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We make the first attempt to discuss stability and boundedness of solutions to stochastic Volterra integrodifferential equations with
infinite delay (IDSVIDEs). By the Lyapunov-Krasovskii functional approach, we get kinds of sufficient criteria for stability and
boundedness of solutions to IDSVIDEs. The main innovation here is that stochastic systems with infinite delay can retain stability
and boundedness of corresponding deterministic systems under some conditions.

1. Introduction

Recently, stochastic functional differential equations with
infinite delay (IDSFDEs) have attracted broad attention of
many researchers. In the literature, there are two main lines
of research on the IDSFDEs. On one hand, existence and
uniqueness of solution are basic properties for equations. So
a great number of authors have devoted themselves to this
research, and thus many excellent results on the existence
and uniqueness of the solutions to IDSFDEs and neutral
IDSFDEs can be found in [1-6] and references cited therein.
On the other hand, the study of stability and boundedness
of solutions is one of the most attracting topics in the
qualitative theory of differential equations because of its
various applications in many areas such as physics and
control theory [7, 8]. Hence, more and more researchers
study them and especially focus on the stability of solutions.
An important issue in stochastic analysis is whether or not
random disturbance can change the qualitative properties
of system, which is particularly important in control field.
In most cases, people are interested in the performance
of antidisturbance of system. So it is vital to seek some
antidisturbance systems or present the intensity of stochastic
perturbation that stable system can tolerate without losing the
property of stability [9]. In recent years, many meaningful
works on this topic have come out; see, for example, [10-
21].

Volterra integrodifterential equations (VIDEs) are widely
applied in biology, ecology, medicine, physics, among other
scientific areas and thus have been encountered by many
researchers in numerical and theoretic analysis; see [7, 22—
25]. It is well known that concrete systems are inevitably
affected by external perturbations usually modeled by
stochastic noise. So a great deal of attention has been paid
to the research of stochastic VIDEs [9, 26, 27]. Additionally,
time delay is always ubiquitous and infinite delay systems
have wide applications in many fields. Hence, there is
naturally an important kind of IDSFDEs, that is, stochas-
tic Volterra integrodifferential equations with infinite delay
(IDSVIDEs). In practice, many applications of IDSVIDEs are
greatly dependent on the stability and boundedness of their
solutions. However, to the best of the authors’ knowledge,
few research results mentioned above focus on the stability
and boundedness of IDSVIDEs, which motivates the present
study. Precisely, this paper investigates in detail the problem
of stability and boundedness of solutions for the following
IDSVIDE:

dx (t) = [A(t)x(t) + r C(t,s)g(x(s))ds+ f(t)] dt
+ [B(t)x(t)

+r D(t,s)g(x(s))ds+f1(t)}dW(t), t>t,,
" M



where A(t), B(t), f(t), and f,(t):R — R are continuous
functions. C(t,s) and D(t,s):R x R — R are also contin-
uous. Therein, B(t), D(t, s), and f,(t) denote the intensity of
disturbance to A(t), C(t, s), and f(t), respectively.

Compared with the existing results in the literature,
contributions of this paper are mainly as follows.

(1) Both stochastic perturbation and infinite delay are
considered in the IDSVIDEs.

(2) A new Lyapunov function is constructed to derive
stability and boundedness criteria for IDSVIDEs
efficiently.

(3) The problem of how much the stochastic noise VIDEs
with infinite delay can tolerate without losing the
properties of stability and boundedness has been
solved.

2. Preliminaries

Let (Q,%,F,P) be a complete probability space with a
filtration F = {%},., satisfying the usual conditions. As
usual, W(-) denotes a scalar Brownian motion defined on the
space and E(-) is the mathematical expectation with respect to
. Write BC((—00, 0]; R) as the family of bounded continuous
real-valued functions ¢ defined on (—oc0,0] with the norm
11 = Sup_o 20 |B(O).

In this paper, we supgose there exists a constant ] > 0
such that [g(x)| < Jlx|". Then by Theorem 5.2.7 of [28],
there exists a unique global solution x(¢) to (1) if A(f) and
B(t) are bounded. For more details, readers can see [29, 30].
Here and in the rest of the paper, write the solutions with
the initial condition X = ¢ € BC((—00,0];R) as x(t;ty, §).
Throughout this paper, unless otherwise specified, we use the
following Lyapunov function:

2

t +00
V(x,t):%+kji L IC (u,9)] |g (x (s))| duds.  (2)

For any M > 0, define two stopping times:

Ty =inf{t >ty 1 |x (t)| < M},

3)
™ =inf{t >, : |x (t)] = M}.

In order to study the stability and boundedness of
solutions to (1), we state the following assumptions:

(K1) There exist nonnegative continuous functions h
R™ - R*and F: R — R, such that

JO h(s)ds=1< oo, ICt,s)|<F({)h(s—1t),

-0

- - @
J F(u)du<a< oo, limj F(u)du=0.
t t

t— 00

(K2) For any « € (0, 1), there exists k > 1 such that

A@)+ B () +kJ rm |C (u,1)| du < 0,

t
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m(t) D (t,s) < [C(t, )], (5)

SUP | x|<« |g (x)|

where m(t) = [*_|D(t,5)\ds.

(K3) For any « € (0, 1), there exist k > 1 and § > 0 such
that

+00

A(t) +B*(t) +k]J |C (u, )| du < =6,
t

(6)

%4

m(t)D (t,s) < ——— %
suplxlsa lg (X)|

IC (&, 9)]

where m(t) is defined in (K2).

Remark 1. Conditions (K2) and (K3) are the conditions about
the intensity of perturbations. Note that constant k in equality
(2) is the same as the one which appeared in conditions (K2)
and (K3).

3. Stability of Solutions of IDSVIDEs

In order to consider the stability of (1), without loss of
generality, we suppose that f(t) = f,(t) = 0 and g(0) = 0
hold in this section. Hence, (1) has the trivial solution x(¢) =
0. First, we introduce three kinds of definitions about stability
of solutions to (1). It is easy to see that these definitions are a
strict generalization of deterministic cases.

Definition 2 (see [28]). (1) The trivial solution of (1) is said to
be stochastically stable if for every pair € € (0,1) and r > 0,
there exists a § = d(e, r,t,) > 0 such that

P(|x(t:tg )| <1t >ty) > 1 -, (7)

whenever [|¢| < §. Additionally, it is said to be stochastically
uniformly stable if § is independent of t,,.

(2) The trivial solution of (1) is said to be stochastically
asymptotically stable if it is stochastically stable and, more-
over, for any ¢ € (0, 1), there is §, = §,(¢,t,) > 0 such that

P (tlinolox (t:t0, ) = 0) >1-g¢, (8)

whenever [|¢]| < 6.

(3) The trivial solution of (1) is said to be stochastically
globally asymptotically stable if it is stochastically stable and,
moreover, for all ¢ € BC((—00, 0]; R), it follows that

p (tlingox (510, ) = o) -1 ©)

In the following, we will apply the Lyapunov-Krasovskii
functional approach to delve into some sufficient criteria,
under which the trivial solution to (1) is stochastically
stable, stochastically asymptotically stable, and stochastically
globally asymptotically stable, respectively. The It6 formula
used in this paper can be seen in [28].

Theorem 3. Suppose that (K1) and (K2) hold. Then the trivial
solution of (1) is stochastically uniformly stable.
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Proof. For any ¢ € (0,1) and r € (0,1), choose &
sufficiently small for § < r*e/(1 + 2kJla). For any given
¢ € BC((—00,0]; R) satisfying [|¢]| < §, we can get from (2)
that

LV (x(s),s)
=V, (x(s),8) + V. (x(s),s)

X [A (s) x (s) + J, C(s,u) g (x(u) du]
1 s 2
+ EV"X (x(s),s) [B(s)x(s)+J D (s,u) g (x (u)) du]
—k [ 1C @99 ()] du
—k J IC (s, )| |g (x (w))] du + A (s) x (s)
+ x (s) f C(s,u) g (x(u))du

2

. %[B(s)x(s) . I D (s,u) g (x (u))du]

IN

(k] Jm |C (u,s)| du + A (s) + B> (s)> x%(s)

—(k=1x(s)) J_ IC (s, )l |g (x ()] du

2

+ [[00 D (s,u) g (x (u)) du] .
(10)

Then it follows that, for any ¢ > t,,,

EV(x(tAT),tAT")

=V (¢’ (to) > to)

+[E J-MT [ (k] on |C (u,s)|du+ A(s) + B’ (5)) X% (s)
k= 1x©D | 1C (019 ()] du
s 2
+[J D(s,u)g(x(u))du] ]ds

<V(¢(t).to)

+E JW [(k] roo IC (u,s)| du + A (s) + B (s)) x%(s)

N

3
+Jl [ — (k=7)|C (s, u)]
+ <|SI|1p |9 (x)l) m (s) D (s, u)l]
X |g (x (w)] du] ds
<V (¢(to):to)-
(11)
Then by a straightforward computation we obtain that
2 ty +00
V(p(ty) to)= ¢ étO) +k J_ J; IC (u, )| |g (x (5))| du ds

2
< (5 +Hta) Jol < S

(12)
From the definition of 77, it follows that
EV(x(tAT), tAT) 2 E(IpyV (x(77),7"))
> ﬁP (" <t). -
2
So
P(r"<t)<e. (14)
Lett — 00. We deduce that
P(r" <o) <e, (15)
that is,
P(|x(t:tg, )| <1t >15) > 1—e. (16)

For any r; € [1, +00), we can have

{wl|x (Bt )| <t >t} S{w | |x (10, 9)| < 1ppt > 14},
17)

which implies that
P(lx(t:t0,9)| < ot > tg) > P(|x (620, ¢)| < 10t > 1)

>1-e¢
(18)

This completes the proof. O

Remark 4. If B(t) = D(t,s) = 0 in (1), then we can get the
corresponding disturbance free system. Theorem 3 really tells
us that stochastic perturbation cannot disturb the stability of
original deterministic system if the noisy intensity satisfies
(K2).

Lemma 5. Assume that (K1) and (K2) hold. Then for any € €
(0,1),x > 0, there is R(&, ) > 0 such that

P(|x (6%, ¢)| <Rt>0")>1-¢, (19)

forany 0 > t,, |19l < «, a.s.



Proof. For any given ¢ € (0,1),« > 0, and ¢ ¢
BC((—00, 0]; R) satisfying [|$]| < «, choose R(e, ) sufficiently
large such that

2
R > ¥ (L+2K]la) (20)
€
Denote x(t) 2 x(t;6", ¢). By using a similar argument as in
Theorem 3, we have that, for any t > 6",
[EV(x(t/\TR),t/\TR)
<EV(¢(67),0%)

= —[E¢2 (07) + kE Je*
2

—00

L* IC (u,9)| |g (x (5))| duds

2 %
< 5O g

< (5 +Krta) ElgI"

(21)
Making use of the definition of V'(x, t) yields
BV (x (tA7%) A TY) 2 E (LsgV (x (7%, 7))
2 (22)
> %P (" <t).
Combining this and (21), we have
p(h <r) LWWEE )
Lett — o00.Then
P (TR < oo) <e, (24)
which can imply our desired result
P(|x (6%, ¢)|<Rt>0")>1-=¢ (25)
O

Theorem 6. Suppose that (K1) and (K3) hold. Then the trivial
solution is stochastically asymptotically stable and stochasti-
cally globally asymptotically stable.

Proof. (I) The proof of stochastic asymptotic stability.

For any 0% > f,, ¢* = {¢"(0) : —co < 6 < 0} is
F o+ -adapted BC((—00,0]; R)-valued random variable such
that E[|¢” (0)]| < co. Let x(t;60%, ¢*) denote the solution with
the initial value (6%, ¢*). From Theorem 3, the trivial solution
is stochastically uniformly stable. Hence, for any given §; >
0, ¢ € (0, 1), there exists §(¢,8,) > 0, such that

P(w:|x(tty¢)| <0t >t) 2P(A)>1-¢  (26)

whenever ||¢]| < 6(e,d;). Fix ¢ € BC((—00,0]; R) such that
ol < 8(e, 8,). For any given w* € A, 0 > t,, define

by (6 @) = x (t580, ) It yye(-co,0)xa
. (27)
+ X (510, 0, 0") I gye(-co0]x(-A)-
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So Lemma 5 shows that, for §, above and any ¢, € (0, 1), there
is H(g, 6,) such that

P(|x (50.9,)| < Ht20)>1- L. (28)

If there exists K > t,, such that
PlweA:|x(tt59)|=0,t>K)=P(A)>1-¢ (29
then the trivial solution of system (1) is stochastically asymp-

totically stable. If not, there are a sequence y, and increasing
sequence T, such that lim; _, ., 7, = +00 and

P(weA:|x(tsted) #0) =y >0, k=12,... (30)
Define
SE=(weA:|x(mstp9)|>p), k=12... (D
It is not difficult to see that
gi?O[P’ (Sf) =Y k=12,... (32)

Hence, there are 3, > 0 and positive sequence y,? such that

P(weA:|x(nste¢)| > Bo)
(33)
2P(A)=9>0, k=12,

If for any f3; € (0, 3y), the following holds:

P(a) € A:limsup |x (¢, ¢)| < ﬁ1> >1-¢ (34)
t— 0o

which can show the trivial solution of system (1) is stochas-
tically asymptotically stable. If not, there is 3, € (0, 3,) such
that

P(w € A:limsup |x (5, ¢)| < /32> S [P’(Bﬁz) <l-e
t— 0o
(35)

Obviously, P(A - Bg ) > 0, A, € A-Bg,and foranyw €
A-B
By

lifn sup |x (t; £, ¢)| = B, > 0. (36)

For any given B < f3,, & < B such that 2a*/B* < ¢, /4. Choose
N sufficiently large such that, for any t > 7y,

2

+00 o ( )
Fu)du< ——. 37
L W du < S
For any given w” € A define
¢TN (bw)=x (t; to, (/5) I(t,w)e(—oo,rN]xATN
(38)

+x (t; tO’ (/5’ w*) I(t,w)e(—oo,TN]x(Q—A,N)'
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So (28) can tell us that
lP’(w: |x(t;TN,¢TN)| <H,t27N) > 1—%, (39)

x (6T, br ) = x (tit5,9) » () € (—00,+00) X A, _. (40)

From here, we let x(t) = x(t; Ty, ngN),t > Ty, and let V(x, t)
be the same as (2).
By The It6 formula and (K3), for any ¢ > 7y,

EV(x(tAtynt™),t AT, nT™)

tAT AT

—V (9, (1), ) +E j PV (x(s),5)ds (A1)

™
<V (g, (ry)s7n) —OCE (AT, AT — 1),
where £V (x(s), s) is the same as (10). So,

(i’—TN)P{Ta/\THZt}Sﬂz(t/\Ta/\TH—TN)

42
- V((/)TN (TN)’TN) (42)
- da? ’
Lettingt — oo can yield
P{r, At < oo} =1. (43)

Clearly, it follows from (39) that P < o) < & /4.
Therefore,

I:P(Ta/\TH<oo)SIP(T“<oo)

; )
+P (7 <oo)sl]3’(ra<oo)+zl.
Hence,
[P’(Ta<oo)21—%1. (45)
Choose 0, sufficiently large such that
P(r, <6,) 21—%‘. (46)
Then
P (Ta < TH/\Q“) > P({Ta <6,}1n {TH = oo})
H 3e
>P (1, <6,)-P(r" <o) 2 ==k
(47)

Define two stopping times:
o=
00,

Soforanyt > 0,,

7, < T AO;

s = inf {t > 0 : |x(t)| > B}.
otherwise, B { O J

(48)

EV (x(t5At),TgAt) SEV (x (0 AL),0AL).  (49)

Note that if w € {r, > 7 A6, }, then
V(x(tgAt), g At) =V (x(cAt),aAL).  (50)
Consequently,
E (I{Ta<TH/\9“}V (x(zg At), 15 A t))

<E (I{sz<TH/\9(x}V (x (Ta) > Toc)) .

(51)

Noting {75 < t} € {1, < ™ AB,}, it yields that
E (I{Ta<TB/\9a}V (x(zg At), 15 A t))

> ([E (I{Tan/\ea}V (x(tgAt), 14 /\t)) | 75 < t) P(rp<t)

2
> B?[FD (tp <t).
(52)

In view of the definition of V(x, t) and condition (K1),
E (I{Ta<rH/\6a}V (x (Toc) > Toc)) <EV (x (Ta) > Toc)

=E[@+kr‘x

—00

J |C (u, )| |g(x (s))| du ds]

T

2 +00 [T,
S[E[%+kIH2J JOOF(u)h(S—M)deM] (53)

To

+00

0(2
<= +k]lH2J F (u) du

Ta

2
<a,

which, in conjunction with (51) and (52), yields that

20 &
P(rp<t)< = <= (54)
( B ) B2 4
Letting t — 00, it yields that
&
P (15 < 00) < e (55)

Hence,

P ({0 < oo} N {15 = 00})

(56)
> P(Tlx < TH/\G)—IP(TB <o0)>1-g¢.
This implies immediately that
P (lim sup |x ()| < B) >1-¢g. (57)
t— 00

At last, from the arbitrariness of B, it must be

P (hm sup |x (£)| = O> >1-¢. (58)

t— 00



Since ¢, is arbitrary, we then obtain that

P <lim sup |x (t)] = 0) =1. (59)

t— o0

Hence, from (40), there is w € A, CA-By such that
limsup |x (;t4,¢)| = 0. (60)
t — 00

But this is in contradiction with (36), and thus (34) must hold
and this completes the proof.
(II) The proof of stochastic global asymptotic stability.
Give any ¢ € (0,1), ¢ € BC((-00,0];R). Let H be
sufficiently large such that

inf  V(x,t)

|x|>H,t>t,

S 4V (¢ (to)’to)' (61)

Then we can easily have
EV (x(tnt) tAt?) <EV (¢ (k). ty).  (62)
From the assumption of H,

EV (x(tAt™), e At™) 2 E (I V (x (7). 7))

(63)
4V (P (ty) -t
> (¢ (t) O)P(TH<t)_
£
So
Pl <)<=
(T < )< 1 (64)
Lett — 00.we could get
p (' =
(T < oo) < 1 (65)
namely,
P(|x (5t g)| < H) > 1- 7. (66)
Arguing as part (I), we obtain that
p <tlim x(ty, ¢) = o) Sl-e (67)

From the arbitrariness of &, the trivial solution of (1) is
stochastically globally asymptotically stable, which ends the
proof. 0

In the last part of this section, we give two examples for
better understanding the stability theorems above.

Example 7. Consider the following IDSVIDE:
t

dx(t) = [(—Ze_t - 1) x(t) + J e x% (s) ds] dt
+ [e_t/zx (t)

+Jt eS‘foz(s)ds] dW (), t€[0,+00),
h (68)

where y > 2 is a constant.
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Obviously, |g(x)| = x*,s0] =1.Leth(s) = ¢, F(t) =",
Then we have J_OOO h(s)ds =1 < coand

+00

J Fuwdu=e'<1< oo, F (u)du = 0;
t

lim
t—o00 J;

ICts) = ="e " =F(t)h(s—1t).

(69)

For any « € (0, 1), let k = 2. Easily to get

+00

B () =¢', A+ k]J IC(u,t)|du = - =1,
t

k-«

m (t) D (t, S) :efzyt+t+s’ =%
suplxls:x lg (X)l

IC(t,s)|>e .

(70)

Therefore,

+00

B (t) < — (A(t) +kJ Jt IC (1, 1) du>,

o (71)

m(t)D(t,s) < ——— %
SuplxlStx lg (x)|

IC (£, 9)] .

Hence all the conditions of Theorem 3 have been verified,
and it follows that the trivial solution of (1) is stochastically
uniformly stable.

Example 8. Consider an IDSVIDE as follows:
dx (t) = [ (-log® (x* () +1) = 2) x ()

N Jt m sin (2 () ds] dt

+ [log2 (x2 () + 1) x (1) 72
+ ,[t P sin (x2 (s)) ds] dw (1),
t € [0, +00),
where 8 > 4,y > 3+ 1 are constants.
Obviously, [g(x)| = | sin x%| < x*, sowe canlet J = 1. Let

h(s) = 1/(1 - %, F(t) = ¢”*. Then we have [ h(s)ds = 1 <
oo and

+00

+00
J Fwdu=e"'<1< oo, tlimj F(u)du = 0;
t —oJt

—t e—t

C 69l = t—s+27 (t-s+1)

S =F(Oh(s—t).
(73)
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Additionally, for any « € (0,1),let k = 2and § = 1/2. Then it
is not difficult to check that

B (t) =log* (x* (1) + 1) <log* (x* (1) + 1) +

—~(aw+2[" mdu)—%

+00

1
2
(74)

< (A(t) +k]J IC (w,0)| du) _s.

Consider function f(u) = eP(u—2)* =, u < 0. Clearly, f(u)
is differentiable and

flw=ew-2)(Bu-2)+2) >0,

(75)
f0)=4-p<0.
So f(u) < 0, that is, eﬁ”/ﬁ < 1/(u - 2)*. Hence,
t
sup (sin xz) m(t)D(t,s) < D(t,s) J- |D (t,s)| ds
|x|<a —00
= L2y ppr 76)
B
2Bt
< ——5 <|C(t9)].
(s—t-2)

Hence, all of the conditions of Theorem 6 are satisfied and
we can assert that the trivial solution of (1) is stochastically
asymptotically stable and stochastically globally asymptoti-
cally stable.

4. Boundedness of Solutions of IDSVIDEs

In the section, we begin with three types of definitions about
boundedness for solutions of (1).

Definition 9. (1) A solution x(t) of (1) is stochastically
bounded, if, for any ¢ € (0,1), ¢ € BC((-00,0];R), there
exists R(e, ¢) > 0, such that

[F"(sup|x(t;t0,¢>)| SR) >1-e (77)
t>t,

(2) The solutions of (1) are stochastically equibounded, if,
foranye € (0,1), « > 0, and ¢ € BC((—00,0]; R), there exists
R(e, ) > 0, such that

P (sup |x (t:t0,¢)| < R, ||| < (x) >1-¢ (78)
t>t,

(3) Fix B > 05 the solutions of (1) are stochastically
ultimately bounded for bound p, if, for any ¢ € (0,1), ¢ €
BC((—00,0]; R), there exists a T'(¢, ¢) > t;, such that

[F"( sup |x (t;10, )| < ,8) >1-e (79)

2T (e.9)

Now we apply the Lyapunov-Krasovskii method to give
the sufficient conditions, under which the solutions of (1)
are stochastically bounded, stochastically equibounded, and
stochastically ultimately bounded, respectively.

Theorem 10. Suppose that (K1) and (K2) hold. If f(t) =
0, then the solutions to (1) are stochastically bounded and
stochastically equibounded.

Proof. (I) Proof of stochastic boundedness.

Let ¢ € (0,1), ¢ € BC((-00,0];R) be arbitrary.
Choose H sufficiently large such that inf) ;. V(x, 1) >
V(¢(ty), t)/e. By the It6 formula, for any t > t,, we can obtain
that

V(x(t/\TH),t/\TH)

tArt

LV (x(s),s)ds

~V (@ (to)to) + |

ty
H

+ L:M V. (x(s),s)
X [B(s) x (s)
+ JS D(s,r) g (x(r))dr + f; (s)] dW (s), aus.

(80)

Taking expectation on both sides of (80), it follows by using
(10) that

EV (x (A7), tATT) <V (§ (1) 1) (81)
From the assumption H, we derive that

EV (x (t A TH) JEN TH) >E (I{TH<t}V (x (TH) , TH))

(82)
Vv ty),t
VO
£
We therefore must have
P (TH < t) <e. (83)
Lettingt — 00, we can obtain that
P (TH < oo) <e. (84)
That is,
[F"(sup [x (8)] SH) >1-¢. (85)
t>t,

The proof of stochastic boundedness is complete.

(II) Proof of stochastic equiboundedness.

Let e € (0,1) and & > 0 be arbitrary. Give any ¢ €
BC((-00,0];R), such that [¢] < «. Choose R such that



R > &*(1 + 2kJla)/2¢. By applying the It6 formula, for any
t >t

V(x(t/\TR),t/\TR)
V) [ V.9

¥ L ’ V. (x(s),s) (86)
X [B(s)x(s) + JS D(s,r) g (x(r))dr

+£1(s) ] dW (s), a.s.
Taking the expectation for both sides of (86), we have
EV (x(£A®),t ATR) <V ($(to) 1) (87)
In view of

ty

2 +00
V@) )=k [* [ e 9llg o) duds

< (5 +Krta) o
EV (x (tATY),t A7) 2 E (TaeyV (x (%), 7%))

> RP (TR <t).
(88)

Consequently,

2 2
P(TR . t) S (1 +2kJla) |4 A + 2kJla) <. (89)
2R 2R

Lettingt — o0, it yields that

P (TR < oo) <e, (90)
that is,
P (sup Ix ()] <R ||¢] < oc) >1—e (91)
t>t,
This completes the proof. O

Remark 11. Notice that, when conditions (K1) and (K2)
hold, the solutions of stochastic system (1) are stable and
bounded. That is, environmental noise (in the sense of Itd)
cannot disturb stability and boundedness of solutions for
some systems if noisy intensity satisfies (K2). Hence, we can
construct some anti-interference systems in practice.

Theorem 12. Suppose that (K1) and (K3) hold. If f(t) = 0,
then the solutions to (1) are stochastically ultimately bounded.
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Proof. Give 8 > 0. For any € € (0,1), ¢ € BC((-00,0];R).
From Theorem 10, there exists H > 0, such that

P (Jx (t)] sH,tztO)zl—Z. (92)
Choose o < [¢(ty)| A B, and define four stopping times as
follows:

T, =inf {t > t,: |x ()| < a},

™ =inf{t > ¢, : |x (t)| = H},

P =inf{t>o:|x@®)>p}, (93)

H .
oo T <T AOy
00, otherwise.

From here, we can show in the same way as in the proof of
Theorem 6 that we could choose sufficiently small &, such that
20%/H? < g and

HTZ[P’(TI3 < t) < [E(I{Taqﬂ,\ea}V (x (Tﬁ/\t),rﬁ/\t))

(94)
2
< E (IcringyV (% (10) 7)) < o,
Then it follows that
2
P(Tﬁ <t)< % <e (95)
After lettingt — 00, we have
P (Tﬁ < oo) <e. (96)

Let T'(e, ¢) = 7,.. Then the above inequality is equivalent to

P (suplx(t)l < ﬁ) >1-¢. (97)
=T
The proof is complete. O

Remark 13. Obviously, we can verify that the solutions of
IDSVIDE (68) are stochastically bounded and stochasti-
cally equibounded. And the solutions of IDSVIDE (72) are
stochastically ultimately bounded.

5. Conclusions

Throughout this paper, by combining the Lyapunov-Kras-
ovskii method, we have obtained various kinds of sufficient
stability and boundedness criteria, where the ranges of
noisy intensity that stable and bounded systems can tolerate
without losing the properties of stability and boundedness
are presented, respectively. These sufficient conditions are
very necessary for us to verify stability and boundedness of
stochastic Volterra integrodifferential equations with infinite
delays. Moreover, the conditions obtained in this paper can
also help us to construct some antidisturbance systems in the
applications. In addition, two examples have been given to
illustrate our theoretical results.
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