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We study the convergence of implicit Picard iterative sequences for strongly accretive and strongly pseudocontractive mappings.
We have also improved the results of Ćirić et al. (2009).

1. Introduction and Preliminaries

Let 𝐸 be a real Banach space with dual 𝐸∗. The symbol 𝐷(𝑇)

stands for the domain of 𝑇.
Let 𝑇 : 𝐷(𝑇) → 𝐸 be a mapping.

Definition 1. Themapping 𝑇 is said to be Lipschitzian if there
exists a constant 𝐿 > 0 such that

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 (1)

for all 𝑥, 𝑦 ∈ 𝐷(𝑇).

Definition 2. Themapping 𝑇 is called strongly pseudocontrac-
tive if there exists 𝑡 > 1 such that

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩(1 + 𝑟) (𝑥 − 𝑦) − 𝑟𝑡 (𝑇𝑥 − 𝑇𝑦)
󵄩󵄩󵄩󵄩 (2)

for all 𝑥, 𝑦 ∈ 𝐷(𝑇) and 𝑟 > 0. If 𝑡 = 1 in inequality (2), then
𝑇 is called pseudocontractive.

We will denote by 𝐽 the normalized duality mapping from
𝐸 to 2

𝐸
∗

defined by

𝐽 (𝑥) = {𝑓
∗

∈ 𝐸
∗

: ⟨𝑥, 𝑓
∗

⟩ = ‖𝑥‖
2

=
󵄩󵄩󵄩󵄩𝑓
∗󵄩󵄩󵄩󵄩

2

} , (3)

where ⟨⋅, ⋅⟩ denotes the generalized duality pairing. It follows
from inequality (2) that 𝑇 is strongly pseudocontractive if and
only if there exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 𝑘
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2 (4)

for all 𝑥, 𝑦 ∈ 𝐷(𝑇), where 𝑘 = (𝑡 − 1)/𝑡 ∈ (0, 1).
Consequently, from inequality (4) it follows easily that 𝑇 is
strongly pseudocontractive if and only if

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦 + 𝑠 [(𝐼 − 𝑇 − 𝑘𝐼) 𝑥 − (𝐼 − 𝑇 − 𝑘𝐼) 𝑦]
󵄩󵄩󵄩󵄩 (5)

for all 𝑥, 𝑦 ∈ 𝐷(𝑇) and 𝑠 > 0.
Closely related to the class of pseudocontractive maps is

the class of accretive operators.
Let 𝐴 : 𝐷(𝐴) → 𝐸 be an operator.

Definition 3. The operator 𝐴 is called accretive if
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦 + 𝑠 (𝐴𝑥 − 𝐴𝑦)

󵄩󵄩󵄩󵄩 (6)

for all 𝑥, 𝑦 ∈ 𝐷(𝐴) and 𝑠 > 0.

Also, as a consequence ofKato [1], this accretive condition
can be expressed in terms of the duality mapping as follows.

For each 𝑥, 𝑦 ∈ 𝐷(𝐴), there exists 𝑗(𝑥−𝑦) ∈ 𝐽(𝑥−𝑦) such
that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 0. (7)
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Consequently, inequality (2) with 𝑡 = 1 yields that 𝐴 is
accretive if and only if 𝑇 := (𝐼 − 𝐴) is pseudocontractive.
Furthermore, from setting 𝐴 := (𝐼 − 𝑇), it follows from
inequality (5) that 𝑇 is strongly pseudocontractive if and only
if (𝐴 − 𝑘𝐼) is accretive, and, using (7), this implies that 𝑇 =

(𝐼 −𝐴) is strongly pseudocontractive if and only if there exists
𝑘 ∈ (0, 1) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 𝑘
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2 (8)

for all 𝑥, 𝑦 ∈ 𝐷(𝐴). The operator 𝐴 satisfying inequality
(8) is called strongly accretive. It is then clear that 𝐴 is
strongly accretive if and only if 𝑇 = (𝐼 − 𝐴) is strongly
pseudocontractive. Thus, the mapping theory for strongly
accretive operators is closely related to the fixed point theory
of strongly pseudocontractive mappings. We will exploit this
connection in the sequel.

The notion of accretive operators was introduced inde-
pendently in 1967 by Kato [1] and Browder [2]. An early
fundamental result in the theory of accretive operators, due
to Browder, states that the initial value problem

𝑑𝑢

𝑑𝑡
+ 𝐴𝑢 = 0, 𝑢 (0) = 𝑢

0
(9)

is solvable if 𝐴 is locally Lipschitzian and accretive on 𝐸.
If 𝑢 is independent of 𝑡, then 𝐴𝑢 = 0 and the solution of
this equation corresponds to the equilibrium points of the
system (9). Consequently, considerable research efforts have
been devoted, especially within the past 15 years or so, to
developing constructive techniques for the determination of
the kernels of accretive operators in Banach spaces (see, e.g.,
[3–19]. Two well-known iterative schemes, theMann iterative
method (see, e.g., [20]) and the Ishikawa iterative scheme (see,
e.g., [21]), have successfully been employed.

The Mann and Ishikawa iterative schemes are global and
their rate of convergence is generally of the order 𝑂(𝑛

−1/2

).
It is clear that if, for an operator 𝑈, the classical iterative
sequence of the form, 𝑥

𝑛+1
= 𝑈𝑥

𝑛
, 𝑥
0

∈ 𝐷(𝑈) (the so-
called Picard iterative sequence) converges, then it is certainly
superior and preferred to either the Mann or the Ishikawa
sequence since it requires less computations and, moreover,
its rate of convergence is always at least as fast as that of a
geometric progression.

In [22, 23], Chidume proved the following results.

Theorem 4. Let 𝐸 be an arbitrary real Banach space and 𝐴 :

𝐸 → 𝐸 Lipschitz (with constant 𝐿 > 0) and strongly accretive
with a strong accretive constant 𝑘 ∈ (0, 1). Let 𝑥

∗ denote a
solution of the equation 𝐴𝑥 = 0. Set 𝜖 := (1/2)(𝑘/(1 + 𝐿(3 +

𝐿 − 𝑘))) and define 𝐴
𝜖
: 𝐸 → 𝐸 by 𝐴

𝜖
𝑥 := 𝑥 − 𝜖𝐴𝑥 for each

𝑥 ∈ 𝐸.
For arbitrary 𝑥

0
∈ 𝐸, define the sequence {𝑥

𝑛
}
∞

𝑛=0
in 𝐸 by

𝑥
𝑛+1

= 𝐴
𝜖
𝑥
𝑛
, 𝑛 ≥ 0. (10)

Then {𝑥
𝑛
}
∞

𝑛=0
converges strongly to 𝑥

∗ with
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩 ≤ 𝛿
𝑛 󵄩󵄩󵄩󵄩𝑥0 − 𝑥

∗󵄩󵄩󵄩󵄩 , (11)

where 𝛿 = (1 − (1/2)𝑘𝜖) ∈ (0, 1). Moreover, 𝑥∗ is unique.

Corollary 5. Let 𝐸 be an arbitrary real Banach space and 𝐾

a nonempty convex subset of 𝐸. Let 𝑇 : 𝐾 → 𝐾 be Lipschitz
(with constant 𝐿 > 0) and strongly pseudocontractive (i.e., 𝑇
satisfies inequality (5) for all 𝑥, 𝑦 ∈ 𝐾). Assume that 𝑇 has a
fixed point 𝑥∗ ∈ 𝐾. Set 𝜖

0
:= (1/2)(𝑘/(1 + 𝐿(3 + 𝐿 − 𝑘))) and

define𝑇
𝜖
0

: 𝐾 → 𝐾 by𝑇
𝜖
0

𝑥 = (1−𝜖
0
)𝑥+𝜖
0
𝑇𝑥 for each 𝑥 ∈ 𝐾.

For arbitrary 𝑥
0
∈ 𝐾, define the sequence {𝑥

𝑛
}
∞

𝑛=0
in 𝐾 by

𝑥
𝑛+1

= 𝑇
𝜖
0

𝑥
𝑛
, 𝑛 ≥ 0. (12)

Then {𝑥
𝑛
}
∞

𝑛=0
converges strongly to 𝑥

∗ with

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤ 𝛿

𝑛 󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩 , (13)

where 𝛿 = (1 − (1/2)𝑘𝜖
0
) ∈ (0, 1). Moreover, 𝑥∗ is unique.

Recently, Ćirić et al. [24] improved the results of Chidume
[22, 23], Liu [14], and Sastry and Babu [18] as in the following
results.

Theorem 6. Let 𝐸 be an arbitrary real Banach space and 𝐴 :

𝐸 → 𝐸 a Lipschitz (with constant𝐿 > 0) and strongly accretive
with a strong accretive constant 𝑘 ∈ (0, 1). Let 𝑥

∗ denote a
solution of the equation 𝐴𝑥 = 0. Set 𝜀 := (𝑘 − 𝜂)/𝐿(2 + 𝐿),
𝜂 ∈ (0, 𝑘) and define 𝐴

𝜀
: 𝐸 → 𝐸 by 𝐴

𝜀
𝑥 := 𝑥 − 𝜀𝐴𝑥 for each

𝑥 ∈ 𝐸. For arbitrary 𝑥
0

∈ 𝐸, define the sequence {𝑥
𝑛
}
∞

𝑛=0
in 𝐸

by

𝑥
𝑛+1

= 𝐴
𝜀
𝑥
𝑛
, 𝑛 ≥ 0. (14)

Then {𝑥
𝑛
}
∞

𝑛=0
converges strongly to 𝑥

∗ with

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤ 𝜃

𝑛 󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩 , (15)

where 𝜃 = (1 − ((𝑘 − 𝜂)/(𝑘(𝑘 − 𝜂) + 𝐿(2 + 𝐿)))𝜂) ∈ (0, 1). Thus
the choice 𝜂 = 𝑘/2 yields 𝜃 = 1−𝑘

2

/2[𝑘+2𝐿(2+𝐿)]. Moreover,
𝑥
∗ is unique.

Corollary 7. Let 𝐸 be an arbitrary real Banach space and 𝐾

a nonempty convex subset of 𝐸. Let 𝑇 : 𝐾 → 𝐾 be Lipschitz
(with constant 𝐿 > 0) and strongly pseudocontractive (i.e., 𝑇
satisfies inequality (5) for all 𝑥, 𝑦 ∈ 𝐾). Assume that 𝑇 has a
fixed point 𝑥∗ ∈ 𝐾. Set 𝜀

0
:= (𝑘 − 𝜂)/𝐿(2 + 𝐿), 𝜂 ∈ (0, 𝑘) and

define𝑇
𝜀
0

: 𝐾 → 𝐾 by𝑇
𝜀
0

𝑥 = (1−𝜀
0
)𝑥+𝜀
0
𝑇𝑥 for each 𝑥 ∈ 𝐾.

For arbitrary 𝑥
0
∈ 𝐾, define the sequence {𝑥

𝑛
}
∞

𝑛=0
in 𝐾 by

𝑥
𝑛+1

= 𝑇
𝜀
0

𝑥
𝑛
, 𝑛 ≥ 0. (16)

Then {𝑥
𝑛
}
∞

𝑛=0
converges strongly to 𝑥

∗ with

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤ 𝜃

𝑛 󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩 , (17)

where 𝜃 = (1 − ((𝑘 − 𝜂)/(𝑘(𝑘 − 𝜂) + 𝐿(2 + 𝐿)))𝜂) ∈ (0, 1).
Moreover, 𝑥∗ is unique.

In this paper, we study the convergence of implicit
Picard iterative sequences for strongly accretive and strongly
pseudocontractive mappings. We have also improved the
results of Ćirić et al. [24].
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2. Main Results

In the following theorems, 𝐿 > 1 will denote the Lipschitz
constant of the operator 𝐴 and 𝑘 will denote the strong
accretive constant of the operator 𝐴 as in inequality (8).
Furthermore, 𝜖 > 0 is defined by

𝜖 :=
𝑘 − 𝜂

𝐿 + (1 + 𝐿) (𝑘 − 𝜂)
, 𝜂 ∈ (0, 𝑘) . (18)

With these notations, we prove the following theorem.

Theorem 8. Let 𝐸 be an arbitrary real Banach space and 𝐴 :

𝐸 → 𝐸 Lipschitz and strongly accretive with a strong accretive
constant 𝑘 ∈ (0, 1). Let 𝑥

∗ denote a solution of the equation
𝐴𝑥 = 0. Define𝐴

𝜖
: 𝐸 → 𝐸 by𝐴

𝜖
𝑥
𝑛
= (1−𝜖)𝑥

𝑛−1
+𝜖𝑥
𝑛
−𝜖𝐴𝑥

𝑛

for each 𝑥
𝑛

∈ 𝐸. For arbitrary 𝑥
0

∈ 𝐸, define the sequence
{𝑥
𝑛
}
∞

𝑛=0
in 𝐸 by

𝑥
𝑛
= 𝐴
𝜖
𝑥
𝑛
, 𝑛 ≥ 1. (19)

Then {𝑥
𝑛
}
∞

𝑛=0
converges strongly to 𝑥

∗ with

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤ 𝜌

𝑛 󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩 , (20)

where 𝜌 = (1 − ((𝑘 − 𝜂)/(𝐿 + ((𝑘 − 𝜂)(1 + 𝐿 + 𝑘)))𝜂) ∈ (0, 1).
Thus the choice 𝜂 = 𝑘/2 yields 𝜌 = 1 − 𝑘

2

/2[2𝐿 + 𝑘(1 + 𝐿 + 𝑘)].
Moreover, 𝑥∗ is unique.

Proof. Existence of 𝑥∗ follows from [5,Theorem 13.1]. Define
𝑇 = (𝐼 − 𝐴) where 𝐼 denotes the identity mapping on 𝐸.
Observe that 𝐴𝑥

∗

= 0 if and only if 𝑥∗ is a fixed point of 𝑇.
Moreover, 𝑇 is strongly pseudocontractive since𝐴 is strongly
accretive, and so 𝑇 also satisfies inequality (5) for all 𝑥, 𝑦 ∈ 𝐸

and 𝑠 > 0. Furthermore, the recursion formula 𝑥
𝑛

= 𝐴
𝜖
𝑥
𝑛

becomes

𝑥
𝑛
= (1 − 𝜖) 𝑥

𝑛−1
+ 𝜖𝑇𝑥

𝑛
, 𝑛 ≥ 1. (21)

Observe that

𝑥
∗

= (1 + 𝜖) 𝑥
∗

+ 𝜖 (𝐼 − 𝑇 − 𝑘𝐼) 𝑥
∗

− (1 − 𝑘) 𝜖𝑥
∗

, (22)

and from the recursion formula (21)

𝑥
𝑛−1

= (1 + 𝜖) 𝑥
𝑛
+ 𝜖 (𝐼 − 𝑇 − 𝑘𝐼) 𝑥

𝑛

− (1 − 𝑘) 𝜖𝑥
𝑛
+ 𝜖
2

(𝑥
𝑛−1

− 𝑇𝑥
𝑛
) ,

(23)

which implies that

𝑥
𝑛−1

− 𝑥
∗

= (1 + 𝜖) (𝑥
𝑛
− 𝑥
∗

)

+ 𝜖 [(𝐼 − 𝑇 − 𝑘𝐼) 𝑥
𝑛
− (𝐼 − 𝑇 − 𝑘𝐼) 𝑥

∗

]

− (1 − 𝑘) 𝜖 (𝑥
𝑛
− 𝑥
∗

) + 𝜖
2

(𝑥
𝑛−1

− 𝑇𝑥
𝑛
) .

(24)

This implies using inequality (5)with 𝑠 = 𝜖/(1 + 𝜖) and𝑦 = 𝑥
∗

that
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥

∗󵄩󵄩󵄩󵄩

≥ (1 + 𝜖) (

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝑥
𝑛
− 𝑥
∗

) +
𝜖

1 + 𝜖

× [(𝐼 − 𝑇 − 𝑘𝐼) 𝑥
𝑛
− (𝐼 − 𝑇 − 𝑘𝐼) 𝑥

∗

]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
)

− (1 − 𝑘) 𝜖
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 − 𝜖
2 󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑇𝑥

𝑛

󵄩󵄩󵄩󵄩

≥ (1 + 𝜖 )
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 − (1 − 𝑘) 𝜖
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

− 𝜖
2 󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑇𝑥

𝑛

󵄩󵄩󵄩󵄩

= (1 + 𝑘𝜖)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 − 𝜖
2 󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑇𝑥

𝑛

󵄩󵄩󵄩󵄩 .

(25)

Observe that
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑇𝑥

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑇𝑥

𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑥
𝑛−1

− 𝑇𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝐴𝑥
𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐴𝑥
𝑛−1

− 𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ 𝐿
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 + 𝐿)
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

= 𝐿
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 + 𝐿) 𝜖
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑇𝑥

𝑛

󵄩󵄩󵄩󵄩 ,

(26)

and so
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑇𝑥

𝑛

󵄩󵄩󵄩󵄩 ≤
𝐿

1 − (1 + 𝐿) 𝜖

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥
∗󵄩󵄩󵄩󵄩 , (27)

so that from (25) we obtain
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥

∗󵄩󵄩󵄩󵄩 ≥ (1 + 𝑘𝜖)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

−
𝐿𝜖
2

1 − (1 + 𝐿) 𝜖

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(28)

Therefore

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤

1 + 𝐿𝜖
2

/ (1 − (1 + 𝐿) 𝜖)

1 + 𝑘𝜖

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥
∗󵄩󵄩󵄩󵄩 , (29)

where

𝜌 =
1 + 𝐿𝜖

2

/ (1 − (1 + 𝐿) 𝜖)

1 + 𝑘𝜖

= 1 −
𝜖

1 + 𝑘𝜖
(𝑘 −

𝐿𝜖

1 − (1 + 𝐿) 𝜖
) = 1 −

𝜖

1 + 𝑘𝜖
𝜂

= 1 −
𝑘 − 𝜂

𝐿 + (𝑘 − 𝜂) (1 + 𝐿 + 𝑘)
𝜂.

(30)

From (29) and (30), we get
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 ≤ 𝜌
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ ⋅ ⋅ ⋅

≤ 𝜌
𝑛 󵄩󵄩󵄩󵄩𝑥0 − 𝑥

∗󵄩󵄩󵄩󵄩

󳨀→ 0

(31)
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as 𝑛 → ∞. Hence 𝑥
𝑛

→ 𝑥
∗ as 𝑛 → ∞. Uniqueness follows

from the strong accretivity property of 𝐴.

The following is an immediate corollary of Theorem 8.

Corollary 9. Let 𝐸 be an arbitrary real Banach space and 𝐾

a nonempty convex subset of 𝐸. Let 𝑇 : 𝐾 → 𝐾 be Lipschitz
(with constant 𝐿 > 1) and strongly pseudocontractive (i.e., 𝑇
satisfies inequality (5) for all 𝑥, 𝑦 ∈ 𝐾). Assume that 𝑇 has a
fixed point 𝑥

∗

∈ 𝐾. Set 𝜖
0

:= (𝑘 − 𝜂)/(𝐿 + (1 + 𝐿)(𝑘 − 𝜂)),
𝜂 ∈ (0, 𝑘) and define 𝐴

𝜖
0

: 𝐾 → 𝐾 by 𝐴
𝜖
0

𝑥
𝑛
= (1 − 𝜖

0
)𝑥
𝑛−1

+

𝜖
0
𝑥
𝑛
− 𝜖
0
𝐴𝑥
𝑛
for each 𝑥

𝑛
∈ 𝐾. For arbitrary 𝑥

0
∈ 𝐾, define the

sequence {𝑥
𝑛
}
∞

𝑛=0
in 𝐾 by

𝑥
𝑛
= 𝐴
𝜖
0

𝑥
𝑛
, 𝑛 ≥ 1. (32)

Then {𝑥
𝑛
}
∞

𝑛=0
converges strongly to 𝑥

∗ with
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩 ≤ 𝜌
𝑛

0

󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩 , (33)

where 𝜌
0
= (1 − ((𝑘 − 𝜂)/(𝐿 + (𝑘 − 𝜂)(1 + 𝐿 + 𝑘)))𝜂) ∈ (0, 1).

Thus the choice 𝜂 = 𝑘/2 yields 𝜌
0
= 1−𝑘

2

/2[2𝐿+𝑘(1+𝐿+𝑘)].
Moreover, 𝑥∗ is unique.

Proof. Observe that 𝑥∗ is a fixed point of 𝑇 if and only if it is
a fixed point of 𝑇

𝜖
0

. Furthermore, the recursion formula (32)
is simplified to the formula

𝑥
𝑛
= (1 − 𝜖

0
) 𝑥
𝑛−1

+ 𝜖
0
𝑇𝑥
𝑛
, (34)

which is similar to (21). Following the method of computa-
tions as in the proof of the Theorem 8, we obtain

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤

1 + 𝐿𝜖
2

0
/ (1 − (1 + 𝐿) 𝜖

0
)

1 + 𝑘𝜖
0

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥
∗󵄩󵄩󵄩󵄩

= (1 −
𝑘 − 𝜂

𝐿 + (𝑘 − 𝜂) (1 + 𝐿 + 𝑘)
𝜂)

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(35)

Set 𝜌
0
= 1− ((𝑘−𝜂)/(𝐿+ (𝑘−𝜂)(1+𝐿+𝑘)))𝜂. Then from (35)

we obtain
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 ≤ 𝜌
0

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ ⋅ ⋅ ⋅

≤ 𝜌
𝑛

0

󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩

󳨀→ 0

(36)

as 𝑛 → ∞. This completes the proof.

Remark 10. Since 𝐿 > 1 and 𝑘 < 𝐿, we have

𝐿 > 𝑘 − 𝜂. (37)

So we can easily obtain

1

𝐿 + (𝑘 − 𝜂) (1 + 𝐿 + 𝑘)
>

1

𝑘 (𝑘 − 𝜂) + 𝐿 (2 + 𝐿)
. (38)

Now

𝜌 = 1 −
(𝑘 − 𝜂)

𝐿 + (𝑘 − 𝜂) (1 + 𝐿 + 𝑘)
𝜂

< 1 −
(𝑘 − 𝜂)

𝑘 (𝑘 − 𝜂) + 𝐿 (2 + 𝐿)
𝜂

= 𝜃.

(39)

Thus the relation between Ćirić et al. [24] and our parameter
of convergence, that is, between 𝜃 and 𝜌, respectively, is the
following:

𝜌 < 𝜃. (40)

Our convergence parameter 𝜌 shows the overall improve-
ment for 𝜃, and consequently the results of Ćirić et al. [24] are
improved.
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