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A second-order sliding mode (SOSM) controller is proposed to synchronize a class of incommensurate fractional-order chaotic
systemswithmodel uncertainties and external disturbances. Based on the chattering free SOSM control scheme, it can be rigorously
proved that the dynamics of the synchronization error is globally asymptotically stable by using the Lyapunov stability theorem.
Finally, numerical examples are provided to illustrate the effectiveness of the proposed controller design approach.

1. Introduction

For the last few decades, the study of fractional-order control
systems has attracted increasing interest (see, e.g., [1–7] and
the references therein), where the system equations were
described by the so-called fractional derivatives and integrals
(for the introduction to this theory see [1, 8]). Because
fractional derivatives provide an excellent instrument for the
description of memory and hereditary properties of various
materials and processes, then the advantages of using the
fractional order model are that we have more degrees of
freedom in the model and that a “memory” is included in
the model. The modeling of dynamical systems by using
the means of the fractional calculus has been reported
in many engineering areas such as signal processing [9],
electromagnetism [10], mechanics [11–14], image processing
[15], bioengineering [16], automatic control [17, 18], and
robotics [19, 20]. Among the existed literatures on the
dynamics of fractional-order differential systems, it has been
demonstrated that some fractional-order systems can behave
chaotically or hyperchaotically [21–25].

Due to the existence of chaos in real practical systems
and many potential applications in physics and engineering,
the study of synchronizing/stabilizing chaotic/hyperchaotic
systems has attracted considerable interests in the past

decades [26–32]. Several methods have been proposed to
achieve chaos synchronization. One of the methods is based
on the sliding mode control (SMC) approach [27, 30, 31, 33–
36]. The main feature of the SMC is to switch the control law
to drive the states of the system from the initial states onto
some predefined sliding surface in a finite time. The system
on the sliding surface has desired properties such as stability,
disturbance rejection capability, and tracking ability [34].

In general, the traditional sliding mode control is of the
first order. And there exists an inevitable drawback when
applying such standard SMC, that is the so-called chattering
phenomenon, namely, the occurrence of undesirable high-
frequency vibrations of the system variables which are caused
by the discontinuous high-frequency nature of first-order
sliding mode control signals. In order to improve the control
accuracy and reduce the undesired chattering effect by
removing the controller discontinuity while keeping similar
properties of robustness analogous as those featured by the
conventional first-order sliding mode approach, the second-
(and higher) order sliding mode control method is proposed
[37–40]. However, to the authors’ knowledge, there are few
researches on the fractional-order system using the SOSM
control approach so far.

Motivated by the above discussions, this article considers
the robust synchronization problem for a class of uncertain



2 Journal of Applied Mathematics

incommensurate fractional-order chaotic systems raised by
Aghababa in [41]. A chattering free SOSM controller is
presented in the presence ofmodel uncertainties and external
disturbance.

The structure of this paper is as follows: Section 2 recalls
some preliminaries on fractional calculus and gives the
statement of the problem considered in this paper. Section 3
provides the SOSM controller together with the respective
Lyapunov-based stability analysis. Section 4 illustrates some
simulation results. Finally, a conclusion is drawn in Section 5.

2. Preliminaries and Problem Statement

2.1. Basic Definitions of Fractional Calculus. There are many
ways to define the fractional integral and derivative. Two defi-
nitions, Riemann-Liouville definition and Caputo definition,
are generally used in recent literatures.

Definition 1 (see [1]). The 𝛼th-order Riemann-Liouville frac-
tional integration of function 𝑓(𝑡) is given by

𝑡0
𝐼
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝛼)

∫

𝑡

𝑡0

𝑓 (𝜏)

(𝑡 − 𝜏)
1−𝛼
𝑑𝜏, (1)

where Γ(𝛼) is the Gamma function and 𝑡
0
is the initial time.

Definition 2 (see [1]). Letting 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁,
the Riemann-Liouville fractional derivative of order 𝛼 of
function 𝑓(𝑡) is defined as follows:

𝑡0
𝐷
𝛼

𝑡
𝑓 (𝑡) =

𝑑
𝛼
𝑓 (𝑡)

𝑑𝑡
𝛼

=

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡
𝑛
∫

𝑡

𝑡0

𝑓 (𝜏)

(𝑡 − 𝜏)
𝛼−𝑛+1

𝑑𝜏

=

𝑑
𝑛

𝑑𝑡
𝑛
𝐼
𝑛−𝛼
.

(2)

Definition 3 (see [1]). The Caputo fractional derivative of
order 𝛼 of a continuous function 𝑓(𝑡) is defined as follows:

𝑡0
𝐷
𝛼

𝑡
𝑓 (𝑡) =

{
{
{
{

{
{
{
{

{

1

Γ (𝑛 − 𝛼)

∫

𝑡

𝑡0

𝑓
(𝑛)
(𝜏)

(𝑡 − 𝜏)
𝛼−𝑛+1

𝑑𝜏, 𝑛 − 1 < 𝛼 < 𝑛,

𝑑
𝑛
𝑓 (𝑡)

𝑑𝑡
𝑛
, 𝛼 = 𝑛,

(3)

where 𝑛 is the smallest integer number, larger than 𝛼.

Lemma 4 (see [42]). Consider the system

𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡)) , 𝑓 (0) = 0, 𝑥 (𝑡) ∈ 𝑅
𝑛
, (4)

where 𝑓 : 𝐷 → 𝑅
𝑛 is continuous on an open neighborhood

𝐷 ⊂ 𝑅
𝑛. Suppose there exists a continuous differential positive-

definite function 𝑉(𝑥(𝑡)) : 𝐷 → 𝑅, real numbers 𝑝 > 0, 0 <
𝜂 < 1, such that

𝑉̇ (𝑥 (𝑡)) + 𝑝𝑉
𝜂
(𝑥 (𝑡)) ≤ 0, ∀𝑥 (𝑡) ∈ 𝐷. (5)

Then, the origin of system (4) is a locally finite-time stable
equilibrium, and the settling time, depending on the initial state
𝑥(0) = 𝑥

0
, satisfies 𝑇(𝑥

0
) ≤ 𝑉

1−𝜂
(𝑥
0
)/𝑝(1 − 𝜂). In addition, if

𝐷 = 𝑅
𝑛 and𝑉(𝑥(𝑡)) is also radially unbounded, then the origin

is a globally finite-time stable equilibrium of system (4).

Lemma 5 (see [43]). Consider a vector signal 𝑧(𝑡) ∈ 𝑅𝑚. Let
𝛼 ∈ (0, 1). If there exists 𝑡

1
< ∞ such that 𝐼𝛼𝑧(𝑡) = 0, ∀𝑡 ≥ 𝑡

1
,

then lim
𝑡→∞

𝑧(𝑡) = 0.

2.2. Problem Statement. Consider the following 𝑛-dimen-
sional uncertain incommensurate fractional-order chaotic/
hyperchaotic slave system:

𝐷
𝑞1
𝑥
1
(𝑡) = 𝑓

1
(𝑋, 𝑡) + Δ𝑓

1
(𝑋) + 𝑑

𝑓

1
(𝑡) + 𝑢

1
(𝑡) ,

𝐷
𝑞2
𝑥
2
(𝑡) = 𝑓

2
(𝑋, 𝑡) + Δ𝑓

2
(𝑋) + 𝑑

𝑓

2
(𝑡) + 𝑢

2
(𝑡) ,

...

𝐷
𝑞𝑛
𝑥
𝑛
(𝑡) = 𝑓

𝑛
(𝑋, 𝑡) + Δ𝑓

𝑛
(𝑋) + 𝑑

𝑓

𝑛
(𝑡) + 𝑢

𝑛
(𝑡) ,

(6)

where 𝑞
𝑖
∈ (0, 1), 𝑖 = 1, 2, . . . , 𝑛, is the order of the system,

𝑋(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇
∈ 𝑅
𝑛 is the state vector,

𝑓
𝑖
(𝑋, 𝑡) ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛, is a given nonlinear function of
𝑋 and 𝑡, Δ𝑓

𝑖
(𝑋) ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛, and 𝑑𝑓

𝑖
(𝑡) ∈ 𝑅, 𝑖 =

1, 2, . . . , 𝑛, denote unknown mode uncertain and external
disturbances of the system, respectively, and 𝑢

𝑖
(𝑡) ∈ 𝑅 is the

control input.
Suppose the master system can be described as

𝐷
𝑞1
𝑦
1
(𝑡) = 𝑔

1
(𝑌, 𝑡) + Δ𝑔

1
(𝑌) + 𝑑

𝑔

1
(𝑡) ,

𝐷
𝑞2
𝑦
2
(𝑡) = 𝑔

2
(𝑌, 𝑡) + Δ𝑔

2
(𝑌) + 𝑑

𝑔

2
(𝑡) ,

...

𝐷
𝑞𝑛
𝑦
𝑛
(𝑡) = 𝑔

𝑛
(𝑌, 𝑡) + Δ𝑔

𝑛
(𝑌) + 𝑑

𝑔

𝑛
(𝑡) ,

(7)

where𝑌(𝑡) = [𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡)]
𝑇
∈ 𝑅
𝑛 is the state vector,

𝑔
𝑖
(𝑌, 𝑡) ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛, is a given nonlinear function of

𝑌 and 𝑡, Δ𝑔
𝑖
(𝑌) ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛, and 𝑑𝑔

𝑖
(𝑡) ∈ 𝑅, 𝑖 =

1, 2, . . . , 𝑛, denote unknown mode uncertain and external
disturbances of the system, respectively.

We define the chaos synchronization problem as follows:
design an appropriate controller 𝑢

𝑖
(𝑡), 𝑖 = 1, 2, 3, . . . , 𝑛, for

the slave system (6) such that its state trajectories track the
state trajectories of the master system (7) asymptotically.

Remark 6. If 𝑞
𝑖
= 𝑞, 𝑖 = 1, 2, . . . , 𝑛, then systems (6) and (7)

are called commensurate fractional-order chaotic systems.
The finite-time synchronization between (6) and (7) with the
same fractional orders has been addressed in [43] by using
a discontinuous terminal sliding mode control method; this
paper considers an SOSMcontroller design for synchronizing
the incommensurate fractional-order system.

Assumption 7. The uncertainty terms Δ𝑓
𝑖
(𝑋), Δ𝑔

𝑖
(𝑌), the

external disturbances 𝑑𝑓
𝑖
(𝑡) and 𝑑𝑔

𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑛, are
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derivable, and the bounds of their derivatives are known
positive constants 𝛾Δ𝑓𝑑

𝑖
, 𝛾
Δ𝑔𝑑

𝑖
, 𝛿
𝑓𝑑

𝑖
, and 𝛿𝑔𝑑

𝑖
:

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑

𝑑𝑡

(Δ𝑓
𝑖
(𝑋))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝛾
Δ𝑓𝑑

𝑖
,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑

𝑑𝑡

(Δ𝑔
𝑖
(𝑌))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝛾
Δ𝑔𝑑

𝑖
,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑

𝑑𝑡

(𝑑
𝑓

𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝛿
𝑓𝑑

𝑖
,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑

𝑑𝑡

(𝑑
𝑔

𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝛿
𝑔𝑑

𝑖
.

(8)

Remark 8. In order to design a chattering free second-order
sliding mode controller, the smoothness hypotheses of the
uncertainty and external disturbances terms are required as
in Assumption 7, which is not necessary with the first-order
sliding mode control approach. Indeed, this can be seen as a
standard assumption when using second-order sliding mode
technique [43].

Define the synchronization error as

𝐸 (𝑡) = 𝑌 (𝑡) − 𝑋 (𝑡)

= [𝑦
1
(𝑡) , 𝑦
2
(𝑡) , . . . , 𝑦

𝑛
(𝑡)]
𝑇

− [𝑥
1
(𝑡) , 𝑥
2
(𝑡) , . . . , 𝑥

𝑛
(𝑡)]
𝑇

= [𝑒
1
(𝑡) , 𝑒
2
(𝑡) , . . . , 𝑒

𝑛
(𝑡)]
𝑇

.

(9)

Consequently, the synchronization error dynamics is
obtained as follows:

𝐷
𝑞1
𝑒
1
(𝑡) = 𝑔

1
(𝑌, 𝑡) + Δ𝑔

1
(𝑌) + 𝑑

𝑔

1
(𝑡) − 𝑓

1
(𝑋, 𝑡)

− Δ𝑓
1
(𝑋) − 𝑑

𝑓

1
(𝑡) − 𝑢

1
(𝑡) ,

𝐷
𝑞2
𝑒
2
(𝑡) = 𝑔

2
(𝑌, 𝑡) + Δ𝑔

2
(𝑌) + 𝑑

𝑔

2
(𝑡) − 𝑓

2
(𝑋, 𝑡)

− Δ𝑓
2
(𝑋) − 𝑑

𝑓

2
(𝑡) − 𝑢

2
(𝑡) ,

...

𝐷
𝑞𝑛
𝑒
𝑛
(𝑡) = 𝑔

𝑛
(𝑌, 𝑡) + Δ𝑔

𝑛
(𝑌) + 𝑑

𝑔

𝑛
(𝑡) − 𝑓

𝑛
(𝑋, 𝑡)

− Δ𝑓
𝑛
(𝑋) − 𝑑

𝑓

𝑛
(𝑡) − 𝑢

𝑛
(𝑡) .

(10)

The control task is to design a chattering free second-
order sliding mode controller 𝑢

𝑖
(𝑡), 𝑖 = 1, 2, 3, . . . , 𝑛, such

that the synchronization error system (10) can be stabilized
to zero as time goes to infinity.

Remark 9. It is clear that if 𝑌(𝑡) = 0, then the synchroniza-
tion problem is transformed to the stabilization problem of
the fractional-order uncertain chaotic system (6).

3. Main Results

To design a sliding mode controller, there are two steps.
Firstly, a sliding surface should be constructed that represents

a desired system dynamics. Secondly, a switching control law
should be developed such that a sliding mode exists on every
point of the sliding surface, and any states outside the surface
are driven to reach the surface in a finite time [44].

In this paper, as a choice, we propose an integral type
sliding surface as follows:

𝑆 (𝑡) = [𝑠
1
(𝑡) , 𝑠
2
(𝑡) , . . . , 𝑠

𝑛
(𝑡)]
𝑇

= 0,

𝑠
𝑖
(𝑡) = 𝐼

1−𝑞𝑖
𝑒
𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑛.

(11)

According to sliding mode control (SMC) method, when
in the sliding mode, the switching surface and its derivative
must satisfy the following conditions:

𝑆 (𝑡) = 0,
̇𝑆 (𝑡) = 0, (12)

from which, one can obtain the so-called equivalent control
and then derive the sliding mode controller.

But, in this paper, different from the traditional sliding
mode control, the SOSM controller to be designed will drive
all the states of sliding variables 𝑠

𝑖
(𝑡) to zero in a finite time;

then, by using Lemma 5, one has

lim
𝑡→∞

𝑒
𝑖
(𝑡) = 0, ∀𝑖 ∈ {1, 2, . . . , 𝑛} . (13)

Next, we will give the main results.

Theorem 10. Under Assumption 7, consider the uncertain
fractional-order chaotic synchronization error system (10) and
the sliding surface (11) and take the following SOSM control
law:

𝑢
𝑖
(𝑡) = 𝑔

𝑖
(𝑌, 𝑡) − 𝑓

𝑖
(𝑋, 𝑡) + 𝑘

𝑖1
𝑠
𝑖
(𝑡)

+ 𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2 sgn (𝑠
𝑖
(𝑡)) − 𝑤

𝑖
(𝑡) ,

𝑤̇
𝑖
(𝑡) = −𝑘

𝑖3
sgn (𝑠

𝑖
(𝑡)) ,

(14)

where 𝑖 = 1, 2, . . . , 𝑛, and sgn is the sign function; 𝑘
𝑖1
, 𝑘
𝑖2
, 𝑘
𝑖3
>

0 denote the design parameters satisfying that

𝑘
𝑖3
> 𝑘
2

𝑖2
,

1

2

𝑘
𝑖2
min

{

{

{

5𝑘
2

𝑖1
, 𝑘
𝑖3
+

1

2

𝑘
2

𝑖2
+

1

2

− √(𝑘
𝑖3
+

1

2

𝑘
2

𝑖2
+

1

2

)

2

− 2𝑘
𝑖3

}

}

}

> (𝛾
𝑖
+ 𝛿
𝑖
)max {𝑘

𝑖2
, 𝑘
𝑖1
, 2} ,

(15)

where 𝛾
𝑖
= 𝛾
Δ𝑓𝑑

𝑖
+ 𝛾
Δ𝑔𝑑

𝑖
, 𝛿
𝑖
= 𝛿
𝑓𝑑

𝑖
+ 𝛿
𝑔𝑑

𝑖
. Then the closed-loop

system of (10) is globally and asymptotically stable.

Proof. According to Definition 2, we have

̇𝑠
𝑖
(𝑡) =

𝑑

𝑑𝑡

(𝐼
1−𝑞𝑖
𝑒
𝑖
(𝑡)) = 𝐷

𝑞𝑖
𝑒
𝑖
(𝑡)

= 𝑔
𝑖
(𝑌, 𝑡) + Δ𝑔

𝑖
(𝑌) + 𝑑

𝑔

𝑖
(𝑡) − 𝑓

𝑖
(𝑋, 𝑡)

− Δ𝑓
𝑖
(𝑋) − 𝑑

𝑓

𝑖
(𝑡) − 𝑢

𝑖
(𝑡) .

(16)
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Substituting (14) into the previous equation, it yields

̇𝑠
𝑖
(𝑡) = − 𝑘

𝑖1
𝑠
𝑖
(𝑡) − 𝑘

𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2 sgn (𝑠
𝑖
(𝑡))

+ 𝑤
𝑖
(𝑡) + 𝑑

𝑖
(𝑡) ,

𝑤̇
𝑖
(𝑡) =−𝑘

𝑖3
sgn (𝑠

𝑖
(𝑡)) ,

(17)

where 𝑑
𝑖
(𝑡) = Δ𝑔

𝑖
(𝑌) + 𝑑

𝑔

𝑖
(𝑡) − Δ𝑓

𝑖
(𝑋) − 𝑑

𝑓

𝑖
(𝑡). From

Assumption 7, one has

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑

𝑑𝑡

(𝑑
𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑

𝑑𝑡

(Δ𝑔
𝑖
(𝑌))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑

𝑑𝑡

(𝑑
𝑔

𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑

𝑑𝑡

(Δ𝑓
𝑖
(𝑋))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑

𝑑𝑡

(𝑑
𝑓

𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝛾
Δ𝑓𝑑

𝑖
+ 𝛾
Δ𝑔𝑑

𝑖
+ 𝛿
𝑓𝑑

𝑖
+ 𝛿
𝑔𝑑

𝑖
,

(18)

which implies that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑

𝑑𝑡

(𝑑
𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝛾
𝑖
+ 𝛿
𝑖
. (19)

Letting 𝑧
𝑖
(𝑡) = 𝑤

𝑖
(𝑡) + 𝑑

𝑖
(𝑡), then system (17) can be

rewritten as

̇𝑠
𝑖
(𝑡) = −𝑘

𝑖1
𝑠
𝑖
(𝑡) − 𝑘

𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2 sgn (𝑠
𝑖
(𝑡)) + 𝑧

𝑖
(𝑡) ,

𝑧̇
𝑖
(𝑡) = −𝑘

𝑖3
sgn (𝑠

𝑖
(𝑡)) +

𝑑

𝑑𝑡

(𝑑
𝑖
(𝑡)) .

(20)

Selecting a Lyapunov function for system (20),

𝑉
𝑖
(𝑡) = 2𝑘

𝑖3

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
+

1

2

𝑧
2

𝑖
(𝑡)

+

1

2

[𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2 sgn (𝑠
𝑖
(𝑡))

+ 𝑘
𝑖1
𝑠
𝑖
(𝑡) − 𝑧

𝑖
(𝑡) ]

2

,

(21)

which can also be written as a quadratic form 𝑉
𝑖
(𝑡) =

𝜁
𝑇

𝑖
(𝑡)𝑃
𝑖
𝜁
𝑖
(𝑡), where

𝜁
𝑖
(𝑡) = [

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2 sgn (𝑠
𝑖
(𝑡)) 𝑠
𝑖
(𝑡) 𝑧
𝑖
(𝑡)]

𝑇

,

𝑃
𝑖
=

1

2

[

[

[

[

(4𝑘
𝑖3
+ 𝑘
2

𝑖2
) 𝑘
𝑖1
𝑘
𝑖2
−𝑘
𝑖2

𝑘
𝑖1
𝑘
𝑖2

𝑘
2

𝑖1
−𝑘
𝑖1

−𝑘
𝑖2

−𝑘
𝑖1

2

]

]

]

]

.

(22)

It is obvious that 𝑉
𝑖
(𝑡) is continuous but is not differentiable

at 𝑠
𝑖
(𝑡) = 0; it is positive and radially unbounded if 𝑘

𝑖3
> 0;

that is,

𝜆min {𝑃𝑖}
󵄩
󵄩
󵄩
󵄩
𝜁
𝑖
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

2
≤ 𝑉
𝑖
(𝑡) ≤ 𝜆max {𝑃𝑖}

󵄩
󵄩
󵄩
󵄩
𝜁
𝑖
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

2
, (23)

where ‖𝜁
𝑖
(𝑡)‖
2

2
= |𝑠
𝑖
(𝑡)| + 𝑠

2

𝑖
(𝑡) + 𝑧

2

𝑖
(𝑡) is the Euclidean norm

of 𝜁
𝑖
(𝑡) and 𝜆min(𝑃𝑖) and 𝜆max(𝑃𝑖) are the minimal eigenvalue

and the largest eigenvalue of matrix 𝑃
𝑖
, respectively. Taking

the time derivative of 𝑉
𝑖
(𝑡) along system (20), we have

𝑉̇
𝑖
(𝑡) = 2𝑘

𝑖3
sgn (𝑠

𝑖
(𝑡)) ̇𝑠
𝑖
(𝑡) + 𝑧

𝑖
(𝑡) 𝑧̇
𝑖
(𝑡)

+ (𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2 sgn (𝑠
𝑖
(𝑡)) + 𝑘

𝑖1
𝑠
𝑖
(𝑡) − 𝑧

𝑖
(𝑡))

⋅ (

𝑘
𝑖2

2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

−1/2

̇𝑠
𝑖
(𝑡) + 𝑘

𝑖1
̇𝑠
𝑖
(𝑡) − 𝑧̇

𝑖
(𝑡))

= 2𝑘
𝑖3
[−𝑘
𝑖1

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
− 𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2

+ 𝑧
𝑖
(𝑡) sgn (𝑠

𝑖
(𝑡))]

+ 𝑧
𝑖
(𝑡) [−𝑘

𝑖3
sgn (𝑠

𝑖
(𝑡)) +

𝑑

𝑑𝑡

(𝑑
𝑖
(𝑡))]

+ (𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2 sgn (𝑠
𝑖
(𝑡)) + 𝑘

𝑖1
𝑠
𝑖
(𝑡) − 𝑧

𝑖
(𝑡))

⋅ [

𝑘
𝑖2

2
󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2

× (−𝑘
𝑖1
𝑠
𝑖
(𝑡) − 𝑘

𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2 sgn (𝑠
𝑖
(𝑡)) + 𝑧

𝑖
(𝑡))

+ 𝑘
𝑖1
(−𝑘
𝑖1
𝑠
𝑖
(𝑡) − 𝑘

𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2 sgn (𝑠
𝑖
(𝑡)) +𝑧

𝑖
(𝑡))

+ 𝑘
𝑖3
sgn (𝑠

𝑖
(𝑡)) −

𝑑

𝑑𝑡

(𝑑
𝑖
(𝑡)) ]

= − 2𝑘
𝑖1
𝑘
𝑖3

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
− 2𝑘
𝑖2
𝑘
𝑖3

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2

+ 2𝑘
𝑖3
𝑧
𝑖
(𝑡) sgn (𝑠

𝑖
(𝑡)) − 𝑘

𝑖3
𝑧
𝑖
(𝑡) sgn (𝑠

𝑖
(𝑡))

+ 𝑧
𝑖
(𝑡)

𝑑

𝑑𝑡

(𝑑
𝑖
(𝑡))

+ (𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2 sgn (𝑠
𝑖
(𝑡)) + 𝑘

𝑖1
𝑠
𝑖
(𝑡) − 𝑧

𝑖
(𝑡))

⋅ [−

1

2

𝑘
𝑖1
𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2 sgn (𝑠
𝑖
(𝑡)) −

1

2

𝑘
2

𝑖2
sgn (𝑠

𝑖
(𝑡))

+

𝑘
𝑖2

2
󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2
𝑧
𝑖
(𝑡) − 𝑘

2

𝑖2
𝑠
𝑖
(𝑡)

− 𝑘
𝑖1
𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2 sgn (𝑠
𝑖
(𝑡)) + 𝑘

𝑖1
𝑧
𝑖
(𝑡)

+ 𝑘
𝑖3
sgn (𝑠

𝑖
(𝑡)) −

𝑑

𝑑𝑡

(𝑑
𝑖
(𝑡))] .

(24)

By a simple derivation, we have

𝑉̇
𝑖
(𝑡) = − 2𝑘

𝑖1
𝑘
𝑖3

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
− 2𝑘
𝑖2
𝑘
𝑖3

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2

+ 𝑘
𝑖3
𝑧
𝑖
(𝑡) sgn (𝑠

𝑖
(𝑡)) + 𝑧

𝑖
(𝑡)

𝑑

𝑑𝑡

(𝑑
𝑖
(𝑡))

+ (𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2 sgn (𝑠
𝑖
(𝑡)) + 𝑘

𝑖1
𝑠
𝑖
(𝑡) − 𝑧

𝑖
(𝑡))

⋅ [ −

3

2

𝑘
𝑖1
𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2 sgn (𝑠
𝑖
(𝑡))

− (

1

2

𝑘
2

𝑖2
− 𝑘
𝑖3
) sgn (𝑠

𝑖
(𝑡)) +

𝑘
𝑖2

2
󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2
𝑧
𝑖
(𝑡)

− 𝑘
2

𝑖1
𝑠
𝑖
(𝑡) + 𝑘

𝑖1
𝑧
𝑖
(𝑡) −

𝑑

𝑑𝑡

(𝑑
𝑖
(𝑡)) ]
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= − 2𝑘
𝑖1
𝑘
𝑖3

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
− 2𝑘
𝑖2
𝑘
𝑖3

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2

+ 𝑘
𝑖3
𝑧
𝑖
(𝑡) sgn (𝑠

𝑖
(𝑡)) + 𝑧

𝑖
(𝑡)

𝑑

𝑑𝑡

(𝑑
𝑖
(𝑡))

−

3

2

𝑘
𝑖1
𝑘
2

𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
− 𝑘
𝑖2
(

1

2

𝑘
2

𝑖2
− 𝑘
𝑖3
)
󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2

+

1

2

𝑘
2

𝑖2
𝑧
𝑖
(𝑡) sgn (𝑠

𝑖
(𝑡)) − 𝑘

2

𝑖1
𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

3/2

+ 𝑘
𝑖1
𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2 sgn (𝑠
𝑖
(𝑡)) 𝑧
𝑖
(𝑡)

− 𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2 sgn (𝑠
𝑖
(𝑡))

𝑑

𝑑𝑡

(𝑑
𝑖
(𝑡))

−

3

2

𝑘
2

𝑖1
𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

3/2

− 𝑘
𝑖1
(

1

2

𝑘
2

𝑖2
− 𝑘
𝑖3
)
󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

+

1

2

𝑘
𝑖1
𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2

𝑧
𝑖
(𝑡) sgn (𝑠

𝑖
(𝑡))

− 𝑘
3

𝑖1
𝑠
2

𝑖
(𝑡) + 𝑘

2

𝑖1
𝑠
𝑖
(𝑡) 𝑧
𝑖
(𝑡) − 𝑘

𝑖1
𝑠
𝑖
(𝑡)

𝑑

𝑑𝑡

(𝑑
𝑖
(𝑡))

+

3

2

𝑘
𝑖1
𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2 sgn (𝑠
𝑖
(𝑡)) 𝑧
𝑖
(𝑡)

+ (

1

2

𝑘
2

𝑖2
− 𝑘
𝑖3
) sgn (𝑠

𝑖
(𝑡)) 𝑧
𝑖
(𝑡)

−

𝑘
𝑖2

2
󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2
𝑧
2

𝑖
(𝑡) + 𝑘

2

𝑖1
𝑠
𝑖
(𝑡) 𝑧
𝑖
(𝑡)

− 𝑘
𝑖1
𝑧
2

𝑖
(𝑡) + 𝑧

𝑖
(𝑡)

𝑑

𝑑𝑡

(𝑑
𝑖
(𝑡)) .

(25)

The previous formula can be simplified as

𝑉̇
𝑖
(𝑡) = − (𝑘

𝑖1
𝑘
𝑖3
+ 2𝑘
𝑖1
𝑘
2

𝑖2
)
󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

− (𝑘
𝑖2
𝑘
𝑖3
+

1

2

𝑘
2

𝑖3
)
󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2

+ 𝑘
2

𝑖2
𝑧
𝑖
(𝑡) sgn (𝑠

𝑖
(𝑡))

+ (2𝑧
𝑖
− 𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2 sgn (𝑠
𝑖
(𝑡)) − 𝑘

𝑖1
𝑠
𝑖
(𝑡))

×

𝑑

𝑑𝑡

(𝑑
𝑖
(𝑡)) −

5

2

𝑘
2

𝑖1
𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

3/2

+ 3𝑘
𝑖1
𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2

𝑧
𝑖
(𝑡) sgn (𝑠

𝑖
(𝑡)) − 𝑘

3

𝑖1
𝑠
2

𝑖
(𝑡)

+ 𝑘
2

𝑖1
𝑠
𝑖
(𝑡) 𝑧
𝑖
(𝑡) −

𝑘
𝑖2

2
󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2
𝑧
2

𝑖
(𝑡) − 𝑘

𝑖1
𝑧
2

𝑖
(𝑡)

= − (𝑘
𝑖1
𝑘
𝑖3
+ 2𝑘
𝑖1
𝑘
2

𝑖2
)
󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

+ (2𝑧
𝑖
(𝑡) − 𝑘

𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2 sgn (𝑠
𝑖
(𝑡)) − 𝑘

𝑖1
𝑠
𝑖
(𝑡))

×

𝑑

𝑑𝑡

(𝑑
𝑖
(𝑡))

+ 3𝑘
𝑖1
𝑘
𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2

𝑧
𝑖
(𝑡) sgn (𝑠

𝑖
(𝑡))

− 𝑘
3

𝑖1
𝑠
2

𝑖
(𝑡) + 𝑘

2

𝑖1
𝑠
𝑖
(𝑡) 𝑧
𝑖
(𝑡) − 𝑘

𝑖1
𝑧
2

𝑖
(𝑡)

−

1

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2
[(𝑘
𝑖2
𝑘
𝑖3
+

1

2

𝑘
3

𝑖2
)
󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

− 𝑘
2

𝑖2

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2

𝑧
𝑖
(𝑡) sgn (𝑠

𝑖
(𝑡))

+

5

2

𝑘
2

𝑖1
𝑘
𝑖2
𝑠
2

𝑖
(𝑡) +

1

2

𝑘
𝑖2
𝑧
2

𝑖
(𝑡) ] .

(26)

Therefore, we can rewrite 𝑉̇
𝑖
(𝑡) as

𝑉̇
𝑖
(𝑡) = − 𝜁

𝑇

𝑖
(𝑡) 𝑄
𝑖1
𝜁
𝑖
(𝑡) −

1

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2
𝜁
𝑇

𝑖
(𝑡) 𝑄
𝑖2
𝜁
𝑖
(𝑡)

+ 𝑞
𝑇

𝑖

𝑑

𝑑𝑡

(𝑑
𝑖
(𝑡)) 𝜁
𝑖
(𝑡) ,

(27)

where

𝑄
𝑖1
=

[

[

[

[

[

[

[

[

𝑘
𝑖1
𝑘
𝑖3
+ 2𝑘
𝑖1
𝑘
2

𝑖2
0 −

3

2

𝑘
𝑖1
𝑘
𝑖2

0 𝑘
3

𝑖1
−

1

2

𝑘
2

𝑖1

−

3

2

𝑘
𝑖1
𝑘
𝑖2

−

1

2

𝑘
2

𝑖1
𝑘
𝑖1

]

]

]

]

]

]

]

]

,

𝑄
𝑖2
=

[

[

[

[

[

[

[

[

𝑘
𝑖2
𝑘
𝑖3
+

1

2

𝑘
3

𝑖2
0 −

1

2

𝑘
2

𝑖2

0

5

2

𝑘
2

𝑖1
𝑘
𝑖2

0

−

1

2

𝑘
2

𝑖2
0

1

2

𝑘
𝑖2

]

]

]

]

]

]

]

]

,

(28)

𝑞
𝑇

𝑖
= [−𝑘

𝑖2
− 𝑘
𝑖1
2]. Next, we will prove that the matrixes

𝑄
𝑖1
and 𝑄

𝑖2
are positive definite.

For all 𝑘
𝑖1
, 𝑘
𝑖2
, 𝑘
𝑖3
> 0, let

𝑄
𝑖1
=

𝑄
𝑖1

𝑘
𝑖1

=

[

[

[

[

[

[

[

[

𝑘
𝑖3
+ 2𝑘
2

𝑖2
0 −

3

2

𝑘
𝑖2

0 𝑘
2

𝑖1
−

1

2

𝑘
𝑖1

−

3

2

𝑘
𝑖2

−

1

2

𝑘
𝑖1

1

]

]

]

]

]

]

]

]

. (29)

Then, by simple calculations and from the first inequality of
(15), we have

𝑘
𝑖3
+ 2𝑘
2

𝑖2
> 0, (𝑘

𝑖3
+ 2𝑘
2

𝑖2
) 𝑘
2

𝑖1
> 0,

det (𝑄
𝑖1
) =

3

4

𝑘
2

𝑖1
(𝑘
𝑖3
− 𝑘
2

𝑖2
) > 0,

(30)

which implies that 𝑄
𝑖1
> 0.
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As for𝑄
𝑖2
, by direct calculation, three positive eigenvalues

of it can be obtained:

𝜆
1
=

5

2

𝑘
2

𝑖1
𝑘
𝑖2
,

𝜆
2,3
= (𝑘

𝑖2
𝑘
𝑖3
+

1

2

𝑘
3

𝑖2
+

1

2

𝑘
𝑖2

± √(𝑘
𝑖2
𝑘
𝑖3
+

1

2

𝑘
3

𝑖2
+

1

2

𝑘
𝑖2
)

2

− 2𝑘
2

𝑖2
𝑘
𝑖3
) × (2)

−1
,

(31)

which means 𝑄
𝑖2
> 0.

Noting that |𝑠
𝑖
(𝑡)|
1/2
≤ ‖𝜁
𝑖
(𝑡)‖
2
, according to (19) and (27),

one has

𝑉̇
𝑖
(𝑡) ≤ −𝜁

𝑇

𝑖
(𝑡) 𝑄
𝑖1
𝜁
𝑖
(𝑡) −

1

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2
𝜁
𝑇

𝑖
(𝑡) 𝑄
𝑖2
𝜁
𝑖
(𝑡)

+

1

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2
(𝛾
𝑖
+ 𝛿
𝑖
) 𝑞
𝑇

𝑖

󵄩
󵄩
󵄩
󵄩
𝜁
𝑖
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

2

≤ −𝜁
𝑇

𝑖
(𝑡) 𝑄
𝑖1
𝜁
𝑖
(𝑡) −

1

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2
𝜁
𝑇

𝑖
(𝑡) 𝑄
𝑖2
𝜁
𝑖
(𝑡)

+

(𝛾
𝑖
+ 𝛿
𝑖
)

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2
max {𝑘

𝑖2
, 𝑘
𝑖1
, 2}
󵄩
󵄩
󵄩
󵄩
𝜁
𝑖
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

2
.

(32)

By using the second inequality of (15) and formula (31) results

𝜆min {𝑄𝑖2} = 𝜆3 > (𝛾𝑖 + 𝛿𝑖)max {𝑘
𝑖2
, 𝑘
𝑖1
, 2} . (33)

Hence, from (32), one has

𝑉̇
𝑖
(𝑡) ≤ −𝜆min {𝑄𝑖1}

󵄩
󵄩
󵄩
󵄩
𝜁
𝑖
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

2

−

1

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2
(𝜆min {𝑄𝑖2} − (𝛾𝑖 + 𝛿𝑖)max {𝑘

𝑖2
, 𝑘
𝑖1
, 2})

×
󵄩
󵄩
󵄩
󵄩
𝜁
𝑖
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

2
.

(34)

Because

󵄩
󵄩
󵄩
󵄩
𝜁
𝑖
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

2
=
󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
+ 𝑠
2

𝑖
(𝑡) + 𝑧

2

𝑖
(𝑡) ,

𝜆min {𝑃𝑖}
󵄩
󵄩
󵄩
󵄩
𝜁
𝑖
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

2
≤ 𝑉
𝑖
(𝑡) ≤ 𝜆max {𝑃𝑖}

󵄩
󵄩
󵄩
󵄩
𝜁
𝑖
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

2
,

(35)

we have

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

1/2

≤
󵄩
󵄩
󵄩
󵄩
𝜁
𝑖
(𝑡)
󵄩
󵄩
󵄩
󵄩2
≤

√𝑉
𝑖
(𝑡)

√𝜆min {𝑃𝑖}
,

𝑉
𝑖
(𝑡)

𝜆max {𝑃𝑖}
≤
󵄩
󵄩
󵄩
󵄩
𝜁
𝑖
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

2
≤

𝑉
𝑖
(𝑡)

𝜆min {𝑃𝑖}
.

(36)

Therefore, from (34), we have

𝑉̇
𝑖
(𝑡) ≤ −

𝜆min {𝑄𝑖1}

𝜆max {𝑃𝑖}
𝑉
𝑖
(𝑡)

− (𝜆min {𝑄𝑖2} − (𝛾𝑖 + 𝛿𝑖)max {𝑘
𝑖2
, 𝑘
𝑖1
, 2})

×

𝑉
𝑖
(𝑡)

𝜆max {𝑃𝑖}
⋅

√𝜆min {𝑃𝑖}

√𝑉
𝑖
(𝑡)

≤ −

√𝜆min {𝑃𝑖}

𝜆max {𝑃𝑖}

× (𝜆min {𝑄𝑖2} − (𝛾𝑖 + 𝛿𝑖)max {𝑘
𝑖2
, 𝑘
𝑖1
, 2})√𝑉

𝑖
(𝑡).

(37)

By Lemma 4 it follows easily that 𝑉
𝑖
(𝑡) and therefore 𝑠

𝑖
(𝑡),

globally converge to zero in a finite time. According to
the sliding surface dynamics (11) and Lemma 5, we obtain
𝑒
𝑖
(𝑡) → 0 as 𝑡 → ∞.
This completes the proof of Theorem 10.

Remark 11. It is difficult to obtain all the possible solutions
of nonlinear inequalities (15). However, in the process of
selecting parameters, we observe that

𝑘
𝑖3
+

1

2

𝑘
2

𝑖2
+

1

2

+ √(𝑘
𝑖3
+

1

2

𝑘
2

𝑖2
+

1

2

)

2

− 2𝑘
𝑖3

=

2𝑘
𝑖3

𝑘
𝑖3
+ (1/2) 𝑘

2

𝑖2
+ 1/2 + √(𝑘

𝑖3
+ (1/2)𝑘

2

𝑖2
+ 1/2)

2

− 2𝑘
𝑖3

≥

2𝑘
𝑖3

𝑘
𝑖3
+ (1/2) 𝑘

𝑖3
+ 1/2 + √(𝑘

𝑖3
+ (1/2)𝑘

𝑖3
+ 1/2)

2

=

2𝑘
𝑖3

3𝑘
𝑖3
+ 1

.

(38)

Therefore, if 𝛾
𝑖
+ 𝛿
𝑖
< 4, we may present a set of feasible

solutions of design parameters 𝑘
𝑖1
, 𝑘
𝑖2
, and 𝑘

𝑖3
step by step.

First, choosing 𝑘
𝑖1
, 𝑘
𝑖2

satisfies √2/15 < 𝑘
𝑖1
≤ 2 and

3
√2(𝛾
𝑖
+ 𝛿
𝑖
) < 𝑘

𝑖2
≤ 2. Next, select 𝑘

𝑖3
such that 𝑘2

𝑖2
< 𝑘
𝑖3
≤

((𝑘
3

𝑖2
/2(𝛾
𝑖
+𝛿
𝑖
)) − 1)/3. Thus it is an easy task to get a group of

appropriate design parameters in this way.

4. Simulations

A useful approximate numerical technique for solving the
fractional differential equations has been developed by many
researchers; see, for example, Diethelm et al. [45], which is the
generalization of the Adams-Bashforth-Moulton algorithm.
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Figure 1: Response of the fractional-order hyperchaotic Chen system with respect to time.

Based on the numerical algorithms of fractional-order
systems, we consider the simulation example for the synchro-
nization problem of the uncertain fractional-order hyper-
chaotic Lorenz system as the slave system and the fractional-
order hyperchaotic Chen system as the master system [41].

Firstly, we describe the hyperchaos phenomenon in
the fractional-order hyperchaotic Chen system and the
fractional-order hyperchaotic Lorenz system, respectively.
For simplicity, we consider the following systems:

𝐷
𝑞1
𝑦
1
(𝑡) = 35 (𝑦

2
(𝑡) − 𝑦

1
(𝑡)) + 𝑦

4
(𝑡) ,

𝐷
𝑞2
𝑦
2
(𝑡) = 7𝑦

1
(𝑡) + 12𝑦

2
(𝑡) − 𝑦

1
(𝑡) 𝑦
3
(𝑡) ,

𝐷
𝑞3
𝑦
3
(𝑡) = 𝑦

1
(𝑡) 𝑦
2
(𝑡) − 8𝑦

3
(𝑡) ,

𝐷
𝑞4
𝑦
4
(𝑡) = 𝑦

2
(𝑡) 𝑦
3
(𝑡) + 0.3𝑦

4
(𝑡) ,

𝐷
𝑞1
𝑥
1
(𝑡) = 10 (𝑥

2
(𝑡) − 𝑥

1
(𝑡)) + 𝑥

4
(𝑡) ,

𝐷
𝑞2
𝑥
2
(𝑡) = 28𝑥

1
(𝑡) − 𝑥

2
(𝑡) − 𝑥

1
(𝑡) 𝑥
3
(𝑡) ,

𝐷
𝑞3
𝑥
3
(𝑡) = 𝑥

1
(𝑡) 𝑥
2
(𝑡) −

8

3

𝑥
3
(𝑡) ,

𝐷
𝑞4
𝑥
4
(𝑡) = − 𝑥

2
(𝑡) 𝑥
3
(𝑡) − 𝑥

4
(𝑡) ,

(39)

where we take the fractional orders 𝑞
1
= 0.98, 𝑞

2
=

0.96, 𝑞
3
= 0.97, and 𝑞

4
= 0.99. Assume the initial

conditions are (0.2, 0.3, 1.5, −0.5) and (0.1, 0.2, −0.3, 1.5). By
using the numerical algorithm similar to [46], the time step is
0.005 s. Figures 1 and 2 show the hyperchaotic phenomenon.

Next, we consider the synchronization simulations of
these two uncertain fractional-order hyperchaotic systems;
the first is hyperchaotic Lorenz system:

𝐷
𝑞1
𝑥
1
(𝑡) = 10 (𝑥

2
(𝑡) − 𝑥

1
(𝑡)) + 𝑥

4
(𝑡) + Δ𝑓

1
(𝑋)

+ 𝑑
𝑓

1
(𝑡) + 𝑢

1
(𝑡) ,

𝐷
𝑞2
𝑥
2
(𝑡) = 28𝑥

1
(𝑡) − 𝑥

2
(𝑡) − 𝑥

1
(𝑡) 𝑥
3
(𝑡) + Δ𝑓

2
(𝑋)

+ 𝑑
𝑓

2
(𝑡) + 𝑢

2
(𝑡) ,

𝐷
𝑞3
𝑥
3
(𝑡) = 𝑥

1
(𝑡) 𝑥
2
(𝑡) −

8

3

𝑥
3
(𝑡) + Δ𝑓

3
(𝑋)

+ 𝑑
𝑓

3
(𝑡) + 𝑢

3
(𝑡) ,

𝐷
𝑞4
𝑥
4
(𝑡) = − 𝑥

2
(𝑡) 𝑥
3
(𝑡) − 𝑥

4
(𝑡) + Δ𝑓

4
(𝑋)

+ 𝑑
𝑓

4
(𝑡) + 𝑢

4
(𝑡) .

(40)
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Figure 2: Response of the fractional-order hyperchaotic Lorenz system with respect to time.

The second is hyperchaotic Chen system:

𝐷
𝑞1
𝑦
1
(𝑡) = 35 (𝑦

2
(𝑡) − 𝑦

1
(𝑡)) + 𝑦

4
(𝑡) + Δ𝑔

1
(𝑌) + 𝑑

𝑔

1
(𝑡) ,

𝐷
𝑞2
𝑦
2
(𝑡) = 7𝑦

1
(𝑡) + 12𝑦

2
(𝑡) − 𝑦

1
(𝑡) 𝑦
3
(𝑡) + Δ𝑔

2
(𝑌)

+ 𝑑
𝑔

2
(𝑡) ,

𝐷
𝑞3
𝑦
3
(𝑡) = 𝑦

1
(𝑡) 𝑦
2
(𝑡) − 8𝑦

3
(𝑡) + Δ𝑔

3
(𝑌) + 𝑑

𝑔

3
(𝑡) ,

𝐷
𝑞4
𝑦
4
(𝑡) = 𝑦

2
(𝑡) 𝑦
3
(𝑡) + 0.3𝑦

4
(𝑡) + Δ𝑔

4
(𝑌) + 𝑑

𝑔

4
(𝑡) .

(41)

The uncertainty terms of systems (40) and (41) are
selected as follows:

Δ𝑓
1
+ 𝑑
𝑓

1
= 0.25 cos 6𝑡 − 0.1 sin 𝑡,

Δ𝑓
2
+ 𝑑
𝑓

2
= −0.2 cos 2𝑡 + 0.15 sin 3𝑡,

Δ𝑓
3
+ 𝑑
𝑓

3
= 0.15 sin 3𝑡 − 0.2 cos 𝑡,

Δ𝑓
4
+ 𝑑
𝑓

4
= −0.3 cos 𝑡 − 0.15 cos 𝑡,

Δ𝑔
1
+ 𝑑
𝑔

1
= −0.15 cos 4𝑡 + 0.2 cos 𝑡,

Δ𝑔
2
+ 𝑑
𝑔

2
= 0.1 sin 4𝑡 + 0.2 cos 2𝑡,

Δ𝑔
3
+ 𝑑
𝑔

3
= 0.25 sin 3𝑡 − 0.3 cos 4𝑡,

Δ𝑔
4
+ 𝑑
𝑔

4
= 0.15 sin 5𝑡 − 0.1 cos 2𝑡.

(42)

As pointed out in [47, 48], to ensure the existence of
chaos for the hyperchaotic Lorenz and Chen systems, the
initial conditions of the slave and master systems are chosen
as 𝑥
1
(0) = 2, 𝑥

2
(0) = −1, 𝑥

3
(0) = 3, 𝑥

4
(0) = 2, 𝑦

1
(0) = 3,

𝑦
2
(0) = 5, 𝑦

3
(0) = −3, and 𝑦

4
(0) = 1, respectively. By

Remark 11, choose parameters 𝑘
𝑖1
= 1.5, 𝑘

𝑖2
= 1.6, and

𝑘
𝑖3
= 2.5.
According to (40) and (41), the synchronization error

dynamics is described as

𝐷
𝑞1
𝑒
1
= 35 (𝑦

2
− 𝑦
1
) + 𝑦
4
− 0.15 cos 4𝑡 + 0.2 cos 𝑡

− 10 (𝑥
2
− 𝑥
1
) − 𝑥
4
− 0.25 cos 6𝑡 + 0.1 sin 𝑡 − 𝑢

1
,

𝐷
𝑞2
𝑒
2
= 7𝑦
1
+ 12𝑦

2
− 𝑦
1
𝑦
3
+ 0.1 sin 4𝑡 + 0.2 cos 2𝑡

− 28𝑥
1
+ 𝑥
2
+ 𝑥
1
𝑥
3
+ 0.2 cos 2𝑡 − 0.15 sin 3𝑡 − 𝑢

2
,

𝐷
𝑞3
𝑒
3
= 𝑦
1
𝑦
2
− 8𝑦
3
+ 0.25 sin 3𝑡 − 0.3 cos 4𝑡 − 𝑥

1
𝑥
2

+

8

3

𝑥
3
− 0.15 sin 3𝑡 + 0.2 cos 𝑡 − 𝑢

3
,

𝐷
𝑞4
𝑒
4
= 𝑦
2
𝑦
3
+ 0.3𝑦

4
+ 0.15 sin 5𝑡 − 0.1 cos 2𝑡 + 𝑥

2
𝑥
3

+ 𝑥
4
+ 0.3 cos 𝑡 + 0.15 cos 𝑡 − 𝑢

4
,

(43)

with the initial conditions being 𝑒
1
(0) = 1, 𝑒

2
(0) = 6, 𝑒

3
(0) =

−6, and 𝑒
4
(0) = −1. Substituting the second-order sliding
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Figure 3: Response of the synchronization error (𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
) with respect to time.

mode controller (14) into (43), we can obtain the closed-loop
error system.

By using the numerical algorithm [45], with the sampling
interval being ℎ = 0.002 s, next we present the simulation
result to show the convergence of 𝑒

𝑖
(𝑡), 𝑖 = 1, 2, 3, 4.

From Figure 3, we observe that all the states of synchro-
nization error system (43) converge to zero driven by the
second-order sliding mode controller, which implies that the
control approach is valid to address the robust synchroniza-
tion problem for the uncertain hyperchaotic systems.

Remark 12. As given by Aghababa in [41], the uncertainty
terms of systems (40) and (41) are chosen as bounded peri-
odic function containing sine and cosine forms. Of course,
other uncertain cases satisfying (8) can also be selected as the
simulate examples.

Remark 13. As in [41], in this section, the fractional-order
hyperchaotic Lorenz system and the fractional-order hyper-
chaotic Chen system are selected as slave system and the
master system, respectively. In fact, there are many other
fractional-order chaotic systems that can be considered; here
we cannot discuss each case for lack of space.

Remark 14. In this section, we adopt the traditional numeri-
cal algorithm [45] for fractional-order system, as for the other
method [46] with MATLAB implementation that can also be
applied in our simulation section.

Remark 15. For the chaotic fractional systems, the orders
should be lower than 3, as for the hyperchaotic systems in our
paper, even though the systems are of order>3, but, as pointed
out in [47, 48], the existence of chaos can be guaranteed just
as shown in Figures 1 and 2.

5. Conclusion

A second-order sliding mode controller is proposed in this
article in order to address the synchronization problem for
a class of uncertain fractional-order chaotic systems. The
stability analysis is given based on the Lyapunov theorem; a
simple numerical example is adopted to show the effective-
ness of our control approach.
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