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Harmony search (HS) was introduced in 2001 as a heuristic population-based optimisation algorithm. Since then HS has become a
popular alternative to other heuristic algorithms like simulated annealing and particle swarm optimisation. However, some flaws,
like the need for parameter tuning, were identified and have been a topic of study for much research over the last 10 years. Many
variants of HS were developed to address some of these flaws, andmost of them have made substantial improvements. In this paper
we compare the performance of three recent HS variants: exploratory harmony search, self-adaptive harmony search, and dynamic
local-best harmony search. We compare the accuracy of these algorithms, using a set of well-known optimisation benchmark
functions that include both unimodal andmultimodal problems. Observations from this comparison led us to design a novel hybrid
that combines the best attributes of these modern variants into a single optimiser called generalised adaptive harmony search.

1. Introduction

Harmony search (HS) is a relatively new metaheuristic opti-
misation algorithm first introduced in 2001 [1]. In this
context, metaheuristic means that, unlike general heuris-
tic algorithms that use trial-and-error methods to solve a
specific problem, it uses higher level techniques to solve a
general class of problems efficiently. HS fits into the category
of population-based evolutionary algorithms together with
genetic algorithms (GAs) and the particle swarm optimisa-
tion (PSO) algorithm.

As is often the case with evolutionary metaheuristics,
HS was inspired by a natural phenomenon. In this case, the
methods used by professional musicians to collaboratively
improvise new harmonies were taken as the inspiration for
HS. An analogy between improvisation and optimisation was
constructed, and an algorithmwas designed tomimic theway
a musician uses short-term memory and past experiences to
lead her to the note that results in the most pleasing harmony
when played together with the other musicians. Harmony
search is easy to implement and can easily be applied and
adapted to solve almost any problem that can be modelled as
the minimisation or maximisation of an objective function.

The objective function itself can be continuous or discrete,
and a smooth gradient is not required. No initial solutions
or carefully chosen starting points are required. In fact, the
objective function is considered a black box by harmony
search. Any procedure that takes a solution vector as input
and gives a fitness score as output can be used as an objective
function.

These properties make harmony search attractive. It has
been successfully used in a wide range of disciplines, includ-
ing computer vision, vehicle routing, music composition,
Sudoku puzzle, and various engineering disciplines [2–8].
However, it was soon realised that many aspects of HS
can be improved and, in particular, that many of the HS
parameters that are often difficult to set can be set and
adjusted automatically.

An early approach to this automatic adjustment of the
HS parameters was the improved harmony search (IHS)
algorithm developed by Mahdavi et al. [9]. They noticed that
the pitch adjustment rate (PAR) and fret width (FW) (The
fret width (FW) was formally known as the bandwidth (BW),
and it is still sometimes referred to as such. The terminology
has since been updated to better reflect the musical analogy.)
parameters are important to the fine tuning of optimised
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solution vectors, and they suggested a method of adapting
PAR and FW to the relative progress of the optimiser instead
of keeping these parameters constant through all iterations.
Their algorithm alleviates the problem of choosing an exact
value for the PAR and FW, but it still requires that a range of
values specified by aminimum andmaximum value be given.

Another early approach to improving HS’s performance
and solving the parameter setting problem is the global-best
harmony search (GHS) algorithm [10]. It was inspired by
the swarm intelligence concept used in the particle swarm
optimisation algorithm (PSO) [11]. Instead of using the FW
parameter to adjust possible solutions closer to an optimum,
GHSmoves component values toward the value of the current
best solution in the population.

Both IHS and GHS improved on the performance of HS
and alleviated the parameter setting problem to some degree.
However, just in the last few years, many more HS variants
were developed that have shown to be superior to these
early variants, and some require even less manual parameter
setting. Most of these new variants are inspired by other
evolutionary algorithms, and they combine the best aspects
of the simplex algorithm, simulated annealing, differential
evolution, sequential quadratic programming, and many
other aspects with HS to form new HS variants [12–16]. For
a thorough summery of the latest research in HS variants see
the review article by Alia and Mandava [17].

In this paper, we concentrate on the comparison of
three of the most recent and promising HS variants:
exploratory harmony search (EHS), self-adaptive harmony
search (SAHS), and dynamic local-best harmony search
(DLHS). All three improve on both the performance of the
original HS and many of the earlier HS variants. We also
chose these variants because they were not developed as
hybrid algorithms by combining HS with other optimisation
algorithms. Instead, the focuswas on investigating the steps of
HS and adding novelmodifications to key areas of the original
algorithm.

In the section that follows, we briefly overview the
HS algorithm and explain how the optimiser parameters
influence the performance of the optimisation process. This
provides the necessary background to introduce the three
HS variants in the sections that follow. In Section 3, we
compare the performance of three HS variants using a
set of well-known optimisation benchmark functions. The
results from these tests are then interpreted and discussed
in Section 4. These observations then lead us to develop a
novel hybrid algorithm called generalised adaptive harmony
search (GAHS) that we introduce in Section 5. We conclude
in Section 6 with final remarks and our thoughts on future
research in the development of harmony search-based opti-
misers.

2. Harmony Search and Optimisers
Based on Harmony Search

Theharmony search algorithm is ametaheuristic population-
based optimisation algorithm inspired by the way musicians
in a band discover new harmonies through cooperative

improvisation [1]. The analogy between the optimisation
of an objective function and the improvisation of pleasing
harmonies is explained by the actions of the musicians in the
band. Each musician corresponds to a decision variable in
the solution vector of the problem and is also a dimension
in the search space. Each musician (decision variable) has
a different instrument whose pitch range corresponds to a
decision variable’s value range. A solution vector, also called
an improvisation, at a certain iteration corresponds to the
musical harmony at a certain time, and the objective function
corresponds to the audience’s aesthetics. New improvisations
are based on previously remembered good ones represented
by a data structure called the harmony memory (HM).

This analogy is common to all the HS variants that we
will investigate. HS variants differ in the way solution vectors
(improvisations) are generated and how the HM is updated
at the end of each iteration. We start our explanation of how
this is done differently in each variant with an overview of the
original HS algorithm.

2.1. An Overview of Harmony Search. The core data structure
of HS is a matrix of the best solution vectors called the
harmony memory (HM). The number of vectors that are
simultaneously processed is known as the harmony memory
size (HMS). It is one of the algorithm’s parameters that
has to be set manually. Memory is organised as a matrix
with each row representing a solution vector and the final
column representing the vector’s fitness. In an𝑁-dimensional
problem, the HM would be represented as
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where each row consists of 𝑁 decision variables and the fit-
ness score 𝑤 ([𝑥1, 𝑥2, . . . , 𝑥𝑁, 𝑤]). Before optimisation starts,
the HM is initialised with HMS randomly generated solution
vectors. Depending on the problem, these vectors can also be
randomly chosen around a seed point that may represent an
area in the search space where the optimum is most likely to
be found [3].

The step after initialisation is called improvisation. A
new solution is improvised by using three rules: memory
consideration, pitch adjustment, and random selection. Each
decision variable is improvised separately, and any one of
the three rules can be used for any variable. The harmony
memory consideration rate (HMCR) is also one of the HS
parameters that must be manually chosen. It controls how
often the memory (HM) is taken into consideration dur-
ing improvisation. For standard HS memory consideration
means that the decisions variable’s value is chosen directly
from one of the solution vectors in the HM. A random
number is generated for each decision variable. If it is smaller
than the HMCR, the memory is taken into consideration;
otherwise, a value is randomly chosen from the range of
possible values for that dimension.
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If the HM is taken into consideration, the improvised
value is chosen randomly from one of the values in the HM.
The pitch adjustment rate (PAR) is set during initialisation,
and it controls the amount of pitch adjustment done when
memory consideration is used. Another random number is
generated. If it is smaller than the PAR, the improvised value
is pitch adjusted using

𝑥
󸀠

new = 𝑥new + rand () ⋅ FW, (2)

where 𝑥
󸀠

new is the new pitch-adjusted value, 𝑥new is the
old value chosen using memory consideration, rand() is a
random value between −1 and 1, and FW is the fret width
parameter. The terminology has since been updated to better
reflect the musical analogy [5] that controls the maximum
variation in pitch adjustment and is one of the parameters that
must be manually set.

Once a new value has been improvised, the memory
is updated by comparing the new improvisation with the
vector in the memory with the lowest fitness. If the new
improvisation has a higher fitness, it replaces the vector with
the lowest fitness. This process of improvisation and update
continues iteratively until some stopping criterion is fulfilled,
or the maximum number of iterations are reached.

To summarise, the main steps of the HS are as follows.

(1) Initialise the HM with possible solutions from the
entire search space of the function to be optimised.

(2) Improvise a new solution vector using memory con-
sideration, pitch adjustment, and random selection

(3) If the new improvisation is better than the worst
solution in the HM, replace the worst solution with
the new improvisation.

(4) Check the stopping criteria. If it has not been met,
repeat Steps (2) and (3), or else proceed to Step (5).

(5) Return the best solution (highest fitness) in the HM
as the optimal solution vector of the function.

This is a brief overview of HS. The interested reader is
referred to [1, 5] for a more detailed explanation.

2.2. Exploratory Harmony Search. The exploratory harmony
search (EHS) algorithm was the result of improving the
performance of HS by focussing on the evolution of the
population variance in theHMduring optimisation.Das et al.
realised that the exploratory power of HS can be maximised
by dynamically adjusting the FW to be proportional to the
standard deviation of the HM population [18].

This realisation comes from the following lemma that is
proven in [18].

Lemma 1. If the HMCR is chosen to be high (i.e., very near
to 1), and the FW is chosen to be proportional to the standard
deviation of the HM (i.e., FW ∝ 𝜎(HM) = √Var(HM)), then
the expected population variance (without updating the HM)
can grow exponentially over iterations.

This lemma led them to redefine the FW as a dynamically
adjusting parameter defined by FW = 𝑘√Var(HM), where 𝑘

is a proportionality constant.TheFWis therefore recalculated
at each iteration based on the current HM variance, instead
of using a constant value that must be chosen manually.

To ensure exponential variance growth, the PAR, HMCR,
and 𝑘 must also be chosen such that ((HMS − 1)/HMS) ⋅

HMCR ⋅ [1 + (1/3)𝑘
2
⋅ PAR] is greater than 1. The proof of

this statement can also be found in [18].
This simple change to HS results in an algorithm that

is less likely to get stuck in local optima, requires less
iterations to reach a desired accuracy, and frees the user
from determining the best value for the FW parameter.
However, one could argue that the FW parameter was simply
replaced by the proportionality constant 𝑘. In their article,
Das et al. investigate the effect that variations in 𝑘 have on
the performance of EHS. They determined that EHS is not
sensitive to the choice of 𝑘 and used a constant value (𝑘 =

1.17) in all their experiments.This contrastswith the choice of
the FW inHS that is usually chosen to fit a particular objective
function and can have a significant impact on performance if
chosen poorly.

2.3. Self-AdaptiveHarmony Search. In 2010,Wang andHuang
developed a variant of HS that we refer to as the self-adaptive
harmony search (SAHS) algorithm [19].Theirmain focuswas
to alleviate the problem of choosing the best HS parameter
values for a specific problem. SAHS does not require the
FW and PAR parameters that need to be specified when
using HS. However, SAHS like IHS requires that a minimum
and maximum value for PAR be specified. Specifying a
minimum and maximum for PAR is typically much easier
than specifying an exact value, and it is more reliable since
the performance is not as sensitive to changes in the range of
PAR values as it is for a specific constant value.

SAHS is somewhat similar to IHS in that it also replaces
the PAR with a range of PAR values. Like IHS, it also
recalculates the current value of the PAR by linearly adjusting
it between the minimum and maximum values based on the
iteration count. However, it differs in that it decreases the PAR
by starting at the maximum value and linearly decreasing it
until the minimum is reached at the final iteration instead of
increasing it like IHS does.

Unlike IHS, the FW parameter is not replaced by a range
of FW values. Instead, it is replaced by a novel method of
pitch adjustment that does not require an FW parameter.
When pitch adjustment of an improvised decision variable
is required, it is randomly adjusted for that decision variable
between the minimum and maximum values found in the
current HM, using the following equations:

𝑥
󸀠

𝑖
←󳨀 𝑥
󸀠

𝑖
+ [max (HM𝑖) − 𝑥

󸀠

𝑖
] ⋅ 𝑟,

𝑥
󸀠

𝑖
←󳨀 𝑥
󸀠

𝑖
− [𝑥
󸀠

𝑖
− min (HM𝑖)] ⋅ 𝑟,

(3)

where 𝑥󸀠
𝑖
is the new improvisation,max(HM𝑖) andmin(HM𝑖)

are the maximum and minimum values in the HM for
the 𝑖th decision variables and 𝑟 is a uniformly generated
randomnumber between 0 and 1. Each time pitch adjustment
is performed, the improvisation is updated by randomly
applying, with equal probability, one of these two equations.
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This approach causes progressively smaller changes to be
made to the new improvisation as max(HM𝑖) and min(HM𝑖)
converge closer togetherwith increasing iterations.Therefore,
pitch adjustment begins as a rough operator making larger
changes to favour exploration and then becomes a fine
operator favouring exploitation as the optimiser converges
closer to the optimum.

Another important difference between SAHS and HS is
in the initialisation of the HM. In HS, the HM is initialised
one decision variable at a time by randomly picking a
value from a uniform distribution of values in the allowable
range. However, this uniform distribution is only an approx-
imation created by scaling the output from a pseudoran-
dom number generator to the correct range of values. The
resulting distribution is often unevenly distributed causing
slow convergence or convergence to local optima. Instead
of using a pseudorandom number generator, SAHS uses a
low discrepancy sequence [20] to initialise the HM. Low
discrepancy sequences are more evenly spread out in the
search space than pseudorandom ones, causing the initial
vectors in the HM to better represent the search space of the
problem.

2.4. Dynamic Local-Best Harmony Search. dynamic local-
best harmony search (DLHS) was developed by Pan et al. as
an improvement to IHS and GHS that does not require the
HMCR and PAR parameters [21]. The focus of DLHS can be
roughly divided into three categories. First, the improvisation
step was improved by basing new improvisations on the
current best solution vector in the HM instead of a randomly
chosen one. Second, it divides theHM intomultiple indepen-
dently optimised sub-HMs in an attempt to maintain greater
diversity throughout the search process. Third, DLHS uses
a self-learning parameter set list (PSL) to evolve the HMCR
and PAR parameters into the optimal values without any user
specification.The FW parameter is dynamically adjusted in a
similar way to the method that IHS uses.

The modification of the improvisation process is inspired
by GHS. Like GHS, the random solution vector used in
memory consideration is replaced by the best solution vector
in the HM. This tends to concentrate future improvisations
around the current best solution which is likely a local opti-
mum, and it may be the global optimum. To prevent possible
convergence around local optima, the random solution vector
that was discarded in memory consideration is instead used
during pitch adjustment. So unlike the pitch adjustment of
(2), DLHS uses the following equation:

𝑥
󸀠

new = 𝑥rand + rand () ⋅ FW, (4)

where 𝑥rand is randomly chosen from the current values in
the HM for a particular decision variable.

Before improvisation starts, the HM is randomly divided
into 𝑚 equally sized sub-HMs. Each sub-HM then uses
its own small subset of solution vectors to independently
converge onto a local (or possibly global) optimum. Due
to the loss of diversity that comes with restricting the size
of the individual HMs by splitting them up into sub-HMs,
it is likely that convergence will not be towards the global

optimum but rather toward a local one. To prevent this loss
of diversity, information is allowed to exchange between sub-
HMs with a frequency controlled by the regrouping schedule
𝑅. The regrouping schedule determines how often informa-
tion exchange is allowed between sub-HMs by randomly
regrouping the individual solution vectors of all sub-HMs
into 𝑚 new sub-HM configurations every 𝑅 iteration. This
regrouping simultaneously increases the diversity of all sub-
HMs and allows the best solutions from the entire HM to be
shared among sub-HMs.

Once the global optimum is identified, the injection of
diversity through the regrouping operation does not further
optimise, but it can result in inaccurate convergence. For
this reason, DLHS enters the final phase, of the optimisation
process after 90% of the iterations have been made. In this
final phase the regrouping operation is halted, and a new
HM is formed by combining the best three solution vectors
from all sub-HMs into a single new HM. The new HM is
then exclusively processed until the maximum number of
iterations has been reached.

The HMCR and PAR parameter values are dynamically
determined by selecting from a self-learning parameter set
list (PSL).This process starts with the initialisation of the PSL
by filling it with randomly generated HMCR and PAR values.
HMCR values are generated from a uniform distribution
where HMCR ∈ [0.9, 1.0] and PAR values are generated
from a uniform distribution where PAR ∈ [0.0, 1.0]. At the
start of each iteration, one pair of HMCR and PAR values
is removed from the PSL and used for that iteration. If the
current iteration’s improvisation resulted in the HM being
updated, the current parameter pair is saved in the winning
parameter set list (WPSL). This process continues until the
PSL becomes empty. The PSL is then refilled by randomly
selecting a pair from theWPSL 75%of the time and randomly
generating a new pair 25% of the time. To prevent memory
effects in the WPSL, the WPSL is emptied each time the PSL
is refilled. The result of this is that the best parameter set is
gradually learned, and it is specific to the objective function
under consideration. The size of the PSL is set to 200 pairs.
It was found that the effect that the size of the PSL has on
performance is insignificant [21].

Unlike the HMCR and the PAR, the FW parameter is
dynamically adjusted in a way that is similar to the way
IHS adjusts the PAR. Like IHS, DLHS favours a large FW
during the early iterations to encourage exploration of the
search space, while a small FW is favoured during the final
iterations to better exploit good solutions in the HM.The FW
is therefore linearly decreasedwith increasing iterations using
the following equation:

FW (𝑖) =
{

{

{

FWmax −
FWmax − FWmin

MI
2𝑖 if 𝑖 <

MI
2

FWmin otherwise,
(5)

where FWmax and FWmin are the maximum and minimum
values of the FW, 𝑖 is the iteration number, and MI is the
maximum number of iterations. Like IHS, this means that
a minimum and maximum value for the FW has to be set
before optimisation starts, but this is again assumed to be
much easier than deciding on a single value for the FW.
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Figure 1: Rosenbrock’s valley is illustrated here in two dimensions.
Notice the parabolic valley that includes the global optimum at
[1, 1].

3. Performance Analysis Using Five
Benchmark Functions

3.1. Benchmark Functions. We start our performance analysis
with a brief description of the five benchmark functions
that we will be using to compare performance. All five of
these functions were designed to be challenging to optimise
for different reasons, and all have previously been used for
benchmarking harmony search-based algorithms.

We start with a classic parametric optimisation function
called Rosenbrock’s valley [22]. This multidimensional prob-
lem has a global optimum inside a long narrow parabolic-
shaped flat valley. The valley itself is easy to find since there
are no other local minima anywhere in the search space, but
converging onto the global optimum is difficult. Rosenbrock’s
valley is defined by the following equation:

𝑓 (x) =

𝑛−1

∑

𝑖=1

100 (𝑥
𝑖+1

− 𝑥
2

𝑖
) + (1 − 𝑥

𝑖
)
2

− 2.048 ≤ 𝑥
𝑖
≤ 2.048.

(6)

Rosenbrock’s valley has a global optimum at 𝑥
𝑖
= 1 ∀𝑖, where

the function evaluates to 0. An illustration of Rosenbrock’s
valley implemented in two dimensions is seen in Figure 1.

Rastrigin’s function uses cosine modulation to create a
highly multimodal function that often causes optimisation
algorithms to get stuck in the local optima without ever
finding the global optimum [23]. However, it does have a
single global optimum at 𝑥

𝑖
= 0 ∀𝑖, where the function

evaluates to 0. Rastrigin’s function is defined by

𝑓 (x) = 10𝑛 +

𝑛
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(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
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≤ 5.12.

(7)

−4

−44

4

−2
−2

2

2

0
0 10

10

20

20
30

30 40
40

5050

60
60

70

70

80

80

𝑌

𝑋

Figure 2: This illustration of Rastrigin’s function shows its highly
multimodal nature, and it is difficult to visually identify the global
optima at [0, 0].

−150

−150

−100

−100
−50 −500

0

50

50

100

100
0
2
4
6
8
10
12

1.5

3

4.5

6

7.5

9

10.5

12

𝑌

𝑋

550
−100

−100
−50 −500

0

50

50

100

1010

𝑌

𝑋

Figure 3: This is a two-dimensional surface plot of Griewangk’s
function. The global optima are at [0, 0], where the function
evaluates to 0.

An illustration of this function in two dimensions is seen in
Figure 2. One can clearly see the multiple local minima in the
contours overlaid on the floor of the surface plot.

Griewangk’s function is similar to Rastrigin’s function
in that it also uses cosine modulation to create a highly
multimodal function [23]. However, Griewangk’s function
is optimised over a larger search space and has different
properties as one gets closer to the global optima situated at
𝑥
𝑖
= 0 ∀𝑖.
When one considers the entire search space, the function

looks like a simple multidimensional unimodal parabola
which could easily be minimised using gradient descent. As
one moves closer to the optimum and starts to consider
smaller areas, it becomes clear that the function is not as
smooth as first thought, and it is in fact highly multimodal.
This is clearly illustrated in Figure 3 where a surface plot of
a two-dimensional implementation of Griewangk’s function
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is shown. The multimodal nature of Griewangk’s function is
also apparent from its defining equation which is as follows:

𝑓 (x) =

𝑛

∑

𝑖=1

𝑥
2

𝑖

4000
−

𝑛

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

) + 1

− 600 ≤ 𝑥
𝑖
≤ 600.

(8)

Ackley’s Path function is another multimodal test func-
tion that is widely used to benchmark optimisation algo-
rithms [24]. It uses a combination of exponentials and cosine
modulation to create a search space with many local optima
and a single global optimum at 𝑥

𝑖
= 0 ∀𝑖, where the function

evaluates to 0. Ackley’s Path function is illustrated in Figure 4
and is defined by the following equation:

𝑓 (x) = 20 exp(−0.2√
1
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𝑖
)) + 20 + 𝑒

− 32.768 ≤ 𝑥
𝑖
≤ 32.768.

(9)

The last test function that we consider is the Goldstein-
Price function. This eighth-order polynomial is defined in
two variables only and has global minima at [0.0, −1.0]where
the function evaluates to 3.0. This function has four local
minima that lie close together, and the search space is usually
limited to the −2 ≤ 𝑥

1
, 𝑥
2

≤ 2 cube. The Goldstein-
Price function is illustrated in Figure 5 and is defined by the
following polynomial:
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(10)

3.2. Test Results. We compared the performance of the three
HS variants together with the original HS algorithm using
a series of test runs over all five benchmark functions. We
implemented all the benchmark functions except for the
Goldstein-Price function in both 30 and 100 dimensions to
measure performance in both low- and high-dimensional
problems. In functions with 100 dimensions, the algorithms
were allowed to optimise for 500,000 function evaluations,
while those in 30 dimensions were allowed to run for 100,000.
The Goldstein-Price polynomial is only defined in two
dimensions and therefore requires considerably less iterations
to optimise. We allowed only 10,000 function evaluations
when the Goldstein-Price polynomial was optimised.

In our first experiment, all HM variants were imple-
mented using the parameters suggested by the original
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Figure 4: This is a two-dimensional surface plot of Ackley’s
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to 0.
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authors. The only exceptions were the parameter sets used
in the original harmony search algorithm and that used
for DLHS. Many different optimal parameter sets have been
suggested forHS by researchers, andwe chose to find our own
set based on the best overall results after simulating all of five
benchmark functions. For DLHS, the authors suggest 3 sub-
HMsof size 3which ismuch smaller than the 50 elementHMs
suggested by all the other HM variants [21]. We therefore
opted to use 5 sub-HMs of size 10 instead, both because this
resulted in better results for DLHS and also for a more fair
comparison with the other variants. The parameter sets that
we used in all our experiments are indicated in Table 1.

Each of the five benchmark functions were minimised
using these parameters. The results for the 30 dimensional
problems (together with the Goldstein-Price problem) are
shown in Table 2. In each experiment, three values are given.
The first is the average score calculated over 50 independently
initialised runs.This is followed by the standard deviation and
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Table 1: Parameter sets as suggested by the original authors.

HS EHS DLHS AHS
HMS 50.00 50.00 50.00 50.00
HMCR 0.99 0.99 — 0.99
PAR 0.33 0.33 — —
PARmin — — — 0.00
PARmax — — — 1.00
FW 0.01 — — —
FWmin — — 0.0001 —
FWmax — — (UB − LB)/200† —
𝑘 (EHS) — 1.17 — —
𝑅 (DLHS) — — 50.00 —
𝑚 (DLHS) 5.00
†UB and LB refer to the lower and upper bound of the component values.

then the success rate defined as the number of successful hits
on the global minimum within a 0.01 tolerance.

Notice that in many cases, more than one algorithm
achieved 100% success rate (shown as 50 successful hits)
on the global minimum. In these cases, we define the best
results as the algorithm with both a 100% success rate and
an average score closest to the global minimum. We repeat
this experiment using the same parameter values on 100-
dimensional problems. The average scores from the second
experiment are shown in Table 3.

Some of these values seem surprising, and it is worth
investigating why this is so. One would expect that the 2-
dimensional Goldstein-Price function would be the easiest
to minimise and that all the average scores should be very
close to 3.0 which is the global optimum. However, as seen
in Table 2, this is not the case for HS, DLHS, and EHS. These
algorithms are not necessarily so much worse than AHS, but
this indicates that some of the 50 runs that contributed to
the average score converged to a local minimum that was
far different from the global one. Since these local minima
may be much larger than the global minimum, it can have a
large effect on the average score.We see this clearly happening
in the graph of Figure 6. The graph shows that only 2 of the
50 runs failed to converge to the exact global minimum, but
because of these 2 the average score is significantly different
than the global minimum.

A quick comparison of the results presented in Tables
2 and 3 suggests that the AHS algorithm is the overall best
optimiser. In the 30-dimensional experiment, it performed
the best on two of the five benchmark functions and was
the only optimiser to achieve a 100% success rate on the
Goldstein-Price polynomial. Its performance in optimising
Ackley’s, Griewank’s and Rosenbrock’s functions is very
similar to that of EHS, and there are no significant differences
that might indicate that one is clearly better than the other
when only these three functions are considered. However,
both completely failed at minimising Rosenbrock’s function.
It is intersting that the only successful run from all algorithms
when optimising Rosenbrock’s function was achieved by
the original unmodified HS algorithm. This shows that the
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Figure 6: This bar graph shows the result of 50 independent runs
of EHS on the Goldstein-Price polynomial. Notice that 48 of the 50
runs converged to the correct globalminimum,while two converged
to one of the local minima that is 10 times larger than the global
minimum.

original HS algorithm can perform equally well and some-
times even better than modern variants when an optimised
parameter set is used.

Surprising results are also seen in Rastrigin’s column of
Table 2. Like with Rosenbrock function, both EHS and AHS
failed to optimise this function, but unlike Rosenbrock’s the
DLHS optimiser performs well here and has a much better
hit ratio than any of the other variants. In the section that
follows, we suggest a possible explanation for this result and
investigate how one can use this to design an improved HS
variant.

The results from the 100-dimensional problem sum-
marised in Table 3 are very similar to that of the 30-
dimensional problem. For Ackley’s, Griewank’s and Rosen-
brock’s functions, the performance of EHS and AHS is
again the best and is not significantly different. Like in
the 30-dimensional problem, both EHS and AHS failed in
optimising Rastrigin’s function which is again optimised
much more successfully by DLHS.

4. Interpretation of Results

In this section, results from Tables 2 and 3 are used to show
the best attributes of the HS variants and where they fail. In
the previous section, we saw that EHS and AHS generally
perform the best, but both failed to optimise Rastrigin’s func-
tion. DLHS performsmuch better on Rastrigin’s function but
tends to get stuck in local optima as seen in the results from
30-dimensional Ackley’s and the Goldstein-Price functions.
The question is then why does DLHS perform somuch better
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Table 2: Average scores and standard deviations over 50 runs for 30-dimensional problems. All optimisers were allowed to run for 100,000
function evaluations, except when the Goldstein-Price polynomial was being minimised. In that case, 10,000 evaluations were allowed. The
best results from each benchmark function are indicated in bold.

Ackley Griewank Rosenbrock Rastrigin Goldstein-Price†

HS
Best 0.0066 0.0322 30.7287 0.0142 6.8464
Standard deviation 0.0006 0.0334 22.6459 0.0027 9.3353
Hits 50 48 1 2 42

DLHS
Best 0.8464 0.0170 32.7372 0.2003 6.2444
Standard deviation 0.5173 0.0180 22.8117 0.4200 8.7724
Hits 2 50 0 31 44

EHS
Best 0.0008 0.0006 28.9183 15.4119 4.0809
Standard deviation 0.0024 0.0022 10.7493 10.8267 5.2910
Hits 50 50 0 5 48

AHS
Best 0.0003 0.0042 26.5041 1.4819 3
Standard deviation 0.0020 0.0111 0.5624 0.9055 0
Hits 50 50 0 1 50

†Goldstein-Price was implemented in two dimensions as it is only defined in two.

Table 3: Average scores and standard deviations over 50 runs for 100-dimensional problems.The optimisers were allowed to run for 500,000
function evaluations.

Ackley Griewank Rosenbrock Rastrigin†

HS
Best 0.0142 0.0050 162.5829 0.2280
Standard deviation 0.0004 0.0080 49.5829 0.0130
Hits 50 34 0 0

DLHS
Best 0.2281 0.0004 142.4515 1.3140
Standard deviation 0.0130 0.0070 39.5126 3.1364
Hits 50 50 0 32

EHS
Best 0.0009 0.0001 97.2555 388.2894
Standard deviation 0.0006 0.0007 7.4711 20.5949
Hits 50 50 0 0

AHS
Best 0.0003 0 96.4333 6.7471
Standard deviation 0.0006 0 0.2943 2.3279
Hits 50 50 0 0

†The accuracy tolerance for awarding a successful hit on the global minimum was decreased to 0.1 for 100-dimensional Rastrigin’s function.

than EHS and AHS on Rastrigin when it is worse in all other
examples?

We start to answer that question by investigating what
novel improvement these HS variants contribute to the final
result. The main contribution of both EHS and AHS is
the dynamic adjustment of the aggressiveness of the pitch

adjustment operator. EHS does this by dynamically adjusting
the value of the FW based on the variance of the values
currently in the HM. AHS also determines the amount of
pitch adjustment by analysing the values in the HM, but it
does so without needing to directly calculate the variance.
In both cases the effect is that pitch adjustment is more
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aggressive at the beginning of the optimisation process and
continues to make smaller and smaller adjustments as the
variance in the HM decreases due to convergence.

The advantage that each of these approaches brings is
that the pitch adjustment operator dynamically shifts from an
aggressive mode that favours exploration of the search space
at the start of optimisation to a less aggressive mode that
favours exploitation of possible minima that were discovered
during the aggressive mode. However, this also means that
when the optimiser converges to local minima, the drop in
variance of values in the HM causes the pitch adjustment to
favour exploitation, making it unlikely that the optimiser will
escape the local minima and find the global one. Premature
convergence to local optima is therefore a weakness of these
methods and may explain why even the original HS scored
better than EHS and AHS on the optimisation of Rastrigin’s
function.

AHS attempts to minimise the effect of this weakness
using the adjustment of the PAR. By linearly decreasing the
PAR from a very high to a very low value, the exploration
phase is lengthened due to the aggressive and frequent pitch
adjustment caused by a high PAR and a high variance in the
HM at the start of optimisation. In practice this does have a
positive effect on the results and may explain the advantage
AHS had over EHS in the Goldstein-Price experiment. It was,
however, still not enough to prevent the poor performance
when optimising Rastrigin’s function.

DLHS uses a completely different approach, first max-
imising the HM diversity by dividing it up into sub-HMs and
then by dynamically adjusting the PAR, FW, and HMCR val-
ues to fit the function being optimised and the optimisation
progress.The sub-HM idea has been used successfully before
to maximise diversity in harmony search (see [4, 25]). This
idea of separating the population of candidate solutions into
groups that converge independently is also used successfully
in other evolutionary algorithms, and it was originally used
in genetic algorithms in what became known as island model
parallel genetic algorithms [26, 27].

The weakness of this approach, however, is often slow
convergence due to function evaluations that are wasted in
subpopulations (sub-HMs) and end up converging to local
optima or not converging at all. Since the subpopulations
converge independently, it is likely that they will converge
to different optima. This is actually the desired behaviour
since the motivation of this approach was the maximisation
of diversity in the candidate solutions. However, the question
then becomes when to consolidate the independent results
from each subpopulation so the best candidates can be
exploited for more accurate convergence.

The answer to this question lies in the classic tradeoff
between maximising the convergence speed and minimising
the probability of premature convergence to local optima.
If sub-populations converge independently for too long,
iterations are wasted on results that will finally be discarded.
On the other hand, when results are consolidated too quickly
diversity among the sub-populations is lost, and this increases
the risk of premature convergence.

In DLHS, this tradeoff is left as a parameter, namely
the regrouping schedule, and it is up to the user to decide

how aggressively the sub-HMs should be consolidated. It is
difficult to choose the best value for this parameter, and the
optimum value is likely problem specific. This means that a
single good choice is unlikely. The original authors of DLHS
suggested a value of 50 iterations for the regrouping schedule.
Rastrigin’s function was one of the functions they used to test
their algorithm [21]. This may explain the good results that
DLHS produced on Rastrigin’s function.

Another major contributing factor to the DLHS results
is the dynamic adjustment of the PAR, FW and HMCR
parameters. Like EHS andAHS, DLHS starts with a large FW,
and decreases it as the optimiser progresses. However, unlike
EHS andAHS, it does not take the variance in the currentHM
into account but instead linearly decreases it proportionally
to the iteration count. This is similar to the way the IHS
algorithm operates (see [9]) and to the way AHS linearly
decreases the PAR.We believe that not taking the variance in
the HM into account is a weakness of DLHS, especially since
the consolidation of the sub-HMs can have a dramatic effect
on the HM causing changes in the variance that do not follow
a linearly decreasing trend.

However, the PAR and HMCR are adjusted in a novel
way that potentially has the largest impact on the quality of
the final results. To our knowledge, DLHS is also the only
HM variant to dynamically adjust the HMCR. The HMCR
is a parameter that has previously been shown by several
researchers, including the authors of AHS and EHS, to have
a large effect on the quality of the final results [10, 18, 19].

In our own analysis (see Section 2.4) of the values that end
in theWPSL after several thousand iterations, we noticed that
the self-adapting process that controls the PAR and HMCR
values tends to favour very small PARs (<0.01) and large
HMCRs (>0.99). This seems to verify our choice of optimal
values for the HMCR and the PAR, but it also suggests that
the maximum PAR used in AHS should optimally be much
smaller than 1.0.

Finally, one should also be very aware of the fact that
because the HM is divided into sub-HMs, the actual HM
improvisation steps are performed using a much smaller
HMS than the 50 candidates that were chosen for the
other HM variants. Like the HMCR, HMS also makes a
large difference to the quality of the results, but it is one
of the hardest parameters to choose [10, 19]. Researchers
initially recommended a small HMS (<15), but the authors
of AHS showed that AHS performs better with a larger
HMS which was also the conclusion made by the authors of
EHS. However, in our own experiments, we found that AHS
performs much better on Rastrigin’s function, even to the
point of being better than DLHS, when the HMS is decreased
to 10 instead of the suggested 50. However, this caused a
decrease in performance when optimising Griewank’s and
Ackley’s functions. This then suggests that the HMS should
be chosen to fit the problem, or it should be dynamically
adjusted like the PAR and FW.

It is currently not known how the HMS should be
adjusted or modelled to a specific problem. The practical
effects that this would have on theHMwould bemuch greater
than simply changing theHMCRor the PAR since candidates
will need to be added or removed from the HM. A further
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problem would then be determining which candidate should
be removed when the HMS is decreased, and how should
a new candidate be created when the HMS is increased.
If we are to develop an HM variant that performs well on
all our benchmark functions without requiring a fine-tuned
parameter set unique to each problem, this is the type of
question that will need to be answered.

5. Generalised Adaptive Harmony Search

Our approach to designing an HS variant that performs
well on all our benchmark functions is based on the AHS
algorithm. We call it the generalised adaptive harmony
search (GAHS) algorithm. We chose to base GAHS on AHS
because of its simplicity and its good performance on all but
Rastrigin’s function. As we have pointed out, AHS can be
made to perform well on Rastrigin given the right parameter
set, but no single parameter set seems to perform well on all
the benchmark functions.

We therefore need to either find a way to dynamically
adjust the parameters during optimisation to fit the particular
problem (particularly the HMS) or augment the improvisa-
tion process some other way that would allow for the same
benefits. Our first attempt at addressing this was to split
the HM into sub-HMs in the same way that DLHS does.
It was our hope that this would both decrease the effect of
HMS, which we already know has a positive effect on the
results for Rastrigin’s function and increase diversity in the
HMenough to compensate for AHS’s tendency for premature
convergence. We used the AHS pitch adjustment operator
and linearly decreased the PAR with the intention that this
would compensate for DLHS’s slow convergence.

Our initial results showed that using sub-HMs in AHS
improved the performance when minimising Rastrigin’s
function but the convergence rate also slowed considerably,
resulting in poor performance when minimising Griewank
andAckley. Several parameter sets were triedwhich indicated
that a longer regrouping period was needed to compensate
for AHS’s tendency for premature convergence. Larger sub-
HMs resulted in good performance in Griewank and Ackley,
while Rastrigin needed small sub-HMs like those DLHS uses.
However, no single parameter set that performed well on all
our benchmark functions could be found.

A better approach was needed, and it was clear that using
sub-HMs will either result in slow convergence or the need
to fine-tune a parameter set to a specific problem. The focus
should be on the HMS parameter as this parameter has the
greatest effect on the performance of AHS when Rastrigin’s
function is minimised.

We propose to find a small collection of parameter sets,
in particular HMS and HMCR values, that includes at least
one set that will result in good performance on any of
our benchmark functions. An instance of AHS will then
be started for each parameter set and run for a fraction of
the total function evaluations allowed. Once this has been
done for each parameter set, the best results from each
HM is compared, and the instance with the worst result

is dropped. The process then repeats until only the best
instance with the most optimal parameter set remains. This
instance is then left to converge until the remainder of the
allowable function evaluations have been reached. All AHS
instances are initialised using a lowdiscrepancy sequence (see
Section 2.3), and regroupings of candidates between separate
instances are never done. Each instance therefore converges
independently.

This approach requires the addition of two important
parameters. The first, called the period length (PL), is the
number of iterations that a particular instance is allowed to
run before it is stopped and evaluated to determine whether
more function evaluations are spent on it or whether it is
abandoned. The second is the parameter set collection size
(PSCS) which is the number of parameter sets in the collec-
tion and is therefore also the number of AHS instances that
are compared. These two parameters are important because
together they determine the percentage of the total function
evaluations wasted on finding the optimal parameter set and
how many are left for convergence to the global optimum.
Since one function evaluation is done during each iteration
of AHS, the total number of iterations spent on instances that
do not contribute to the final result (wasted iterations) can be
calculated using the following equation:

Wasted iterations = PL
PSCS
∑

𝑖=2

(𝑖 − 1) . (11)

To maximise the number of useful iterations, the PL and the
PSCS is kept as low as possible. However, if the PSCS are too
small, an important parameter set may be overlooked. If the
PL is too small, some of the AHS instances may be discarded
before an accurate estimate of their quality can be measured.

Through experimentation, we determined that an opti-
mal parameter set collection contains three parameter sets.
All three parameter sets are equal to that suggested by the
original authors of AHS and are identical except for theHMS.
We use three different values for theHMS, namely, 10, 30, and
50. A good value for the PL was found to be 10% of the total
number of iterations.Thismeans according to (11) that 30%of
the total iterations is spent on finding the optimal parameter
set and 70% for convergence to the global optimum.

The performance of GAHS as defined in the previous
paragraphs is compared with the other HS variants in
Table 4. The benchmark functions were again implemented
in 100 dimensions. We repeat the results from Table 3 for
comparison.

It is seen from this comparison that GAHS performs even
better than DLHS on Rastrigin’s function as well as AHS
on the other benchmark functions. It still performs poorly
on Rosenbrock’s function. Even when we used a fine-tuned
parameter set specific to Rosenbrock’s function, we could not
improve the results.We suspect that since EHS also converges
to this point that large local optima exist in that area, and
that the nature of this function is such that escaping from
this local optimum is very difficult for harmony search-based
optimisers.

It is also clear that some weaknesses that hinder GAHS
still remain. Since GAHS is only a generalised form of AHS,
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Table 4: In this table, the performance ofGAHS is comparedwith the otherHS variants. All scores are averaged over 50 runs, and all functions
except Goldstein-Price are implemented in 100 dimensions. The optimisers were allowed to run for 500,000 function evaluations except for
Goldstein-Price which was allowed only 10,000 evaluations. The best results are again indicated in bold.

Ackley Griewank Rosenbrock Rastrigin† Goldstein-Price%

HS
Best 0.0142 0.0050 162.5829 0.2280 6.8464
Standard deviation 0.0004 0.0080 49.5829 0.0130 9.3353
Hits 50 34 0 0 42

DLHS
Best 0.2281 0.0004 142.4515 1.3140 6.2444
Standard deviation 0.0130 0.0070 39.5126 3.1364 8.7724
Hits 50 50 0 32 44

EHS
Best 0.0009 0.0001 97.2555 388.2894 4.0809
Standard deviation 0.0006 0.0007 7.4711 20.5949 5.2910
Hits 50 50 0 0 48

AHS
Best 0.0003 0 96.4333 6.7471 3
Standard deviation 0.0006 0 0.2943 2.3279 0
Hits 50 50 0 0 50

GAHS
Best 0.0263 0.0049 96.4034 0.0633 3
Standard deviation 0.0125 0.0021 0.7833 0.0337 0
Hits 50 49 0 44 50

†The accuracy tolerance for awarding a successful hit on the global minimum was decreased to 0.1 for 100-dimensional Rastrigin’s function.
%Goldstein-Price was implemented in two dimensions as it is only defined in two.

one would expect that it would perform at least as well
as AHS in all examples. However, as we see in Table 4,
with Ackley’s and Griewank’s functions that this is not true.
The reason for this is that AHS enters a slow convergence
phase once the basin of attraction around local optima is
found because of the drop in HM variance that causes
the pitch adjustment operator to make smaller and smaller
adjustments. This means that AHS requires several thousand
iterations to find the exact optimum once it has found the
basin of attraction. It therefore uses all the available iterations
and keeps converging until the very end. If 30%of its available
iterations is removed, as is done in GAHS, the final result will
not be as accurate as it would have been otherwise.

Another weakness that affects the convergence speed
is in the choice of the period length. The period length
has to be long enough so that an accurate estimate can be
made of the performance of the parameter set. This can
only be an estimate since the true performance may only
become apparent once an instance has fully converged, and
we already know that AHS keeps converging even in the last
few iterations. This means that our method of measuring
the quality of a parameter set is inherently biased to those
sets that perform well at the beginning of the optimisation
process. This means that those sets with a small HMS and
a large HMCR will frequently get chosen, causing valuable
parameter sets that may later produce the best results to be
discarded during the first round of eliminations.

An illustration of this effect is shown in Figure 7. The
graph traces the convergence of GAHS over 500,000 itera-
tions as it minimises Ackley’s function. The fitness score of
the best and the worst candidates that the optimiser currently
has in the HM is recorded at each iteration and shown as
two separate lines on the graph. We see a downward trend
indicating convergence followed by discontinuous jumps that
indicate the abandonment of one instance of AHS and the
start of another. Note that there are three distinct convergence
paths present in the first 150,000 iterations. These represent
the three AHS instances that correspond to three parameter
sets. The first one that clearly converges the quickest over the
first 50,000 iterations corresponds to the parameter set where
the HMS = 10. The two that follow are those that correspond
to the HMS = 40 and HMS = 50 parameter sets. Since we
know from the previous experiments that AHS performs
better than GAHS and uses an HMS of 50, we know that
GAHS would finally give the best results if the third instance
was kept through both elimination rounds. However, due to
its slow rate of convergence during the first 50,000 iterations,
it is eliminated first, leaving a weaker parameter set to finally
converge.

6. Conclusions

After investigating the results from comparing some of the
best performing HS variants available today, we noticed that
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Figure 7:This graph traces the convergence of the GAHS algorithm
over 500,000 iterations as it minimises Ackley’s function. The
fitness value, which is simply the candidate evaluated using Ackley’s
function, of the best and worst candidates in the HM is indidcated
at the end of each iteration. The best candiate is the HM minimum
indicated by the blue line; the worst candidate is the HMmaximum
indicated by the red line.

the overall quality of these algorithms was similar. We also
noticed several weaknesses that prevent any one of them
from being the best choice. Authors of these HS variants
suggested parameter sets that are nearly optimal; however,
some problems still required the parameters to be fine-tuned
to a specific problem if good results were to be expected.

We suggested possible ways that some of these weak-
nesses can be addressed, and we proposed the generalised
adaptive harmony search (GAHS) algorithm as a generalised
version of AHS. GAHS performs well over a larger range of
problems. By using 5 benchmark functions, we demonstrated
that GAHS performs as well as AHS on most problems, and
it can also produce good results on problems where AHS fails
to find the global optimum.

However, some open questions still remain as a topic of
future research. Our experiments clearly pointed out that
there are categories of optimisation problems and that a
parameter set that works well for one might fail completely
for another one. For example, whatmakesRastrigin’s function
so difficult to minimise using a parameter set that works
well for all the other benchmark functions? What is special
about Rastrigin’s function that causes it to require a small
HM to effectively optimise, and can this special attribute be
detected before optimisation is attempted? A similar question
can be asked about Rosenbrock’s function. Why can none
of the HM variants find the global optimum even when
using a fine-tuned parameter set? Is there a weakness that
is inherent in harmony search-based optimisers that make
them poor optimisers for that category of problems to which
Rosenbrock’s function belongs, or can one augment harmony

search in some way to address this weakness? Harmony
search is still a relatively recent addition to the family of
evolutionary algorithms, and finding answers to these type
of questions is needed if harmony search is to become fully
established as a leading heuristic optimiser.
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