜅 (𝜃 − 𝑟)

𝜕

𝜕𝑟
− 𝑟}𝐵 (𝑟, 𝑡)

= {𝜎
2
𝐾
−
− 𝜅𝐾
0
−

1

2
𝐾
+
+

𝜅
2
𝜃

𝜎2
𝑊
3
}𝐵 (𝑟, 𝑡) .

(24)

(Strictly speaking, the model parameters 𝜅, 𝜃, and 𝜎 could be
time-varying with the constraint that 𝜅𝜃/𝜎2 is independent of
time 𝑡.)

By the Wei-Norman theorem, the bond price 𝐵(𝑟, 𝑡) can
be easily determined as (see Appendix B)

𝐵 (𝑟, 𝑡) = exp {2𝑐
1
(𝑡) 𝑟} exp{

𝜅𝜃

𝜎2
[𝜅𝑡 + 𝑐

2
(𝑡)]} , (25)

where
𝑑𝑐
1
(𝑡)

𝑑𝑡
= −

1

2
− 𝜅𝑐
1
(𝑡) + 𝜎

2
𝑐
1
(𝑡)
2
, 𝑐
1
(0) = 0,

𝑐
2
(𝑡) = −𝜅𝑡 + 𝜎

2
∫

𝑡

0

𝑐
1
(𝜏) 𝑑𝜏.

(26)

The Riccati equation with constant coefficients in (26) can be
straightforwardly solved to yield

𝑐
1
(𝑡) = −

exp {𝛾𝑡} − 1

(𝛾 + 𝜅) (exp {𝛾𝑡} − 1) + 2𝛾
(27)

with 𝛾 = √𝜅2 + 2𝜎2. Once the 𝑐
1
(𝑡) has been found, we are

also able to obtain

𝑐
2
(𝑡) = −𝜅𝑡 + 2 ln(

2𝛾 exp {(1/2) (𝛾 + 𝜅) 𝑡}

(𝛾 + 𝜅) (exp {𝛾𝑡} − 1) + 2𝛾
) (28)

via analytical integrations. Beyond question, our finding is in
agreement with the well-known closed-form result [2]:

𝐵 (𝑟, 𝑡) = (
2𝛾 exp {(1/2) (𝛾 + 𝜅) 𝑡}

(𝛾 + 𝜅) (exp {𝛾𝑡} − 1) + 2𝛾
)

2𝜅𝜃/𝜎
2

× exp{−
2 (exp {𝛾𝑡} − 1) 𝑟

(𝛾 + 𝜅) (exp {𝛾𝑡} − 1) + 2𝛾
} .

(29)

(2) By setting 𝛼 = −1/𝜎
2, 𝛾 = 3/2, and 𝜆 = 𝑞 + 3/4,

we can cast the bond pricing equation of the Ahn-Gao model,
which includes nonlinearity in the drift term and a realistic
𝑟
3/2 dependence in the volatility (not only the nonlinear
drift term of the Ahn-Gao model is consistent with the
empirical findings of Aı̈t-Sahalia [20], but also the chosen 𝑟

3/2

dependence of volatility is the best fit power law for volatility
[21, 22]), in terms of the differential operators realizing the
subalgebra L into the form

𝜕𝐵 (𝑟, 𝑡)

𝜕𝑡
= {

1

2
𝜎
2
𝑟
3 𝜕
2

𝜕𝑟2
+ 𝜎
2
[𝑎 (𝑡) 𝑟 − 𝑞𝑟

2
]

𝜕

𝜕𝑟
− 𝑟}𝐵 (𝑟, 𝑡)

= {𝜎
2
𝐾
−
− 𝜎
2
𝑎 (𝑡)𝐾

0
+ 𝜎
2
(𝑞 + 1) 𝑎 (𝑡)𝑊

3
} 𝐵 (𝑟, 𝑡) ,

(30)

where 𝑎(𝑡) is a real function of 𝑡. Then applying the Wei-
Norman theorem allows us to represent the bond price𝐵(𝑟, 𝑡)
by (see Appendix B)

𝐵 (𝑟, 𝑡) = exp{𝜎
2
(𝑞 + 1) ∫

𝑡

0

𝑎 (𝜏) 𝑑𝜏} exp {𝑐
2
(𝑡) 𝐾
0
}

× exp {𝑐
3
(𝑡) 𝐾
−
} 𝐵 (𝑟, 0) ,

(31)

where 𝐵(𝑟, 0) = 1 and

𝑐
2
(𝑡) = −𝜎

2
∫

𝑡

0

𝑎 (𝜏) 𝑑𝜏,

𝑐
3
(𝑡) = 𝜎

2
∫

𝑡

0

exp {𝑐
2
(𝜏)} 𝑑𝜏.

(32)

Without loss of generality, we suppose that 𝐵(𝑟, 0) =

𝑥
−(2𝑞+1)

𝑉(𝑥), where 𝑥 = 2/√𝑟,

𝑉 (𝑥) = ∫

∞

0

𝑑]]𝐽
𝑝
(𝑥]) ∫

∞

0

𝑑𝑦𝑦𝐽
𝑝
(𝑦]) 𝑉 (𝑦) , (33)

and 𝑝 = √(2𝑞 + 1)
2
+ 8/𝜎2. It is not difficult to show that the

bond price 𝐵(𝑟, 𝑡) is given by

𝐵 (𝑟, 𝑡) = ∫

∞

0

𝑑𝑥
󸀠
𝐺(𝑥, 𝑡; 𝑥

󸀠
, 0) 𝐵 (𝑟

󸀠
, 0) , (34)

where 𝑥
󸀠
= 2/√𝑟󸀠 and

𝐺(𝑥, 𝑡; 𝑥
󸀠
, 0) = 𝑥

󸀠
[

𝑥
󸀠

𝑥 exp {𝑐
2
(𝑡) /2}

]

2𝑞+1

× ∫

∞

0

𝑑]]𝐽
𝑝
(𝑥] exp{

𝑐
2
(𝑡)

2
})

× 𝐽
𝑝
(𝑥
󸀠
]) exp{−

𝑐
3
(𝑡)

2
]
2
} .

(35)

The function 𝐽
𝑝
(𝜉) is the Bessel function of the first kind of

order 𝑝. Here we havemade use of the fact that 𝑥−(2𝑞+1)𝐽
𝑝
(𝑥])

is an eigenfunction of the operator 𝐾
−
with the eigenvalue

−]2/2.The integral over ] can be analytically evaluated to give
[23]

1

𝑐
3
(𝑡)

exp{−
𝑥
󸀠2

+ 𝑥
2 exp {𝑐

2
(𝑡)}

2𝑐
3
(𝑡)

} 𝐼
𝑝
(
𝑥
󸀠
𝑥 exp {𝑐

2
(𝑡) /2}

𝑐
3
(𝑡)

)

(36)

for 𝑝 > −1, 𝑥󸀠 > 0, 𝑥 exp{𝑐
2
(𝑡)/2} > 0, and | arg [𝑐

2
(𝑡)/2]

1/2
| <

𝜋/4. The function 𝐼
𝑝
(𝜉) is the modified Bessel function of the

first kind of order 𝑝. As a result, 𝐺(𝑥, 𝑡; 𝑥
󸀠
, 0) is found to be

given by

𝐺(𝑥, 𝑡; 𝑥
󸀠
, 0) =

𝑥
󸀠

𝑐
3
(𝑡) exp {(2𝑞 + 1) 𝑐

2
(𝑡) /2}

(
𝑥
󸀠

𝑥
)

2𝑞+1

× 𝐼
𝑝
(
𝑥
󸀠
𝑥 exp {𝑐

2
(𝑡) /2}

𝑐
3
(𝑡)

)

× exp{−
𝑥
󸀠2

+ 𝑥
2 exp {𝑐

2
(𝑡)}

2𝑐
3
(𝑡)

} .

(37)
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Since 𝐵(𝑟, 0) = 1, we can readily derive the bond price 𝐵(𝑟, 𝑡)

as follows:

𝐵 (𝑟, 𝑡) =
𝑥
−(2𝑞+1)

𝑐
3
(𝑡) exp {(2𝑞 + 1) 𝑐

2
(𝑡) /2}

× exp{−
𝑥
2 exp {𝑐

2
(𝑡)}

2𝑐
3
(𝑡)

}

× ∫

∞

0

𝑑𝑥
󸀠
𝑥
󸀠2(𝑞+1) exp{−

𝑥
󸀠2

2𝑐
3
(𝑡)

}

× 𝐼
𝑝
(
𝑥
󸀠
𝑥 exp {𝑐

2
(𝑡) /2}

𝑐
3
(𝑡)

)

=
Γ (𝑝 + 1 − 𝜔)

Γ (𝑝 + 1)
𝑀(𝜔, 𝑝 + 1, −

2 exp {𝑐
2
(𝑡)}

𝑐
3
(𝑡) 𝑟

)

× {
2 exp {𝑐

2
(𝑡)}

𝑐
3
(𝑡) 𝑟

}

𝜔

,

(38)

where𝜔 = −(2𝑞+1−𝑝)/2, Γ(𝜉) denotes the Gamma function
and 𝑀(𝜉, 𝜒, 𝜌) is the standard confluent hypergeometric
function [23, 24]. Furthermore, (38) will reproduce the well-
known closed-form result if the model parameter 𝑎(𝑡) is
independent of time [4].

3. Conclusion

In this paper the Lie-algebraic method has been applied to
solve the bond pricing problem in single-factor interest rate
models. Four of the popular single-factor models, namely the
Vasicek model, Cox-Ingersoll-Ross model, double square-
root model, and Ahn-Gao model, are investigated, and
analytical closed-form pricing formulae are derived. Since
all the four bond pricing equations exhibit the dynamical
symmetry 𝑆𝑈(1, 1) ⊕ ℎ(1) or its subgroup, their solutions
can be derived in a unified manner and have very similar
mathematical structures. This interesting feature helps shed
new light upon the systematic formulation of new analytically
tractable single-factor interest rate models, as demonstrated
in Section 2. Time-varying model parameters could also be
incorporated into the derivation of the bond price formulae
without difficulty. This has the added advantage of allowing
yield curves to be fitted, and thus a “no-arbitrage” yield
curve model can be developed to match the current market
data. Hence, we believe that the Lie-algebraic method will
provide an easy-to-use analytical tool for the bond pricing
problem. Furthermore, the Lie-algebraic approach can be
easily extended to the pricing of other standard European
interest rate derivatives for they differ from the zero-coupon
bonds in the final payoff conditions only [25].

Appendices

A. Generators of the Lie Algebra 𝑆𝑈(1, 1) ⊕ ℎ(1)

and Its Subalgebras

The generators {𝑊
1
,𝑊
2
,𝑊
3
} of the Heisenberg-Weyl Lie

algebra ℎ(1) obey the set of commutation relations [19]:

[𝑊
1
,𝑊
2
] = 𝑊

3
, [𝑊

1
,𝑊
3
] = [𝑊

2
,𝑊
3
] = 0. (A.1)

By direct substitution, a possible set of differential operators
realizing the Lie algebra can be identified as

𝑊
1
= 𝑟
𝛾 𝜕

𝜕𝑟
− 𝜆𝑟
𝛼
,

𝑊
2
=

1

1 − 𝛾
𝑟
1−𝛾

,

𝑊
3
= 1,

(A.2)

where 𝛼, 𝛾, and 𝜆 are real adjustable parameters. Then, in
terms of these generators one can construct the generators
{𝐾
+
, 𝐾
0
, 𝐾
−
} of the Lie algebra 𝑆𝑈(1, 1) as follows:

𝐾
−
≡

1

2
𝑊
2

1

=
1

2
𝑟
2𝛾 𝜕
2

𝜕𝑟2
+ (

1

2
𝛾𝑟
2𝛾−1

− 𝜆𝑟
𝛼+𝛾

)
𝜕

𝜕𝑟

+
1

2
𝜆𝑟
𝛼
(𝜆𝑟
𝛼
− 𝛼𝑟
𝛾−1

) ,

𝐾
0
≡

1

4
(𝑊
1
𝑊
2
+ 𝑊
2
𝑊
1
)

=
1

2 (1 − 𝛾)
𝑟
𝜕

𝜕𝑟
+

1

4
−

𝜆

2 (1 − 𝛾)
𝑟
𝛼+1−𝛾

,

𝐾
+
≡

1

2
𝑊
2

2
=

1

2(1 − 𝛾)
2
𝑟
2(1−𝛾)

(A.3)

which satisfy the set of commutation relations [19]:

[𝐾
+
, 𝐾
−
] = −2𝐾

0
, [𝐾

0
, 𝐾
±
] = ±𝐾

±
. (A.4)

These six generators {𝑊
1
,𝑊
2
,𝑊
3
, 𝐾
+
, 𝐾
0
, 𝐾
−
} in turn form

the Lie algebra 𝑆𝑈(1, 1) ⊕ ℎ(1), which is defined by the
following set of commutation relations [19]:

[𝑊
1
,𝑊
2
] = 𝑊

3
, [𝑊

1
,𝑊
3
] = [𝑊

2
,𝑊
3
] = 0,

[𝐾
+
, 𝐾
−
] = −2𝐾

0
, [𝐾

0
, 𝐾
±
] = ±𝐾

±
,

[𝑊
1
, 𝐾
+
] = 𝑊

2
, [𝑊

1
, 𝐾
0
] =

1

2
𝑊
1
,

[𝑊
2
, 𝐾
0
] = −

1

2
𝑊
2
, [𝑊

2
, 𝐾
−
] = −𝑊

1
,

[𝑊
1
, 𝐾
−
] = [𝑊

2
, 𝐾
+
] = [𝑊

3
, 𝐾
0
] = [𝑊

3
, 𝐾
±
] = 0.

(A.5)
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In addition to the subalgebras 𝑆𝑈(1, 1) and ℎ(1), we may also
form another subalgebra L in terms of the four generators
{𝑊
3
, 𝐾
+
, 𝐾
0
, 𝐾
−
} satisfying the commutation relations:

[𝐾
+
, 𝐾
−
] = −2𝐾

0
, [𝐾

0
, 𝐾
±
] = ±𝐾

±
,

[𝑊
3
, 𝐾
0
] = [𝑊

3
, 𝐾
±
] = 0.

(A.6)

The subalgebraL is actually the reductive Lie algebra𝑈(1, 1).
Moreover, it is not difficult to show that an alternative
realization of the set of generators of the Lie algebraL is given
by

𝐾
−
=

1

2
𝑟
2𝛾 𝜕
2

𝜕𝑟2
+ (

1

2
𝛾 − 𝜆) 𝑟

2𝛾−1 𝜕

𝜕𝑟
+ 𝛼𝑟
2𝛾−2

,

𝐾
0
=

1

2 (1 − 𝛾)
𝑟
𝜕

𝜕𝑟
+

1

4
−

𝜆

2 (1 − 𝛾)
,

𝐾
+
=

1

2(1 − 𝛾)
2
𝑟
2(1−𝛾)

,

𝑊
3
= 1,

(A.7)

where 𝛼, 𝛾, and 𝜆 are real adjustable parameters.

B. Wei-Norman Theorem

Consider the linear operator differential equation of the first
order

𝑑𝑈 (𝑡)

𝑑𝑡
= 𝐻 (𝑡) 𝑈 (𝑡) , 𝑈 (0) = 1, (B.1)

where𝐻 and𝑈 are both time-dependent linear operators in a
Banach space or a finite-dimensional space. According to the
Wei-Norman theorem [8], if the operator𝐻 can be expressed
as

𝐻(𝑡) =

𝑁

∑

𝑛=1

𝑎
𝑛
(𝑡) 𝐿
𝑛
, (B.2)

where 𝑎
𝑛
’s are scalar functions of time and 𝐿

𝑛
are the

generators of an𝑁-dimensional solvable Lie algebra or a real
split 3-dimensional simple Lie algebra, then the operator 𝑈

can assume the following form:

𝑈 (𝑡) =

𝑁

∏

𝑛=1

exp {𝑔
𝑛
(𝑡) 𝐿
𝑛
} . (B.3)

Here the 𝑔
𝑛
’s are time-dependent scalar functions to be

determined. To find the 𝑔
𝑛
’s, we simply substitute (B.2) and

(B.3) into (B.1) and compare the two sides term by term to
obtain a set of coupled nonlinear differential equations

𝑑𝑔
𝑛
(𝑡)

𝑑𝑡
=

𝑁

∑

𝑚=1

𝜂
𝑛𝑚

𝑎
𝑚
(𝑡) , 𝑔

𝑛
(0) = 0, (B.4)

where 𝜂
𝑛𝑚

are nonlinear functions of 𝑔
𝑛
’s. Thus, we have

transformed the linear operator differential equation in (B.1)

to a set of coupled nonlinear differential equations of scalar
functions in (B.4).

Moreover, according to Levi’s Theorem, “If 𝐿 is a finite-
dimensional Lie algebra with radical 𝑅 which is the maximal
solvable ideal of the Lie algebra, then there exists a semisimple
subalgebra 𝑆 of 𝐿 such that 𝐿 is the semidirect sum 𝐿 = 𝑆⊕𝑅,”
in the equation 𝑑𝑈(𝑡)/𝑑𝑡 = 𝐻(𝑡)𝑈(𝑡), where 𝐻(𝑡) generates
𝐿, the decomposition𝐿 = 𝑆⊕𝑅 gives rise to the corresponding
decomposition 𝐻(𝑡) = 𝐻

𝑆
(𝑡) + 𝐻

𝑅
(𝑡), where 𝐻

𝑆
(𝑡) ∈ 𝑆 and

𝐻
𝑅
(𝑡) ∈ 𝑅. Then it is easy to verify that 𝑈(𝑡) = 𝑈

𝑆
(𝑡)𝑈
𝑅
(𝑡)

where 𝑈
𝑆
(𝑡) and 𝑈

𝑅
(𝑡) satisfy

𝜕𝑈
𝑆
(𝑡)

𝜕𝜏
= 𝐻
𝑆
(𝑡) 𝑈
𝑆
(𝑡) , (B.5)

𝜕𝑈
𝑅
(𝑡)

𝜕𝑡
= {𝑈
𝑆
(𝑡)
−1

𝐻
𝑅
(𝑡) 𝑈
𝑆
(𝑡)}𝑈

𝑅
(𝑡) . (B.6)

Since 𝑅 is an ideal in 𝐿, we can easily see that 𝑈
𝑆
(𝑡)
−1

𝐻
𝑅
(𝑡)𝑈
𝑆
(𝑡) is in 𝑅. The fact that 𝑅 is solvable makes it easy

to find 𝑈
𝑅
(𝑡) once 𝑈

𝑆
(𝑡) has been found. More details can be

found in [8].
For illustration, we apply theWei-Norman theorem to the

following cases.

B.1. Heisenberg-Weyl Lie Algebra ℎ(1). The Heisenberg-Weyl
Lie algebra ℎ(1) is defined by the set of commutation relations
[17]:

[𝑊
1
,𝑊
2
] = 𝑊

3
, [𝑊

1
,𝑊
3
] = [𝑊

2
,𝑊
3
] = 0, (B.7)

of its generators {𝑊
1
,𝑊
2
,𝑊
3
}. Given that

𝐻(𝑡) = 𝑎
1
(𝑡)𝑊
1
+ 𝑎
2
(𝑡)𝑊
2
+ 𝑎
3
(𝑡)𝑊
3
, (B.8)

theWei-Norman theorem states that𝑈(𝑡) can be expressed as

𝑈 (𝑡) = exp {𝑔
1
(𝑡)𝑊
1
} exp {𝑔

2
(𝑡)𝑊
2
} exp {𝑔

3
(𝑡)𝑊
3
} ,

(B.9)

where the time-dependent functions 𝑔
𝑛
’s satisfy a set of three

coupled nonlinear differential equations:

𝑑𝑔
1
(𝑡)

𝑑𝑡
= 𝑎
1
(𝑡) ,

𝑑𝑔
2
(𝑡)

𝑑𝑡
= 𝑎
2
(𝑡) ,

𝑑𝑔
3
(𝑡)

𝑑𝑡
+ 𝑔
1
(𝑡)

𝑑𝑔
2
(𝑡)

𝑑𝑡
= 𝑎
3
(𝑡) .

(B.10)

It is obvious that the set of differential equations can be easily
solved by quadrature:

𝑔
1
(𝑡) = ∫

𝑡

0

𝑑𝜏𝑎
1
(𝜏) ,

𝑔
2
(𝑡) = ∫

𝑡

0

𝑑𝜏𝑎
2
(𝜏) ,

𝑔
3
(𝑡) = ∫

𝑡

0

𝑑𝜏 [𝑎
3
(𝜏) − 𝑎

2
(𝜏) 𝑔
1
(𝜏)] .

(B.11)

As a result, the operator 𝑈(𝑡) is thus determined.
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B.2. 𝑆𝑈(1, 1) Lie Algebra. Weconsider the evolution equation
of the operator 𝑈(𝑡):

𝑑𝑈 (𝑡)

𝑑𝑡
= {𝑎
1
(𝑡) 𝐾
+
+ 𝑎
2
(𝑡) 𝐾
0
+ 𝑎
3
(𝑡) 𝐾
−
}𝑈 (𝑡) ,

𝑈 (0) = 1,

(B.12)

where the operators {𝐾
+
, 𝐾
0
, 𝐾
−
} form the 𝑆𝑈(1, 1) Lie

algebra defined by the commutation relations [19]:

[𝐾
+
, 𝐾
−
] = −2𝐾

0
, [𝐾

0
, 𝐾
±
] = ±𝐾

±
. (B.13)

According to the Wei-Norman theorem, the operator 𝑈(𝑡)

can be expressed in the product form

𝑈 (𝑡) = exp {𝑐
1
(𝑡) 𝐾
+
} exp {𝑐

2
(𝑡) 𝐾
0
} exp {𝑐

3
(𝑡) 𝐾
−
} ,

𝑐
𝑖
(0) = 0,

(B.14)

where the time-dependent functions 𝑐
𝑛
’s satisfy a set of three

coupled nonlinear differential equations:

𝑑𝑐
1
(𝑡)

𝑑𝑡
− 𝑐
1
(𝑡)

𝑑𝑐
2
(𝑡)

𝑑𝑡
+ 𝑐
1
(𝑡)
2 exp {−𝑐

2
(𝑡)}

𝑑𝑐
3
(𝑡)

𝑑𝑡
= 𝑎
1
(𝑡) ,

𝑑𝑐
2
(𝑡)

𝑑𝑡
− 2𝑐
1
(𝑡) exp {−𝑐

2
(𝑡)}

𝑑𝑐
3
(𝑡)

𝑑𝑡
= 𝑎
2
(𝑡) ,

exp {−𝑐
2
(𝑡)}

𝑑𝑐
3
(𝑡)

𝑑𝑡
= 𝑎
3
(𝑡) .

(B.15)

After further simplification, these three differential equations
become

𝑑𝑐
1
(𝑡)

𝑑𝑡
= 𝑎
1
(𝑡) + 𝑎

2
(𝑡) 𝑐
1
(𝑡) + 𝑎

3
(𝑡) 𝑐
1
(𝑡)
2
, 𝑐
1
(0) = 0,

𝑐
2
(𝑡) = ∫

𝑡

0

{𝑎
2
(𝜏) + 2𝑎

3
(𝜏) 𝑐
1
(𝜏)} 𝑑𝜏,

𝑐
3
(𝑡) = ∫

𝑡

0

𝑎
3
(𝜏) exp {𝑐

2
(𝜏)} 𝑑𝜏.

(B.16)

Hence, once the 𝑐
1
(𝑡) is found by solving the Riccati equation,

the 𝑐
2
(𝑡) and 𝑐

3
(𝑡) can be readily determined by quadrature.

B.3. 𝑆𝑈(1, 1) ⊕ ℎ(1) Lie Algebra. If 𝐻(𝑡) is a linear combina-
tion of the six generators {𝑊

1
,𝑊
2
,𝑊
3
, 𝐾
+
, 𝐾
0
, 𝐾
−
} of the Lie

algebra 𝑆𝑈(1, 1) ⊕ ℎ(1), then, according to Levi’s theorem, we
may decompose the 𝐻(𝑡) into two parts 𝐻

𝑆
(𝑡) = 𝑎

1
(𝑡)𝐾
+
+

𝑎
2
(𝑡)𝐾
0
+ 𝑎
3
(𝑡)𝐾
−
and 𝐻

𝑅
(𝑡) = 𝑏

1
(𝑡)𝑊
1
+ 𝑏
2
(𝑡)𝑊
2
+ 𝑏
3
(𝑡)𝑊
3
,

and the operator 𝑈(𝑡) assumes the product form 𝑈(𝑡) =

𝑈
𝑆
(𝑡)𝑈
𝑅
(𝑡) where 𝑈

𝑆
(𝑡) and 𝑈

𝑅
(𝑡) satisfy (B.5) and (B.6),

respectively. It is obvious that the operator 𝑈
𝑆
(𝑡) is given by

𝑈
𝑆
(𝑡) = exp {𝑐

1
(𝑡) 𝐾
+
} exp {𝑐

2
(𝑡) 𝐾
0
} exp {𝑐

3
(𝑡) 𝐾
−
} ,

(B.17)

where
𝑑𝑐
1
(𝑡)

𝑑𝑡
= 𝑎
1
(𝑡) + 𝑎

2
(𝑡) 𝑐
1
(𝑡) + 𝑎

3
(𝑡) 𝑐
1
(𝑡)
2
, 𝑐
1
(0) = 0,

𝑐
2
(𝑡) = ∫

𝑡

0

{𝑎
2
(𝜏) + 2𝑎

3
(𝜏) 𝑐
1
(𝜏)} 𝑑𝜏,

𝑐
3
(𝑡) = ∫

𝑡

0

𝑎
3
(𝜏) exp {𝑐

2
(𝜏)} 𝑑𝜏.

(B.18)

Next, in order to determine 𝑈
𝑅
(𝑡), we need to evaluate

𝐻
𝐼
(𝑡) ≡ 𝑈

𝑆
(𝑡)
−1

𝐻
𝑅
(𝑡)𝑈
𝑆
(𝑡). Using the explicit form of the

operator 𝑈
𝑆
(𝑡), we can apply the Baker-Hausdorff formula

[26] to derive the operator 𝐻
𝐼
(𝑡):

𝐻
𝐼
(𝑡) = 𝑎

1
(𝑡)𝑊
1
+ 𝑎
2
(𝑡)𝑊
2
+ 𝑎
3
(𝑡)𝑊
3
, (B.19)

where

𝑎
1
(𝑡) = 𝑏

1
(𝑡) exp {

1

2
𝑐
2
(𝑡)} − [𝑏

1
(𝑡) 𝑐
1
(𝑡) + 𝑏

2
(𝑡)]

× 𝑐
3
(𝑡) exp {−

1

2
𝑐
2
(𝑡)} ,

𝑎
2
(𝑡) = [𝑏

1
(𝑡) 𝑐
1
(𝑡) + 𝑏

2
(𝑡)] exp {−

1

2
𝑐
2
(𝑡)} ,

𝑎
3
(𝑡) = 𝑏

3
(𝑡) .

(B.20)

Then, the operator 𝑈
𝑅
(𝑡) can be easily found to be given by

𝑈
𝑅
(𝑡) = exp {𝑔

1
(𝑡)𝑊
1
} exp {𝑔

2
(𝑡)𝑊
2
} exp {𝑔

3
(𝑡)𝑊
3
} ,

(B.21)

where

𝑔
1
(𝑡) = ∫

𝑡

0

𝑑𝜏𝑎
1
(𝜏) ,

𝑔
2
(𝑡) = ∫

𝑡

0

𝑑𝜏𝑎
2
(𝜏) ,

𝑔
3
(𝑡) = ∫

𝑡

0

𝑑𝜏 [𝑎
3
(𝜏) − 𝑎

2
(𝜏) 𝑔
1
(𝜏)] .

(B.22)
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