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This paper addresses the issue of approximate controllability for a class of control systemwhich is represented bynonlinear fractional
integrodifferential equations with nonlocal conditions. By using semigroup theory, p-mean continuity and fractional calculations,
a set of sufficient conditions, are formulated and proved for the nonlinear fractional control systems. More precisely, the results
are established under the assumption that the corresponding linear system is approximately controllable and functions satisfy non-
Lipschitz conditions. The results generalize and improve some known results.

1. Introduction

In recent years, use theory of fractional calculus and frac-
tional differential equations has gained importance and
popularity due to its applications in various fields of science
and engineering. Various physical phenomena in science and
engineering can be successfully modeled by using fractional
calculus theory. Due to its tremendous scope and applica-
tions, several papers have been devoted to study the existence
of mild solutions of fractional differential equations (see [1–
4] and references therein). On the other hand, controllability
is an important property of a control system which plays an
important role in the analysis and design of control systems
[5–8]. Most literatures in this direction so far have been con-
cerned with controllability of nonlinear differential equations
in infinite-dimensional spaces without fractional derivatives
(see [9] and references therein). Using generalized openmap-
ping theorem, a set of sufficient conditions for constrained
local relative controllability near the origin are formulated
and proved for the semilinear systems with delayed controls
in [10, 11].

Recently, only few papers deal with the controllability of
fractional dynamical systems [12–14]. Klamka [15, 16] derived
a set of sufficient conditions for the local controllability of

finite-dimensional fractional discrete-time semilinear sys-
tems. However, the problem of controllability for fractional
systems has not been fully investigated, and there is still
room open for further research in this area [17]. Moreover,
the approximate controllable systems aremore prevalent, and
very often, approximate controllability is completely adequate
in applications (see [18–21] and references therein). There-
fore, it is important, in fact necessary, to study the weaker
concept of controllability, namely, approximate controllabil-
ity for nonlinear fractional integrodifferential systems. Moti-
vated by this fact, in this paper, we consider the approximate
controllability of the fractional nonlinear integrodifferential
evolution equations with nonlocal initial condition in the
following form:

𝐶
𝐷
𝑞
𝑥 (𝑡) = −𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝑡

𝑛
𝑓 (𝑡, 𝑥 (𝑡) , (𝐻𝑥) (𝑡)) ,

𝑡 ∈ 𝐽 = [0, 𝑏] , 𝑛 ∈ 𝑍
+
, 𝑞 ∈ (0, 1) ,

𝑥 (0) = 𝑔 (𝑥) + 𝑥0 ∈ 𝑋𝛾,

(1)

where the state 𝑥(⋅) takes the values in a Hilbert space 𝑋,
𝐶
𝐷
𝑞

denotes Caputo derivative, −𝐴 : 𝐷(𝐴) → 𝑋 is the
infinitesimal generator of an analytic semigroup {𝑇(𝑡), 𝑡 ≥ 0}
on 𝑋; the control function 𝑢(⋅) is given in 𝐿2(𝐽, 𝑈); 𝑈 is a
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Hilbert space; 𝐵 is a bounded linear operator from 𝑈 into 𝑋;
the operator𝐻 is defined by (𝐻𝑥)(𝑡) = ∫𝑏

0
ℎ(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠; the

nonlinear term 𝑓 : 𝐽 × 𝑋
𝛾
× 𝑋
𝛾
→ 𝑋(or 𝑋

𝛾
) is a given

function, where here 𝐽 = [0, 𝑏]; and 𝑋
𝛾
= 𝐷(𝐴

𝛾
) (0 < 𝛾 < 1)

is a Hilbert space with the norm ‖𝑥‖
𝛾
= ‖𝐴
𝛾
𝑥‖ for 𝑥 ∈ 𝑋

𝛾
.

The functions 𝑓, ℎ, and 𝑔 will be specified later. In fact, our
results in this paper are motivated by the recent work of [20],
and the fractional integrodifferential equations are studied in
[4]. The main objective of this paper is to derive conditions
for the approximate controllability of (1) with non-Lipschitz
coefficients, and the associated linear system is approximately
controllable.

2. Preliminaries

In this section, we provide definitions, lemmas, and notations
necessary to establish our main results [4]. Let ‖𝑓‖

𝐿
𝑝
(𝐽,𝑅
+
)

denote the 𝐿𝑝(𝐽, 𝑅+) norm of 𝑓 whenever 𝑓 ∈ 𝐿𝑝(𝐽, 𝑅+)
for some 𝑝 with 1 < 𝑝 < ∞. Let C

𝛾
denote the Banach

space 𝐶(𝐽,𝑋
𝛾
) endowed with sup norm given by ‖𝑥‖

∞
≡

sup
𝑡∈𝐽
‖𝑥‖
𝛾
, for 𝑥 ∈ C

𝛾
, 𝛾 ∈ (0, 1).

Let us recall the following known results.
The fractional integral of order 𝛽 with the lower limit 0

for a function 𝑓 is defined as

𝐼
𝛽
𝑓 (𝑡) =

1

Γ (𝛽)
∫

𝑡

0

𝑓 (𝑠)

(𝑡 − 𝑠)
1−𝛽
𝑑𝑠, 𝑡 > 0, 𝛽 > 0, (2)

provided the right-hand side is pointwise defined on [0,∞),
where Γ(⋅) is the gamma function.

Riemann-Liouville derivative of order 𝛽 with lower limit
zero for a function 𝑓 : [0,∞) → 𝑅 can be written as

𝐿
𝐷
𝛽
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛽)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

0

𝑓 (𝑠)

(𝑡 − 𝑠)
𝛽+1−𝑛

𝑑𝑠,

𝑡 > 0, 𝑛 − 1 < 𝛽 < 𝑛.

(3)

The Caputo derivative of order 𝛽 for a function 𝑓 : [0,
∞) → 𝑅 can be written as

𝐷
𝛽
𝑓 (𝑡) =

𝐿
𝐷
𝛽
(𝑓 (𝑡) −

𝑛−1

∑

𝑘=0

𝑡
𝑘

𝑘!
𝑓
(𝑘)
(0)) ,

𝑡 > 0, 𝑛 − 1 < 𝛽 < 𝑛.

(4)

Remark 1 (see [4]). (i) If 𝑓(𝑡) ∈ 𝐶𝑛[0,∞), then

𝐷
𝛽
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛽)
∫

𝑡

0

𝑓
𝑛
(𝑠)

(𝑡 − 𝑠)
𝛽+1−𝑛

𝑑𝑠 = 𝐼
𝑛−𝛽
𝑓
𝑛
(𝑠) ,

𝑡 > 0, 0 ≤ 𝑛 − 1 < 𝛽 < 𝑛.

(5)

(ii) The Caputo derivative of a constant is equal to zero.
(iii) If 𝑓 is an abstract function with values in 𝑋, then

integrals which appear in the above results are taken in
Bochner’s sense.

For additional details concerning the fractional deriva-
tive, we refer the reader to [3].

To define the mild solution for the control system (1), we
associate problem (1) to the following integral equation [4]:

𝑥 (𝑡) = T (𝑡) [𝑥0 + 𝑔 (𝑥)] + ∫
𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑠
𝑛
S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠,

𝑡 ∈ 𝐽,

(6)

whereT(𝑡)=∫∞
0
𝜉
𝑞
(𝜃)𝑇(𝑡

𝑞
𝜃)𝑑𝜃,S(𝑡)=𝑞 ∫∞

0
𝜃𝜉
𝑞
(𝜃)𝑇(𝑡

𝑞
𝜃)𝑑𝜃,

𝜉
𝑞
(𝜃) = (1/𝑞)𝜃

−1−1/𝑞
𝑤
𝑞
(𝜃
−1/𝑞
) ≥ 0, 𝑤

𝑞
(𝜃) = (1/

𝜋)∑
∞

𝑛=1
(−1)
𝑛−1
𝜃
−𝑞𝑛−1
(Γ(𝑛𝑞+1)/𝑛!) sin(𝑛𝜋𝑞), 𝜃 ∈ (0,∞), and

𝜉
𝑞
is a probability density function defined on (0,∞); that is

𝜉
𝑞
(𝜃) ≥ 0, 𝜃 ∈ (0,∞), and ∫∞

0
𝜉
𝑞
(𝜃)𝑑𝜃 = 1.

Definition 2. A function 𝑥(⋅; 𝑥
0
, 𝑢) ∈ 𝐶(𝐽, 𝑋

𝛾
) is said to be

a mild solution of (1) if for any 𝑢(⋅) ∈ 𝐿2(𝐽, 𝑈) the integral
equation (6) is satisfied.

Definition 3. The system (1) is said to be approximately
controllable on the interval 𝐽 ifR(𝑏, 𝑥0) = 𝑋, where

R (𝑏, 𝑥0) = {𝑥𝑏 (𝑥0; 𝑢) (0) : 𝑢 (⋅) ∈ 𝐿
2
(𝐽, 𝑈)} (7)

is called the reachable set of system (1) at terminal time 𝑏,
and its closure in 𝑋 is denoted by R(𝑏, 𝑥

0
); let 𝑥

𝑏
(𝑥
0
; 𝑢) be

the state value of (1) at terminal time 𝑏 corresponding to the
control 𝑢 and the initial value 𝑥

0
∈ 𝑋.

Consider the following linear fractional differential con-
trol system

𝐷
𝑞

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) , 𝑡 ∈ 𝐽 = [0, 𝑏] , 0 < 𝑞 < 1,

𝑥 (0) = 𝑥0.

(8)

The approximate controllability for the system (8) is a natural
generalization of approximate controllability for the linear
first order control system (see [18]). It is convenient at this
point to introduce the controllability operator associatedwith
the linear system

Γ
𝑏

0
= ∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1

S (𝑏 − 𝜏) 𝐵𝐵
∗
S
∗
(𝑏 − 𝜏) 𝑑𝜏, (9)

where 𝐵∗ denotes the adjoint of 𝐵 and S∗(𝑡) is the adjoint
of S(𝑡). It is straightforward that the operator Γ𝑏

0
is a linear

bounded operator. Let 𝑅(𝛼, Γ𝑏
0
) = (𝛼𝐼 + Γ

𝑏

0
)
−1 for 𝛼 > 0.

Lemma 4. The linear fractional control system (8) is approx-
imately controllable on 𝐽 if and only if 𝛼𝑅(𝛼, Γ𝑏

0
) → 0 as

𝛼 → 0
+ in the strong operator topology.

The proof of this lemma is a straightforward adaptation
of the proof of Theorem 2 of [18].
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Lemma 5 (see [4]). For each 𝜓 ∈ 𝐿𝑝(𝐽, 𝑋) with 1 ≤ 𝑝 <
+∞, one has lim

ℎ→0
∫
𝑏

0
‖𝜓(𝑡 + ℎ) − 𝜓(𝑡 + ℎ)‖

𝑝
𝑑𝑡 = 0, where

𝜓(𝑠) = 0 for 𝑠 does not belong to 𝐽.

Lemma 6 (see [4]). The operatorsT andS have the following
properties.

(i) For fixed 𝑡 ≥ 0,T(𝑡) and S(𝑡) are linear and bounded
operators. For any 𝑥 ∈ 𝑋,

‖T (𝑡) 𝑥‖ ≤ 𝑀‖𝑥‖ , ‖S (𝑡) 𝑥‖ ≤
𝑀𝑞

Γ (𝑞 + 1)
‖𝑥‖ . (10)

(ii) {T(𝑡), 𝑡 ≥ 0} and {S(𝑡), ≥ 0} are strongly continuous.
(iii) For every 𝑡 > 0,T(𝑡) and S(𝑡) are also compact oper-

ators.
(iv) For any 𝑥 ∈ 𝑋, 𝛽 ∈ (0, 1), and 𝛾 ∈ (0, 1) one has

𝐴S (𝑡) 𝑥 = 𝐴
1−𝛽

S (𝑡) 𝐴
𝛽
𝑥, 𝑡 ∈ 𝐽,

󵄩󵄩󵄩󵄩𝐴
𝛾
S (𝑡)
󵄩󵄩󵄩󵄩 ≤

𝑀
𝛾
𝑞Γ (2 − 𝛾)

Γ (1 + 𝑞 (1 − 𝛾))
𝑡
−𝛾𝑞
, 0 < 𝑡 ≤ 𝑏.

(11)

(v) For fixed 𝑡 ≥ 0 and any 𝑥 ∈ 𝑋
𝛾
, one has

‖T (𝑡) 𝑥‖𝛾 ≤ 𝑀‖𝑥‖𝛾, ‖S(𝑡)𝑥‖𝛾 ≤
𝑀𝑞

Γ (𝑞 + 1)
‖𝑥‖𝛾. (12)

(vi) T𝛾(𝑡) and S𝛾(𝑡), 𝑡 > 0 are uniformly continuous; that
is, for each fixed 𝑡 > 0 and 𝜖 > 0, there exists ℎ > 0 such
that

󵄩󵄩󵄩󵄩󵄩
T
𝛾
(𝑡 + 𝜖) −T

𝛾
(𝑡)
󵄩󵄩󵄩󵄩󵄩𝛾
< 𝜖, for 𝑡 + 𝜖 ≥ 0, |𝜖| < ℎ,

󵄩󵄩󵄩󵄩󵄩
S
𝛾
(𝑡 + 𝜖) − S

𝛾
(𝑡)
󵄩󵄩󵄩󵄩󵄩𝛾
< 𝜖, for 𝑡 + 𝜖 ≥ 0, |𝜖| < ℎ,

(13)

where T
𝛾
(𝑡) = ∫

∞

0
𝜉
𝑞
(𝜃)𝑇
𝛾
(𝑡
𝑞
𝜃)𝑑𝜃, S

𝛾
(𝑡) =

𝑞 ∫
∞

0
𝜃𝜉
𝑞
(𝜃)𝑇
𝛾
(𝑡
𝑞
𝜃)𝑑𝜃.

3. Main Result

In this section, we present our main result on approximate
controllability of control system (1). We prove that under
certain conditions, approximate controllability of the linear
system (8) implies the approximate controllability of nonlin-
ear fractional system (1). In order to establish the result, we
require the following assumptions.

(𝐻
1
)The function 𝑓 : 𝐽 ×𝑋

𝛾
×𝑋
𝛾
→ 𝑋
𝛾
is Carathéodory,

and there exists a positive function 𝜌 ∈ 𝐿𝑝(𝐽, 𝑅+) for
some 𝑝 with 1 < 𝑝 < ∞ such that ‖𝑓(𝑡, 𝑥, 𝑦)‖

𝛾
≤ 𝜌(𝑡)

for all 𝑥, 𝑦 ∈ 𝑋
𝛾 and 𝑡 ∈ 𝐽.

(𝐻
2)The function 𝑔 : C𝛾 → 𝑋𝛾 is completely continuous,

and there exist 𝛽1, 𝛽2 > 0 such that
󵄩󵄩󵄩󵄩𝑔(𝑥)

󵄩󵄩󵄩󵄩𝛾
≤ 𝛽
1‖𝑥‖∞ + 𝛽2. (14)

(𝐻
3
)The function ℎ : 𝐷

ℎ
× 𝑋
𝛾
→ 𝑋

𝛾
is continuous,

and there exist 𝐿
1
, 𝐿
2
> 0 such that ‖ℎ(𝑡, 𝑠, 𝑥) −

ℎ(𝑡, 𝑠, 𝑦)‖
𝛾
≤ 𝐿
1
‖𝑥 − 𝑦‖

𝛾
+ 𝐿
2
for each (𝑡, 𝑠) ∈ 𝐷

ℎ
=

{(𝑡, 𝑠) ∈ 𝑅
2
, 0 ≤ 𝑠, 𝑡 ≤ 𝑏} and 𝑥, 𝑦 ∈ 𝑋

𝛾
.

(𝐻
4
)The linear fractional control system (8) is approxi-
mately controllable.

(𝐻
5
)The function𝑓 : 𝐽×𝑋

𝛾
×𝑋
𝛾
→ 𝑋
𝛾
is continuous and

uniformly bounded, and there exists𝑁 > 0 such that
‖𝑓(𝑡, 𝑥, 𝑦)‖ ≤ 𝑁 for all (𝑡, 𝑥, 𝑦) ∈ 𝐽 × 𝑋

𝛾
× 𝑋
𝛾
.

(𝐻
6
)The semigroup 𝑇(𝑡) is compact.

In order to prove the required result, for 𝛼 > 0, we define
the operator 𝐹

𝛼
on 𝐶(𝐽,𝑋

𝛾
) as

(𝐹
𝛼
𝑥) (𝑡) = 𝑧 (𝑡) , (15)

where

𝑧 (𝑡) = T (𝑡) [𝑥0 + 𝑔 (𝑥)] + ∫
𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠) 𝐵V (𝑠) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑠
𝑛
S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠,

𝑡 ∈ 𝐽,

(16)

V (𝑡) = 𝐵
∗
S
∗
(𝑏 − 𝑡) 𝑅 (𝛼, Γ

𝑏

0
) 𝑝 (𝑥 (⋅)) ,

𝑝 (𝑥 (⋅)) = 𝑥𝑏 −T (𝑏) [𝑥0 + 𝑔 (𝑥)]

− ∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1
𝑠
𝑛
S (𝑏 − 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠.

(17)

Theorem 7. Under the conditions (𝐻
1
), (𝐻
2
), (𝐻
3
), and (𝐻

6
),

the control system (1) admits a mild solution on [0, 𝑏], and here
𝑀
𝐵
= ‖𝐵‖ and𝑀

1
= ‖𝜌‖
𝐿
𝑝2
(𝐽,𝑅
+
)
.

Proof. The main aim in this section is to find conditions for
solvability of systems (16) and (17) for 𝛼 > 0. In the Banach
space 𝐶(𝐽,𝑋𝛾), consider a set

𝐵
𝑟0
= {𝑥 (⋅) ∈ 𝐶 (𝐽,𝑋𝛾) : ‖𝑥‖𝛾 ≤ 𝑟} , (18)

where 𝑟 is the positive constant. Now, it will be shown that,
using Schauder’s fixed point theorem, for all 𝛼 > 0, the
operator 𝐹

𝛼
: 𝐶(𝐽, 𝑋

𝛾
) → 𝐶(𝐽, 𝑋

𝛾
) has a fixed point.

First, we prove that for an arbitrary 𝛼 > 0 and there is a
positive constant 𝑟

0
= 𝑟
0
(𝛼) such that 𝐹

𝛼
: 𝐵
𝑟0
→ 𝐵
𝑟0
.
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Let 𝑥 ∈ 𝐵
𝑟0
, and then, for 𝑡 ∈ 𝐽 and 1/𝑝 < 𝑞(⇒ (𝑝𝑞−1)) >

0, using Holders inequality, Lemma 6, and conditions (𝐻
1
)

and (𝐻
2
) in (17), we obtain

‖V (𝑡)‖𝛾 ≤
󵄩󵄩󵄩󵄩󵄩
𝐵
∗
S
∗
(𝑏 − 𝑡) 𝑅 (𝛼, Γ

𝑏

0
)
󵄩󵄩󵄩󵄩󵄩

× [
󵄩󵄩󵄩󵄩𝑥𝑏
󵄩󵄩󵄩󵄩𝛾
−
󵄩󵄩󵄩󵄩T (𝑏) [𝑥0 + 𝑔 (𝑥)]

󵄩󵄩󵄩󵄩𝛾

+ ∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1
𝑠
𝑛

×
󵄩󵄩󵄩󵄩S (𝑏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

󵄩󵄩󵄩󵄩𝛾
𝑑𝑠]

≤
𝑀
𝐵
𝑀𝑞

𝛼Γ (𝑞 + 1)
[
󵄩󵄩󵄩󵄩𝑥𝑏
󵄩󵄩󵄩󵄩𝛾
+𝑀(

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩𝛾
+ 𝛽
1‖𝑥‖∞ + 𝛽2)

+
𝑀
1𝑀𝑞

Γ (𝑞 + 1)
(
𝑝 − 1

𝑝𝑞 − 1
)

(𝑝−1)/𝑝

× (
𝑝 − 1

𝑛𝑝2 + 𝑝 − 1
)

(𝑝−1)/𝑝
2

𝑏
𝑛+𝑞−1/𝑝

2

] .

(19)

It follows from (16) that

‖𝑧(𝑡)‖𝛾 ≤
󵄩󵄩󵄩󵄩T (𝑡) [𝑥0 + 𝑔 (𝑥)]

󵄩󵄩󵄩󵄩𝛾

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
‖S(𝑡 − 𝑠)𝐵V(𝑠)‖𝛾𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑠
𝑛󵄩󵄩󵄩󵄩S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

󵄩󵄩󵄩󵄩𝛾
𝑑𝑠

≤ 𝑀(
󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩𝛾
+ 𝛽
1‖𝑥‖∞ + 𝛽2)

+
𝑀
𝐵𝑀𝑞

Γ (𝑞 + 1)
(
𝑝 − 1

𝑞𝑝 − 1
)

(𝑝−1)/𝑝

𝑏
((𝑞−1)𝑝+𝑝−1)/𝑝

𝑏‖V(𝑠)‖𝛾

+
𝑀
1𝑀𝑞

Γ (𝑞 + 1)
(
𝑝 − 1

𝑝𝑞 − 1
)

(𝑝−1)/𝑝

(
𝑝 − 1

𝑛𝑝2 + 𝑝 − 1
)

(𝑝−1)/𝑝
2

× 𝑏
𝑛+𝑞−1/𝑝

2

.

(20)

From the above two inequalities, we get that ‖(𝐹
𝛼𝑥)(𝑡)‖𝛾 ≤ 𝑟0.

This follows that 𝐹
𝛼
maps 𝐵

𝑟0
into itself.

For each 𝛼 > 0, we prove the operator 𝐹
𝛼
maps 𝐵

𝑟0
into

a relatively compact subset of 𝐵
𝑟0
. First, we show that 𝑉(𝑡) =

{(𝐹
𝛼
𝑥)(𝑡) : 𝑥 ∈ 𝐵

𝑟0
} is relatively compact in𝑋

𝛾
for every 𝑡 ∈ 𝐽.

The case 𝑡 = 0 is obvious. Let 𝑡 ∈ (0, 𝑏] be fixed, and for each

𝜀 ∈ (0, 𝑡), arbitrary 𝛿 > 0, and 𝑥 ∈ 𝐵
𝑟0
, we define the operator

𝐹
𝜀,𝛿

𝛼
by

(𝐹
𝜀,𝛿

𝛼
𝑥) (𝑡)

= T [𝑥0 + 𝑔 (𝑥)]

+ 𝑞∫

𝑡−𝜀

0

∫

∞

𝛿

𝜃(𝑡 − 𝑠)
𝑞−1
𝜉𝑞 (𝜃) 𝑇 ((𝑡 − 𝑠)

𝑞
𝜃)

× 𝐵V (𝑠) 𝑑𝜃 𝑑𝑠

+ 𝑞∫

𝑡−𝜀

0

∫

∞

𝛿

𝜃(𝑡 − 𝑠)
𝑞−1
𝑠
𝑛
𝜉𝑞 (𝜃) 𝑇 ((𝑡 − 𝑠)

𝑞
𝜃)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝜃 𝑑𝑠

= 𝑇 (𝜀
𝑞
𝛿)

× ∫

∞

𝛿

𝜉
𝑞 (𝜃) (𝑇 (𝑡

𝑞
𝜃) − 𝑇 (𝜀

𝑞
𝛿)) 𝑑𝜃 [𝑥

0
+ 𝑔 (𝑥)]

+ (𝑇 (𝜀
𝑞
𝛿)) 𝑞

× ∫

𝑡−𝜀

0

∫

∞

𝛿

𝜃(𝑡 − 𝑠)
𝑞−1
𝜉
𝑞 (𝜃)

× (𝑇 ((𝑡 − 𝑠)
𝑞
𝜃) − 𝑇 (𝜀

𝑞
𝛿)) 𝐵V (𝑠) 𝑑𝜃 𝑑𝑠

+ 𝑇 (𝜀
𝑞
𝛿) 𝑞∫

𝑡−𝜀

0

∫

∞

𝛿

𝜃(𝑡 − 𝑠)
𝑞−1
𝑠
𝑛
𝜉
𝑞 (𝜃)

× (𝑇 ((𝑡 − 𝑠)
𝑞
𝜃) − 𝑇 (𝜀

𝑞
𝛿))

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝜃 𝑑𝑠

= 𝑇 (𝜀
𝑞
𝛿) 𝑦 (𝑡, 𝜀) .

(21)

Since 𝑇(𝜀𝑞𝛿) is compact in 𝑋𝛾 and 𝑦(𝑡, 𝜀) is bounded in 𝐵𝑟0 ,
the set 𝑉

𝜀
(𝑡) = {(𝐹

𝜀,𝛿

𝛼
𝑥)(𝑡) : 𝑥 ∈ 𝐵

𝑟0
} is relatively compact in

𝑋
𝛾
[4].On the other hand, using (𝐻

1
) andHolder’s inequality,

we have

󵄩󵄩󵄩󵄩󵄩
(𝐹
𝛼
𝑥)(𝑡) − (𝐹

𝜀,𝛿

𝛼
𝑥)(𝑡)
󵄩󵄩󵄩󵄩󵄩𝛾

≤ 𝑞∫

𝑡

0

∫

𝛿

0

𝜃(𝑡 − 𝑠)
𝑞−1
𝜉
𝑞 (𝜃)

×
󵄩󵄩󵄩󵄩𝑇((𝑡 − 𝑠)

𝑞
𝜃)[𝐵V(𝑠) + 𝑠

𝑛
𝑓(𝑠, 𝑥(𝑠), (𝐻𝑥)(𝑠))]

󵄩󵄩󵄩󵄩𝛾
𝑑𝜃 𝑑𝑠

+ 𝑞∫

𝑡

𝑡−𝜀

∫

∞

𝛿

𝜃(𝑡 − 𝑠)
𝑞−1
𝜉
𝑞 (𝜃)

×
󵄩󵄩󵄩󵄩𝑇((𝑡 − 𝑠)

𝑞
𝜃)[𝐵V(𝑠) + 𝑠

𝑛
𝑓(𝑠, 𝑥(𝑠), (𝐻𝑥)(𝑠))]

󵄩󵄩󵄩󵄩𝛾
𝑑𝜃 𝑑𝑠

≤ 𝑀
𝐵
𝑀𝑞(

𝑝 − 1

𝑞𝑝 − 1
)

(𝑝−1)/𝑝

𝑡
1+𝑞−1/𝑝

‖V(𝑠)‖𝛾 ∫
𝛿

0

𝜃𝜉
𝑞 (𝜃) 𝑑𝜃
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+𝑀
1
𝑀𝑞(

𝑝 − 1

𝑝𝑞 − 1
)

(𝑝−1)/𝑝

(
𝑝 − 1

𝑛𝑝2 + 𝑝 − 1
)

(𝑝−1)/𝑝
2

𝑏
𝑛+𝑞−1/𝑝

2

× ∫

𝛿

0

𝜃𝜉
𝑞 (𝜃) 𝑑𝜃

+
𝑀
𝐵
𝑀𝑞

Γ (𝑞 + 1)
(
𝑝 − 1

𝑞𝑝 − 1
)

(𝑝−1)/𝑝

𝜀
1+𝑞−1/𝑝

‖V(𝑠)‖𝛾

+
𝑀
1
𝑀𝑞

Γ (𝑞 + 1)
(
𝑝 − 1

𝑝𝑞 − 1
)

(𝑝−1)/𝑝

(
𝑝 − 1

𝑛𝑝2 + 𝑝 − 1
)

(𝑝−1)/𝑝
2

𝜀
𝑛+𝑞−1/𝑝

2

.

(22)

This implies that there are relatively compact sets 𝑉
𝜀
(𝑡)

arbitrarily close to the set 𝑉(𝑡) for each 𝑡 ∈ (0, 𝑏]. Thus, 𝑉(𝑡)
is relatively compact in𝑋𝛾 for all 𝑡 ∈ (0, 𝑏] since it is compact
at 𝑡 = 0. Therefore, we have the relatively compactness in 𝑋𝛾
for all 𝑡 ∈ [0, 𝑏].

Next we show that 𝑉(𝑡) = {(𝐹𝛼𝑥)(𝑡) : 𝑥 ∈ 𝐵𝑟0} is an
equicontinuous family of functions on [0, 𝑏]. By the compact-
ness of the set, we can prove that the functions 𝐹𝛼𝑥, 𝑥 ∈ 𝐵𝑟0
are equicontinuous at 𝑡 = 0. For any 𝑥 ∈ 𝐵𝑟0 and 0 < 𝑡1 < 𝑡2 ≤
𝑏, we have

󵄩󵄩󵄩󵄩𝑧(𝑡2) − 𝑧(𝑡1)
󵄩󵄩󵄩󵄩𝛾

≤
󵄩󵄩󵄩󵄩(T(𝑡2) −T(𝑡1))[𝑥0 + 𝑔(𝑥)]

󵄩󵄩󵄩󵄩𝛾

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡1

0

(𝑡
2
𝑠)
𝑞−1
[S(𝑡
2
− 𝑠) −S(𝑡

1
− 𝑠)]𝐵V(𝑠)𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝛾

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡1

0

[(𝑡
2
− 𝑠)
𝑞−1
− (𝑡
1
− 𝑠)
𝑞−1
]S(𝑡
1
− 𝑠)𝐵V(𝑠)𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝛾

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡2

𝑡1

(𝑡
2
− 𝑠)
𝑞−1

S(𝑡
2
− 𝑠)𝐵V(𝑠)𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝛾

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡1

0

(𝑡2 − 𝑠)
𝑞−1
𝑠
𝑛
[S (𝑡2 − 𝑠) −S (𝑡1 − 𝑠)]

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝛾

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡1

0

[(𝑡2 − 𝑠)
𝑞−1
− (𝑡1 − 𝑠)

𝑞−1
] 𝑠
𝑛
S (𝑡2 − 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝛾

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡2

𝑡1

(𝑡
2
− 𝑠)
𝑞−1
𝑠
𝑛
S(𝑡
2
− 𝑠)𝑓(𝑠, 𝑥(𝑠), (𝐻𝑥)(𝑠))𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝛾

≤ 𝐼
1
+ 𝐼
2
+ 𝐼
3
+ 𝐼
4
+ 𝐼
5
+ 𝐼
6
+ 𝐼
7
.

(23)

Now, we have to prove that 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6, and 𝐼7 tend to
0 independently of 𝑥 ∈ 𝐵

𝑟0
as 𝑡
2
− 𝑡
1
→ 0. By Lemma 6, one

can easily show that lim
𝑡1→𝑡2

𝐼
1
= 0. By using Lemmas 5 and

6 and the Lagrange mean value theorem and following the
similar procedure as in the proof of Theorem 3.2 of [4], one
can deduce that lim

𝑡1→𝑡2
𝐼
5
, 𝐼
6
, 𝐼
7
= 0. In a similar way, we can

obtain

𝐼
2
≤
Γ (2)

Γ (𝑞 + 1)

𝑀
1+𝛾

𝛾
(

(𝑝 − 1)
2

(𝑞 − 1)𝑝2 + (𝑝 − 1)
2
)

(𝑝−1)
2
/𝑝
2

× 𝑏
((𝑞−1)𝑝

2
+(𝑝−1)

2
)/𝑝
2

× (∫

𝑏

0

[(𝑡2 − 𝑠)
−𝑞𝛾
− (𝑡1 − 𝑠)

−𝑞𝛾
]
𝑝
2
/(𝑝−1)

𝑑𝑠)

(𝑝−1)/𝑝
2

× 𝑏𝑀
𝐵 ‖V (𝑠)‖ ,

𝐼
3
≤

𝑀𝑞

Γ (𝑞 + 1)
(∫

𝑏

0

[(𝑡
2
− 𝑠)
𝑞−1
− (𝑡
1
− 𝑠)
𝑞−1
]
𝑝/(𝑝−1)

𝑑𝑠)

(𝑝−1)/𝑝

× 𝑏𝑀𝐵 ‖V (𝑠)‖ ,

𝐼
4
≤

𝑀𝑞

Γ (𝑞 + 1)
(
𝑝 − 1

𝑝𝑞 − 1
)

(𝑝−1)/𝑝

(𝑡
2
− 𝑡
1
)
((𝑞−1)𝑝+𝑝−1)/𝑝

×𝑀
𝐵 ‖V (𝑠)‖ (𝑡2 − 𝑡1) .

(24)

By the Lagrange mean value theorem and Lemmas 5 and 6, it
can be easily seen that 𝐼

2, 𝐼3, and 𝐼4 tend to 0 as 𝑡2 − 𝑡1 → 0.
Thus, the right-hand side of (23) tends to 0 as 𝑡2 − 𝑡1 → 0

whichmeans that {(𝐹𝛼𝑥) : 𝑥 ∈ 𝐵𝑟0} is a family of equicontinu-
ous functions. It can be easily seen that for all𝛼 > 0,𝐹𝛼 is con-
tinuous on 𝐶(𝐽,𝑋

𝛾
). Hence, by Arzela-Ascoli’s theorem, 𝐹

𝛼

is compact. By Schauder’s fixed point theorem, 𝐹
𝛼
has a fixed

point 𝑥 ∈ 𝐵
𝑟0
. Thus, the control system (1) has at least one

mild solution on [0, 𝑏].

Theorem 8. Assume that (𝐻
1
)–(𝐻
6
) hold. Then, system (1) is

approximately controllable on [0, 𝑏].

Proof. Linear system (8) is approximately controllable, by
Lemma 4, and it can be seen that approximate controllability
of (8) is equivalent to convergence of the operator 𝛼𝑅(𝛼, Γ𝑏

0
)

to zero operator in the strong operator topology as 𝛼 → 0+.
Let 𝑥
𝛼
(⋅) be a fixed point of 𝐹

𝛼
in 𝐵
𝑟
. Any fixed point of 𝐹

𝛼

is a mild solution of (1) under the control 𝑢̂
𝛼
(𝑡) = 𝐵

∗S∗(𝑏 −

𝑡)𝑅(𝛼, Γ
𝑏

0
)𝑝(𝑥
𝛼
) and satisfies 𝑥

𝛼
(𝑏) = 𝑥

𝑏
− 𝛼𝑅(𝛼, Γ

𝑏

0
)𝑝(𝑥
𝛼
). By

the condition (𝐻5), we have ∫
𝑏

0
‖𝑓(𝑠, 𝑥

𝛼
(𝑠), (𝐻𝑥

𝛼
)(𝑠))‖
2
𝑑𝑠 ≤

𝑏𝑁
2, and consequently, the sequence {𝑓(𝑠, 𝑥

𝛼
(𝑠), (𝐻𝑥

𝛼
)(𝑠))}

is bounded in 𝐿2(𝐽, 𝑋
𝛾
).Then there is a subsequence denoted

by {𝑓(𝑠, 𝑥
𝛼
(𝑠), (𝐻𝑥

𝛼
)(𝑠))} that converges weakly to say 𝑓(𝑠)

in 𝐿2(𝐽, 𝑋
𝛾
). Now, the compactness of S(𝑡) implies that
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S(𝑏 − 𝑠)𝑓(𝑠, 𝑥
𝛼
(𝑠), (𝐻𝑥

𝛼
)(𝑠)) → S(𝑏 − 𝑠)𝑓(𝑠) in 𝐿2(𝐽, 𝑋

𝛾
),

and we obtain

󵄩󵄩󵄩󵄩𝑝 (𝑥𝛼) − 𝑤
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1
𝑠
𝑛
S (𝑏 − 𝑠)

× [𝑓 (𝑠, 𝑥
𝛼 (𝑠) , (𝐻𝑥𝛼) (𝑠)) − 𝑓 (𝑠)] 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ sup
0≤𝑡≤𝑏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑠
𝑛
S (𝑡 − 𝑠)

× [𝑓 (𝑠, 𝑥𝛼 (𝑠) , (𝐻𝑥𝛼) (𝑠)) − 𝑓 (𝑠)] 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󳨀→ 0 as 𝛼 󳨀→ 0+,
(25)

where

𝑤 = 𝑥
𝑏
−T (𝑏) [𝑥0 + 𝑔 (𝑥𝛼)]

− ∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1

S (𝑏 − 𝑠) 𝑠
𝑛
𝑓 (𝑠) 𝑑𝑠.

(26)

Then, we obtain

󵄩󵄩󵄩󵄩𝑥𝛼 (𝑏) − 𝑥𝑏
󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩
𝛼𝑅 (𝛼, Γ

𝑏

0
) (𝑤)
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝛼𝑅 (𝛼, Γ

𝑏

0
)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑝 (𝑥𝛼) − 𝑤
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝛼𝑅 (𝛼, Γ

𝑏

0
) (𝑤)
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑝 (𝑥𝛼) − 𝑤

󵄩󵄩󵄩󵄩 .

(27)

It follows from Lemma 4 and estimation (25) that ‖𝑥
𝛼
(𝑏) −

𝑥
𝑏
‖ → 0 as 𝛼 → 0+. This proves the approximate control-

lability of (1). The proof is completed.

Example 9. As an application of the obtained theory, we
consider a control system which is represented by fractional
partial differential equation. Let 𝑋 = 𝑈 = 𝐿2([0, 1]), and let
𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 be the operator defined by 𝐴𝑧 = −𝑧󸀠󸀠
with domain

𝐷 (𝐴) = {𝑧 ∈ 𝐿
2
([0, 1]) : 𝑧, 𝑧

󸀠 are absolutely continuous,

𝑧
󸀠󸀠
∈ 𝐿
2
([0, 1]) , 𝑧 (0) = 𝑧 (1) = 0} .

(28)

Let 𝐷(𝐴1/2) = {𝑧(⋅) ∈ 𝑋 : ∑∞
𝑛=1
(𝑧, 𝑒
𝑛
)𝑒
𝑛
∈ 𝑋}, and let

𝑋
1/2
= 𝐷(𝐴

1/2
, ‖ ⋅ ‖
1/2
), where ‖ ⋅ ‖

1/2
= ‖𝐴
1/2
‖
2
. For each

𝑧 ∈ 𝐷(𝐴
1/2
) and ‖𝐴−1/2‖ = 1, the operator 𝐴1/2 is given

by 𝐴1/2𝑧 = ∑∞
𝑛=1
𝑛
2
(𝑧, 𝑒
𝑛
)𝑒
𝑛
, where 𝑒

𝑛
(𝑦) = √2 sin(𝑛𝑦) and

0 ≤ 𝑦 ≤ 1, 𝑛 = 1, 2, . . . is the orthogonal set of eigenvectors
of 𝐴. It is well known that −𝐴 generates a compact analytic
semigroup of uniformly bounded linear operator.

Consider the fractional partial differential equation with
control in the following form:

𝜕
𝑞

𝜕𝑡𝑞
𝑥 (𝑡, 𝑦)

=
𝜕
2

𝜕𝑦2
𝑥 (𝑡, 𝑦) + 𝜇 (𝑡, 𝑦)

+
𝑒
−𝑡

𝑒𝑡 + 𝑒−𝑡
cos[𝑥 (𝑡, 𝑦) + ∫

𝑏

0

cos (𝑡𝑠) 𝑥 (𝑠, 𝑦) 𝑑𝑠] + 𝑒−𝑡,

𝑡 ∈ [0, 1] , 𝑦 ∈ [0, 1] ,

𝑥 (𝑡, 0) = 𝑥 (𝑡, 1) = 0, 𝑡 > 0,

𝑥 (0, 𝑦) =

𝜎

∑

𝑖=0

∫

1

0

𝑘
1
(𝑦, 𝜏) 𝑥 (𝑡

𝑖
, 𝜏) 𝑑𝜏

+

𝜎

∑

𝑖=0

∫

1

0

𝑘2 (𝑦, 𝜏)
𝜕

𝜕𝜏
𝑥 (𝑡𝑖, 𝜏) 𝑑𝜏,

(29)

where 0 ≤ 𝑞 ≤ 1; 𝜇 : [0, 1] × [0, 1] → [0, 1] is continuous;
𝑘
1
, 𝑘
2
∈ 𝐿
2
([0, 1] × [0, 1]); 𝜎 ∈ 𝑁.

Let 𝑥(𝑡)(𝑦) = 𝑥(𝑡, 𝑦), and define the bounded linear
operator 𝐵 : 𝑈 → 𝑋 by (𝐵𝑢)(𝑡)(𝑦) = 𝜇(𝑡, 𝑦), 0 ≤ 𝑦 ≤ 1. Let
𝐶([0, 1], 𝑋

1/2
) be a Banach space equipped with sup norm.

Further, we define the operators 𝑓 : [0, 1] × 𝑋
1/2
→ 𝑋

1/2

and 𝑔 : 𝐶([0, 1], 𝑋
1/2
) → 𝑋

1/2
by

𝑓 (𝑡, 𝑥 (𝑡) , (𝐻𝑥) (𝑡)) (𝑦)

=
𝑒
−𝑡

𝑒𝑡 + 𝑒−𝑡
cos[𝑥 (𝑡) + ∫

𝑏

0

cos (𝑡𝑠) 𝑥 (𝑠) 𝑑𝑠] (𝑦) + 𝑒−𝑡,

𝑔 (𝑥) (𝑦) = (

𝜎

∑

𝑖=0

(K𝑥) (𝑡𝑖)) (𝑦) , for 𝑥 ∈ 𝐶 (𝐽, 𝑋
1/2
) ,

(30)

where (𝐻𝑥)(𝑡)(𝑦) = ∫𝑏
0
cos(𝑡𝑠)𝑥(𝑠, 𝑦)𝑑𝑠, (K𝜙)(𝜏) = ∫1

0
𝑘
1
(𝑦,

𝜏)𝜙(𝜏)𝑑𝜏 + ∫
1

0
𝑘2(𝑦, 𝜏)(𝜕/𝜕𝜏)𝜙(𝜏)𝑑𝜏 for all 𝜙 ∈ 𝑋1/2. More-

over, the linear fractional control system corresponding to
(29) is approximately controllable. Thus, with the above
choices of 𝐴, 𝐵, 𝑓, and 𝑔, the system (29) can be written
to the abstract form of (1). Therefore, all the conditions of
Theorem 8 are satisfied. Hence, by Theorem 8, the fractional
nonlinear integrodifferential system (29) is approximately
controllable on [0, 1].

Note. The considered system (1) is of the more general form,
and in particular, if functions 𝑓 and ℎ have various physical
meanings, it is important to note that (1) has a great diversity.
The result in this paper assumes that the linear system has
a compact semigroup and consequently is not completely
controllable. Moreover, the functions with Lipschitz con-
dition are considerably strong when one discusses various
applications in the real-world problems. Such an assumption
is removed from this paper.
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