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This paper is an attempt to develop quantitative domain theory over frames. Firstly, we propose the notion of a fuzzy basis, and
several equivalent characterizations of fuzzy bases are obtained. Furthermore, the concept of a fuzzy algebraic domain is introduced,
and a relationship between fuzzy algebraic domains and fuzzy domains is discussed from the viewpoint of fuzzy basis. We finally
give an application of fuzzy bases, where the image of a fuzzy domain can be preserved under some special kinds of fuzzy Galois
connections.

1. Introduction

Since the pioneering work of Scott [1, 2], domain and its gen-
eralization have attracted more and more attention. Domain
provides models for various types of programming languages
that include imperative, functional, nondeterministic, and
probabilistic languages. When domains appear in theoretical
computer science, one typically wants them to be objects
suitable for computation. In particular, one is motivated to
find a suitable notion of a recursive or recursively enumerable
domain. This leads to the notion of a basis (cf. [3]).

Quantitative domain theory has been developed to supply
models for concurrent systems. Now it forms a new focus on
domain theory and has undergone active research. Rutten’s
generalized (ultra)metric spaces [4], Flagg’s continuity spaces
[5], andWagner’s Ω-categories [6] are good examples, which
consist of basic frameworks of quantitative domain theory
(cf. [7]).

Recently, based on complete residuated lattices, Yao and
Shi [8, 9] investigated quantitative domains via fuzzy set
theory. They defined a fuzzy way-below relation via fuzzy
ideals to examine the continuity of fuzzy domains and later
discussed fuzzy Scott topology over fuzzy dcpos. Zhang and
Fan [7] studied quantitative domains over frames. From the
very beginning, they defined a fuzzy partial order which is
really a degree function on a nonempty set. After that, they
defined and studied fuzzy dcpos and fuzzy domains. Roughly

speaking, the definition of a fuzzy directed subset in [7]which
is based on a kind of special relations looks relatively complex.
Furthermore, from the viewpoint of category, Hofmann and
Waszkiewicz [10–12], Lai and Zhang [13, 14], and Stubbe
[15, 16] studied quantitative domain theory.

It is well known that the notion of a basis plays an
important role in domain theory. The results not only are
handy in establishing certain equivalent characterizations
for domains but also are critical to study some properties
of domains. Then, how can we describe a fuzzy basis in a
fuzzy dcpo? And what is the role of it in fuzzy ordered set
theory? For this purpose, we are motivated to introduce the
notion of a fuzzy basis as a new approach to study fuzzy
domains. From the viewpoint of fuzzy basis, we try to build
a relationship between fuzzy domains and fuzzy algebraic
domains.Moreover, we investigate some applications of fuzzy
bases to examine the relationships of the definitions.

The contents of this paper are organized as follows. In
Section 2, some preliminary concepts and properties are
recalled. In Section 3, the concept of a fuzzy basis is proposed,
and an equivalent characterization of fuzzy bases is obtained.
Furthermore, the notion of a fuzzy algebraic domain is
proposed; it is proved that a fuzzy dcpo is a fuzzy algebraic
if and only if it is a fuzzy domain and the fuzzy basis
satisfies some special interpolation property. In Section 4, an
application of fuzzy bases is given, where we investigate some
special kinds of fuzzy Galois connections, under which the
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image of a fuzzy domain is also a fuzzy domain. Conclusions
are settled in the last section.

2. Preliminary

A frame will be used as the structures of truth values in
this paper. Throughout this paper, unless otherwise stated, 𝐿
always denotes a frame. Formore properties about frames, we
refer to [3, 17, 18].

Let 𝑋 be a nonempty set, an 𝐿-subset on 𝑋 is a mapping
from 𝑋 to 𝐿, and the family of all 𝐿-subsets on 𝑋 will be
denoted by 𝐿

𝑋.We denote the constant 𝐿-subsets on𝑋 taking
the values 0 and 1 by 0

𝑋
and 1
𝑋
, respectively. Let 𝐴, 𝐵 ∈ 𝐿

𝑋.
The equality of 𝐴 and 𝐵 is defined as the usual equality of
mappings; that is, 𝐴 = 𝐵 ⇔ 𝐴(𝑥) = 𝐵(𝑥) for any 𝑥 ∈ 𝑋. The
inclusion𝐴 ≤ 𝐵 is also defined pointwisely:𝐴 ≤ 𝐵 ⇔ 𝐴(𝑥) ≤

𝐵(𝑥) for any 𝑥 ∈ 𝑋.
The following definitions and propositions can be found

in [7–9, 14, 19–24].

Definition 1. A fuzzy poset is a pair (𝑋, 𝑒) such that 𝑋 is a
nonempty set, and 𝑒 : 𝑋 × 𝑋 → 𝐿 is a mapping, called a
fuzzy order, that satisfies for any 𝑥, 𝑦, 𝑧 ∈ 𝑋,

(1) 𝑒(𝑥, 𝑥) = 1,

(2) 𝑒(𝑥, 𝑦) ∧ 𝑒(𝑦, 𝑧) ≤ 𝑒(𝑥, 𝑧),

(3) 𝑒(𝑥, 𝑦) = 𝑒(𝑦, 𝑥) = 1 implies 𝑥 = 𝑦.

To study fuzzy relational systems, Bělohlávek [19] defined
and studied an 𝐿-order over complete residuated lattices. It
is shown in [25] that the previous notion is equivalent to
Bělohlávek’s one.

Definition 2. Let (𝑋, 𝑒) be a fuzzy poset. An element 𝑥
0
∈ 𝑋 is

called a join (ormeet) of a fuzzy subset𝐴, in symbols𝑥
0
= ⊔𝐴

(or 𝑥
0
= ⊓𝐴) if

(1) for any 𝑥 ∈ 𝑋, 𝐴(𝑥) ≤ 𝑒(𝑥, 𝑥
0
) (or 𝐴(𝑥) ≤ 𝑒(𝑥

0
, 𝑥)),

(2) for any 𝑦 ∈ 𝑋, ⋀
𝑥∈𝑋

(𝐴(𝑥) → 𝑒(𝑥, 𝑦)) ≤ 𝑒(𝑥
0
, 𝑦) (or

⋀
𝑥∈𝑋

(𝐴(𝑥) → 𝑒(𝑦, 𝑥)) ≤ 𝑒(𝑦, 𝑥
0
)).

It is easy to check if 𝑥
1
, 𝑥
2
are two joins (or meets) of 𝐴,

then 𝑥
1
= 𝑥
2
. This means if𝐴 ∈ 𝐿

𝑋 has a join (or meet), then
it is unique.

Proposition 3. Let (𝑋, 𝑒) be a fuzzy poset. Then

(1) 𝑥
0

= ⊔𝐴 if and only if for any 𝑦 ∈ 𝑋, 𝑒(𝑥
0
, 𝑦) =

⋀
𝑧∈𝑋

(𝐴(𝑧) → 𝑒(𝑧, 𝑦));

(2) 𝑥
0

= ⊓𝐴 if and only if for any 𝑦 ∈ 𝑋, 𝑒(𝑦, 𝑥
0
) =

⋀
𝑧∈𝑋

(𝐴(𝑧) → 𝑒(𝑦, 𝑧)).

Example 4. Given a nonempty set 𝑋, the subsethood degree
mapping sub(−, −) : 𝐿

𝑋
×𝐿
𝑋

→ 𝐿 is defined by for each pair
(𝐴, 𝐵) ∈ 𝐿

𝑋
× 𝐿
𝑋, sub(𝐴, 𝐵) = ⋀

𝑥∈𝑋
(𝐴(𝑥) → 𝐵(𝑥)). Then

sub(−, −) is an 𝐿-partial order on 𝐿
𝑋. Moreover, if 𝐴 ≤ 𝐵,

then sub(𝐴, 𝐵) = ⋀
𝑥∈𝑋

(𝐴(𝑥) → 𝐵(𝑥)) = 1.

Definition 5. Let (𝑋, 𝑒) be a fuzzy poset. 𝐴 ∈ 𝐿
𝑋 is called

a fuzzy upper set (or a fuzzy lower set) if for any 𝑥, 𝑦 ∈

𝑋, 𝐴(𝑥) ∧ 𝑒(𝑥, 𝑦) ≤ 𝐴(𝑦) (𝑜𝑟 𝐴(𝑥) ∧ 𝑒(𝑦, 𝑥) ≤ 𝐴(𝑦)).

Definition 6. Let (𝑋, 𝑒) be a fuzzy poset. For 𝑥 ∈ 𝑋, ↓ 𝑥 ∈

𝐿
𝑋

(or ↑ 𝑥 ∈ 𝐿
𝑋
) is defined as for any 𝑦 ∈ 𝑋, ↓ 𝑥(𝑦) =

𝑒(𝑦, 𝑥) (or ↑ 𝑥(𝑦) = 𝑒(𝑥, 𝑦)). And ↓ 𝐷 is defined by for any
𝑥 ∈ 𝑋, ↓ 𝐷(𝑥) = ⋁

𝑦∈𝑋
𝐷(𝑦) ∧ 𝑒(𝑥, 𝑦).

Note that 𝑥 = ⊔ ↓ 𝑥. When 𝐴 =↓ 𝑥, by Proposition 3, we
have

𝑒 (𝑥, 𝑦) = ⋀

𝑧∈𝑋

(𝑒 (𝑧, 𝑥) 󳨀→ 𝑒 (𝑧, 𝑦)) . (1)

Definition 7. Let (𝑋, 𝑒
𝑋
) and (𝑌, 𝑒

𝑌
) be two fuzzy posets. A

mapping 𝑓 : (𝑋, 𝑒
𝑋
) → (𝑌, 𝑒

𝑌
) is called a fuzzy monotone

mapping if for any 𝑥, 𝑦 ∈ 𝑋, 𝑒
𝑋
(𝑥, 𝑦) ≤ 𝑒

𝑌
(𝑓(𝑥), 𝑓(𝑦)).

Definition 8. Let 𝑋,𝑌 be two nonempty sets. For each
mapping 𝑓 : 𝑋 → 𝑌, the 𝐿-forward powerset operator
𝑓
→

𝐿
: 𝐿
𝑋

→ 𝐿
𝑌 is defined by

for any 𝑦 ∈ 𝑌, 𝐴 ∈ 𝐿
𝑋
, 𝑓
→

𝐿
(𝐴) (𝑦) = ⋁

𝑓(𝑥)=𝑦

𝐴 (𝑥) . (2)

The𝐿-backward powerset operator𝑓←
𝐿

: 𝐿
𝑌

→ 𝐿
𝑋 is defined

by

for any 𝐵 ∈ 𝐿
𝑌
, 𝑓
←

𝐿
(𝐵) = 𝐵 ∘ 𝑓. (3)

Furthermore, 𝑓 can be always lifted as 𝑓
→

: 𝐿
𝑋

→ 𝐿
𝑌,

which is defined by

for any 𝑦 ∈ 𝑌, 𝐴 ∈ 𝐿
𝑋
,

𝑓
→

(𝐴) (𝑦) = ⋁

𝑥∈𝑋

𝐴 (𝑥) ∧ 𝑒 (𝑦, 𝑓 (𝑥)) .

(4)

In the literature one can find several different fuzzy
versions of directed subsets. We will focus on one of them,
which is introduced in [8, 14].

Definition 9. Let (𝑋, 𝑒) be a fuzzy poset. 𝐷 ∈ 𝐿
𝑋 is called a

fuzzy directed subset if

(1) ⋁
𝑥∈𝑋

𝐷(𝑥) = 1,
(2) for any 𝑎, 𝑏 ∈ 𝑋, 𝐷(𝑎)∧𝐷(𝑏) ≤ ⋁

𝑑∈𝑋
𝐷(𝑑)∧ 𝑒(𝑎, 𝑑) ∧

𝑒(𝑏, 𝑑).

A fuzzy ideal is a fuzzy lower directed subset. We denote
the set of all fuzzy directed subsets and all fuzzy ideals on 𝑋

by D
𝐿
(𝑋) and I

𝐿
(𝑋), respectively. A fuzzy poset is called a

fuzzy dcpo if every fuzzy directed subset has a join.

Definition 10. Let (𝑋, 𝑒
𝑋
) and (𝑌, 𝑒

𝑌
) be two fuzzy dcpos. A

fuzzy monotone mapping 𝑓 : (𝑋, 𝑒
𝑋
) → (𝑌, 𝑒

𝑌
) is said to

be fuzzy Scott continuous if for any 𝐷 ∈ D
𝐿
(𝑋), 𝑓(⊔𝐷) =

⊔𝑓
→

(𝐷).



Journal of Applied Mathematics 3

We now introduce one of the most efficient tools in
dealing with fuzzy poset, which were extensively studied in
[8, 13, 14, 19, 20, 25]. One reason for this great efficiency is
that the pairs of mappings of the kind we are about to single
out exist in great profusion.

Definition 11. Let (𝑋, 𝑒
𝑋
) and (𝑌, 𝑒

𝑌
) be two fuzzy posets,

𝑓 : (𝑋, 𝑒
𝑋
) → (𝑌, 𝑒

𝑌
) and 𝑔 : (𝑌, 𝑒

𝑌
) → (𝑋, 𝑒

𝑋
) two fuzzy

monotone mappings. The pair (𝑓, 𝑔) is called a fuzzy Galois
connection between (𝑋, 𝑒

𝑋
) and (𝑌, 𝑒

𝑌
) provided that

for any 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 𝑒
𝑌
(𝑦, 𝑓 (𝑥)) = 𝑒

𝑋
(𝑔 (𝑦) , 𝑥) , (5)

where 𝑓 is called the upper adjoint of 𝑔 and dually 𝑔 is called
the lower adjoint of 𝑓.

Proposition 12. Let (𝑋, 𝑒
𝑋
) and (𝑌, 𝑒

𝑌
) be two fuzzy posets.

(𝑓, 𝑔) is a fuzzy Galois connection on (𝑋, 𝑒
𝑋
) and (𝑌, 𝑒

𝑌
) if and

only if both 𝑓 and 𝑔 are fuzzy monotone mappings, and (𝑓, 𝑔)

is a crisp Galois connection on (𝑋, ≤
𝑒𝑋

) and (𝑌, ≤
𝑒𝑌
), where ≤

𝑒𝑋

is defined as follows: 𝑒
𝑋
(𝑥
1
, 𝑥
2
) = 1 ⇔ 𝑥

1
≤
𝑒𝑋

𝑥
2
.

The crisp Galois connection is defined as follows: 𝑦 ≤

𝑓(𝑥) ⇔ 𝑔(𝑦) ≤ 𝑥 for any 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, and its relative
properties can be found in [3].

Proposition 13. Let (𝑋, 𝑒
𝑋
) and (𝑌, 𝑒

𝑌
) be two fuzzy posets,𝑓 :

(𝑋, 𝑒
𝑋
) → (𝑌, 𝑒

𝑌
) and 𝑔 : (𝑌, 𝑒

𝑌
) → (𝑋, 𝑒

𝑋
) two mappings.

(1) If 𝑓 is a fuzzy monotone mapping and has a lower
adjoint, then for any 𝑆 ∈ 𝐿

𝑋 such that ⊓𝑆 exists,
𝑓(⊓𝑆) = ⊓𝑓

→

𝐿
(𝑆).

(2) If 𝑔 is a fuzzy monotone mapping and has an upper
adjoint, then for any 𝐷 ∈ 𝐿

𝑌 such that ⊔𝐷 exists,
𝑔(⊔𝐷) = ⊔𝑔

→

𝐿
(𝐷).

The fuzzy visions of way-below relations were extensively
studied in [7, 8, 10–14]. Hofmann and Waszkiewicz [11] pre-
sented a systematic investigation of such relation in quantale-
enriched categories.

Definition 14. Let (𝑋, 𝑒) be a fuzzy dcpo. For any 𝑥, 𝑦 ∈ 𝑋,
define ⇓ 𝑥 ∈ 𝐿

𝑋 by

⇓ 𝑥 (𝑦) = ⋀

𝐼∈I𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐼) 󳨀→ 𝐼 (𝑦)) . (6)

It is a fact that in the crisp setting, the way-below relation
can be defined by ideals and directed subsets, respectively.
And in this case, the two way-below relations are equivalent.
Then, does the equivalence of such relations also hold? Here
we present a proof to confirm it.

Lemma 15. Let (𝑋, 𝑒
𝑋
) and (𝑌, 𝑒

𝑌
) be two fuzzy posets, 𝑓 :

(𝑋, 𝑒
𝑋
) → (𝑌, 𝑒

𝑌
) a fuzzy monotone mapping. Then for any

𝐷 ∈ D
𝐿
(𝑋), 𝑓

→
(𝐷) ∈ I

𝐿
(𝑌).

Proposition 16. Let (𝑋, 𝑒) be a fuzzy dcpo.Then for any 𝑥, 𝑦 ∈

𝑋,

⋀

𝐷∈D𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐷) 󳨀→ (⋁

𝑑∈𝑋

𝐷 (𝑑) ∧ 𝑒 (𝑦, 𝑑)))

= ⋀

𝐼∈I𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐼) 󳨀→ 𝐼 (𝑦)) .

(7)

That is, ⇓ 𝑥(𝑦) = ⋀
𝐷∈D𝐿(𝑋)

(𝑒(𝑥, ⊔𝐷) → (⋁
𝑑∈𝑋

𝐷(𝑑) ∧

𝑒(𝑦, 𝑑))).

Proof. Obviously, for any 𝐼 ∈ I
𝐿
(𝑋), 𝐼 ∈ D

𝐿
(𝑋). On the

one hand,

⋀

𝐷∈D𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐷) 󳨀→ (⋁

𝑑∈𝑋

𝐷 (𝑑) ∧ 𝑒 (𝑦, 𝑑)))

≤ ⋀

𝐼∈I𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐼) 󳨀→ (⋁

𝑑∈𝑋

𝐼 (𝑑) ∧ 𝑒 (𝑦, 𝑑)))

≤ ⋀

𝐼∈I𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐼) 󳨀→ ⋁

𝑑∈𝑋

𝐼 (𝑦))

= ⋀

𝐼∈I𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐼) 󳨀→ 𝐼 (𝑦)) .

(8)

On the other hand, for any 𝐷 ∈ D
𝐿
(𝑋), it is routine to

check that ↓ 𝐷 ∈ I
𝐿
(𝑋). Then

⋀

𝐼∈I𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐼) 󳨀→ 𝐼 (𝑦))

≤ ⋀

𝐷∈D𝐿(𝑋)

(𝑒 (𝑥, ⊔ ↓ 𝐷) 󳨀→↓ 𝐷 (𝑦))

= ⋀

𝐷∈D𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐷) 󳨀→ (⋁

𝑑∈𝑋

𝐷(𝑑) ∧ 𝑒 (𝑦, 𝑑))) .

(9)

By Proposition 16, for all statements, it is valid for the
fuzzy way-below relation over fuzzy directed subsets if and
only if it holds for the one over fuzzy ideals.

Some basic properties of the fuzzy relation are listed in
the following proposition.

Proposition 17. Let (𝑋, 𝑒) be a fuzzy dcpo. For any 𝑥, 𝑦, 𝑢, V ∈

𝑋, then

(1) ⇓ 𝑥 ≤↓ 𝑥,
(2) 𝑒(𝑢, 𝑥)∧ ⇓ 𝑦(𝑥) ∧ 𝑒(𝑦, V) ≤⇓ V(𝑢).

Definition 18. A fuzzy dcpo (𝑋, 𝑒) is called a fuzzy domain or
continuous if for any 𝑥 ∈ 𝑋, ⇓ 𝑥 ∈ D

𝐿
(𝑋) (or⇓ 𝑥 ∈ I

𝐿
(𝑋))

and 𝑥 = ⊔ ⇓ 𝑥.
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The following theorem exhibits an important property
of the fuzzy way-below relation on fuzzy domains, the
interpolation property. It has been widely discussed in [7, 8,
11, 13].

Theorem 19. If (𝑋, 𝑒) is a fuzzy domain, then for any 𝑥, 𝑦 ∈ 𝑋,
⇓ 𝑦(𝑥) = ⋁

𝑧∈𝑋
⇓ 𝑦(𝑧)∧ ⇓ 𝑧(𝑥).

3. Fuzzy Bases and Fuzzy Algebraic Domains

In this section, we define a fuzzy basis in a fuzzy dcpo, and
we obtain some equivalent characterizations of fuzzy bases.
Moreover, we also study fuzzy algebraic domains from the
viewpoint of fuzzy basis.

Definition 20. Let (𝑋, 𝑒) be a fuzzy dcpo. 𝐵 ∈ 𝐿
𝑋 is called a

fuzzy basis of 𝑋 if

(1) for any 𝑥 ∈ 𝑋, 𝐵∧ ⇓ 𝑥 is a fuzzy directed subset of 𝑋,
and

(2) for any 𝑥 ∈ 𝑋, 𝑥 = ⊔(𝐵∧ ⇓ 𝑥).

Obviously, the previous definition is really a generation of
the notion of a basis in [3].

Proposition 21. Let (𝑋, 𝑒) be a fuzzy dcpo. For any 𝑥 ∈ 𝑋, if
there exists a fuzzy directed subset 𝐴 such that 𝑥 = ⊔𝐴 and
𝐴 ≤⇓ 𝑥, then ⇓ 𝑥 is a fuzzy directed subset with 𝑥 = ⊔ ⇓ 𝑥.

Proof. For any 𝑦 ∈ 𝑋, we firstly show that ⇓ 𝑥(𝑦) ≤

⋁
𝑑∈𝑋

𝐴(𝑑) ∧ 𝑒(𝑦, 𝑑). Indeed,

⇓ 𝑥 (𝑦) = ⋀

𝐷∈D𝐿(𝑋)

(𝑒 (𝑥, ⊔𝐷) 󳨀→ (⋁

𝑑∈𝑋

𝐷(𝑑) ∧ 𝑒 (𝑦, 𝑑)))

≤ 𝑒 (𝑥, ⊔𝐴) 󳨀→ (⋁

𝑑∈𝑋

𝐴 (𝑑) ∧ 𝑒 (𝑦, 𝑑))

= 1 󳨀→ (⋁

𝑑∈𝑋

𝐴 (𝑑) ∧ 𝑒 (𝑦, 𝑑))

= ⋁

𝑑∈𝑋

𝐴 (𝑑) ∧ 𝑒 (𝑦, 𝑑) .

(10)

Then for any 𝑎, 𝑏 ∈ 𝑋, we have

⇓ 𝑥 (𝑎) ∧ ⇓ 𝑥 (𝑏)

≤ ⋁

𝑑1 ,𝑑2∈𝑋

𝐴 (𝑑
1
) ∧ 𝐴 (𝑑

2
) ∧ 𝑒 (𝑎, 𝑑

1
) ∧ 𝑒 (𝑏, 𝑑

2
)

≤ ⋁

𝑑1 ,𝑑2∈𝑋

⋁

𝑑∈𝑋

𝐴 (𝑑) ∧ 𝑒 (𝑑
1
, 𝑑) ∧ 𝑒 (𝑑

2
, 𝑑)

∧ 𝑒 (𝑎, 𝑑
1
) ∧ 𝑒 (𝑏, 𝑑

2
)

≤ ⋁

𝑑1 ,𝑑2∈𝑋

⋁

𝑑∈𝑋

𝐴 (𝑑) ∧ 𝑒 (𝑎, 𝑑) ∧ 𝑒 (𝑏, 𝑑)

= ⋁

𝑑∈𝑋

𝐴 (𝑑) ∧ 𝑒 (𝑎, 𝑑) ∧ 𝑒 (𝑏, 𝑑)

≤ ⋁

𝑑∈𝑋

⇓ 𝑥 (𝑑) ∧ 𝑒 (𝑎, 𝑑) ∧ 𝑒 (𝑏, 𝑑) .

(11)

Moreover, ⋁
𝑦∈𝑋

⇓ 𝑥(𝑦) = 1 follows from 1 = ⋁
𝑦∈𝑋

𝐴(𝑦) ≤

⋁
𝑦∈𝑋

⇓ 𝑥(𝑦). Hence ⇓ 𝑥 is fuzzy directed.
It is easy to verify that ⊔ is fuzzy monotone. Since 𝐴 ≤⇓

𝑥, then 1 = sub(𝐴, ⇓ 𝑥) ≤ 𝑒(⊔𝐴, ⊔ ⇓ 𝑥) = 𝑒(𝑥, ⊔ ⇓ 𝑥).
Meanwhile, 1 = sub(⇓ 𝑥, ↓ 𝑥) ≤ 𝑒(⊔ ⇓ 𝑥, ⊔ ↓ 𝑥) = 𝑒(⊔ ⇓

𝑥, 𝑥). Therefore, 𝑥 = ⊔ ⇓ 𝑥.

Theorem 22. A fuzzy dcpo has a fuzzy basis if and only if it is
a fuzzy domain.

Proof. Necessity. Suppose that 𝐵 is a fuzzy basis of𝑋, then for
any 𝑥 ∈ 𝑋, 𝐵∧ ⇓ 𝑥 ∈ D

𝐿
(𝑋) with 𝑥 = ⊔(𝐵∧ ⇓ 𝑥). It is clear

that𝐵∧ ⇓ 𝑥 ≤⇓ 𝑥.Thus⇓ 𝑥 ∈ D
𝐿
(𝑋)with 𝑥 = ⊔ ⇓ 𝑥 follows

from Proposition 21. Therefore, (𝑋, 𝑒) is a fuzzy domain.
Sufficiency. It is easy to check that 1

𝑋
is a fuzzy basis of

𝑋.

Proposition 23. Let (𝑋, 𝑒) be a fuzzy domain. For any 𝑧 ∈ 𝑋,
if 𝑧 = ⊔𝐷 for some 𝐷 ∈ D

𝐿
(𝑋), then ⇓ 𝑧 = ⋁

𝑑∈𝑋
𝐷(𝑑)∧ ⇓ 𝑑.

Proof. For any 𝑥 ∈ 𝑋, denote that 𝐴 ∈ 𝐿
𝑋 as 𝐴(𝑥) =

⋁
𝑑∈𝑋

𝐷(𝑑)∧ ⇓ 𝑑(𝑥).
(a) 𝐴 is a fuzzy directed subset as follows:

⋁

𝑥∈𝑋

𝐴 (𝑥) = ⋁

𝑥∈𝑋

⋁

𝑑∈𝑋

𝐷 (𝑑) ∧ ⇓ 𝑑 (𝑥)

= ⋁

𝑑∈𝑋

𝐷 (𝑑) ∧ (⋁

𝑥∈𝑋

⇓ 𝑑 (𝑥)) = 1.

(12)

Furthermore, for any 𝑎, 𝑏 ∈ 𝑋,

𝐴 (𝑎) ∧ 𝐴 (𝑏)

= ⋁

𝑑1 ,𝑑2∈𝑋

𝐷(𝑑
1
) ∧ ⇓ 𝑑

1 (𝑎) ∧ 𝐷 (𝑑
2
) ∧ ⇓ 𝑑

2 (𝑏)

≤ ⋁

𝑑1 ,𝑑2∈𝑋

⋁

𝑑∈𝑋

𝐷 (𝑑) ∧ 𝑒 (𝑑
1
, 𝑑) ∧ 𝑒 (𝑑

2
, 𝑑)

∧ ⇓ 𝑑
1 (𝑎) ∧ ⇓ 𝑑

2 (𝑏)

≤ ⋁

𝑑1 ,𝑑2∈𝑋

⋁

𝑑∈𝑋

𝐷 (𝑑) ∧ ⇓ 𝑑 (𝑎) ∧ ⇓ 𝑑 (𝑏)

= ⋁

𝑑∈𝑋

𝐷 (𝑑) ∧ ⇓ 𝑑 (𝑎) ∧ ⇓ 𝑑 (𝑏)

≤ ⋁

𝑑∈𝑋

𝐷 (𝑑) ∧ (⋁

𝑐∈𝑋

⇓ 𝑑 (𝑐) ∧ 𝑒 (𝑎, 𝑐) ∧ 𝑒 (𝑏, 𝑐))
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= ⋁

𝑐∈𝑋

𝑒 (𝑎, 𝑐) ∧ 𝑒 (𝑏, 𝑐) ∧ (⋁

𝑑∈𝑋

𝐷 (𝑑) ∧ ⇓ 𝑑 (𝑐))

= ⋁

𝑐∈𝑋

𝐴 (𝑐) ∧ 𝑒 (𝑎, 𝑐) ∧ 𝑒 (𝑏, 𝑐) .

(13)

(b) ⊔𝐴 = 𝑧. For any 𝑦 ∈ 𝑋, we have

⋀

𝑥∈𝑋

(𝐴 (𝑥) 󳨀→ 𝑒 (𝑥, 𝑦))

= ⋀

𝑥∈𝑋

((⋁

𝑑∈𝑋

𝐷 (𝑑) ∧ ⇓ 𝑑 (𝑥)) 󳨀→ 𝑒 (𝑥, 𝑦))

= ⋀

𝑥∈𝑋

⋀

𝑑∈𝑋

(𝐷 (𝑑) 󳨀→ (⇓ 𝑑 (𝑥) 󳨀→ 𝑒 (𝑥, 𝑦)))

= ⋀

𝑑∈𝑋

(𝐷 (𝑑) 󳨀→ ⋀

𝑥∈𝑋

(⇓ 𝑑 (𝑥) 󳨀→ 𝑒 (𝑥, 𝑦)))

= ⋀

𝑑∈𝑋

(𝐷 (𝑑) 󳨀→ 𝑒 (⊔ ⇓ 𝑑, 𝑦))

= ⋀

𝑑∈𝑋

(𝐷 (𝑑) 󳨀→ 𝑒 (𝑑, 𝑦))

= 𝑒 (⊔𝐷, 𝑦) .

(14)

Hence ⊔𝐷 = ⊔𝐴 = 𝑧.
(c) ⇓ 𝑧 = ⋁

𝑑∈𝑋
𝐷(𝑑)∧ ⇓ 𝑑. On one hand, for any 𝑥 ∈ 𝑋,

⋁

𝑑∈𝑋

𝐷(𝑑) ∧ ⇓ 𝑑 (𝑥) ≤ ⋁

𝑑∈𝑋

𝑒 (𝑑, ⊔𝐷) ∧ ⇓ 𝑑 (𝑥)

≤ ⋁

𝑑∈𝑋

⇓ 𝑧 (𝑥) =⇓ 𝑧 (𝑥) .

(15)

On the other hand,

⇓ 𝑧 (𝑥) = ⋀

𝑆∈D𝐿(𝑋)

(𝑒 (𝑧, ⊔𝑆) 󳨀→ (⋁

𝑏∈𝑋

𝑆 (𝑏) ∧ 𝑒 (𝑥, 𝑏)))

≤ 𝑒(𝑧, ⊔(⋁

𝑑∈𝑋

𝐷 (𝑑) ∧ ⇓ 𝑑))

󳨀→ (⋁

𝑏∈𝑋

⋁

𝑑∈𝑋

𝐷 (𝑑) ∧ ⇓ 𝑑 (𝑏) ∧ 𝑒 (𝑥, 𝑏))

≤ 𝑒 (𝑧, ⊔𝐴) 󳨀→ (⋁

𝑏∈𝑋

⋁

𝑑∈𝑋

𝐷(𝑑) ∧ ⇓ 𝑑 (𝑥))

= ⋁

𝑑∈𝑋

𝐷 (𝑑) ∧ ⇓ 𝑑 (𝑥) .

(16)

Therefore, ⇓ 𝑧 = ⋁
𝑑∈𝑋

𝐷(𝑑)∧ ⇓ 𝑑.

Theorem 24. Let (𝑋, 𝑒) be a fuzzy domain. For 𝐵 ∈ 𝐿
𝑋, the

following are equivalent:

(1) 𝐵 is a fuzzy basis of 𝑋;

(2) for any 𝑥 ∈ 𝑋, there exists a fuzzy directed subset 𝐷 ≤

𝐵∧ ⇓ 𝑥 such that 𝑥 = ⊔𝐷;

(3) for any 𝑥, 𝑦 ∈ 𝑋, ⇓ 𝑦(𝑥) = ⋁
𝑏∈𝑋

𝐵(𝑏)∧ ⇓ 𝑦(𝑏)∧ ⇓

𝑏(𝑥);

(4) for any 𝑥, 𝑦 ∈ 𝑋, ⇓ 𝑦(𝑥) = ⋁
𝑏∈𝑋

𝐵(𝑏)∧ ⇓ 𝑦(𝑏)∧ ↓

𝑏(𝑥).

Proof. (1) implies (2). It is evident from Definition 20.
(2) implies (3). Since (𝑋, 𝑒) is a fuzzy domain, by

Proposition 23, for any 𝑧 ∈ 𝑋, if 𝑧 = ⊔𝐷 for some 𝐷 ∈

D
𝐿
(𝑋), then⇓ 𝑧 = ⋁

𝑏∈𝑋
𝐷(𝑏)∧ ⇓ 𝑏. Indeed, for any 𝑥, 𝑦 ∈ 𝑋,

⇓ 𝑦 (𝑥) = ⋁

𝑧∈𝑋

⇓ 𝑦 (𝑧) ∧ ⇓ 𝑧 (𝑥)

= ⋁

𝑧∈𝑋

⇓ 𝑦 (𝑧) ∧ (⋁

𝑏∈𝑋

𝐷(𝑏) ∧ ⇓ 𝑏 (𝑥))

≤ ⋁

𝑧∈𝑋

⇓ 𝑦 (𝑧) ∧ (⋁

𝑏∈𝑋

(𝐵∧ ⇓ 𝑧) (𝑏) ∧ ⇓ 𝑏 (𝑥))

= ⋁

𝑧∈𝑋

⋁

𝑏∈𝑋

𝐵 (𝑏) ∧ ⇓ 𝑦 (𝑧) ∧ ⇓ 𝑧 (𝑏) ∧ ⇓ 𝑏 (𝑥)

≤ ⋁

𝑧∈𝑋

⋁

𝑏∈𝑋

𝐵 (𝑏) ∧ ⇓ 𝑦 (𝑏) ∧ ⇓ 𝑏 (𝑥)

= ⋁

𝑏∈𝑋

𝐵 (𝑏) ∧ ⇓ 𝑦 (𝑏) ∧ ⇓ 𝑏 (𝑥) .

(17)

(3) implies (4). For any 𝑥, 𝑦 ∈ 𝑋, we have

⇓ 𝑦 (𝑥) = ⋁

𝑏∈𝑋

𝐵 (𝑏) ∧ ⇓ 𝑦 (𝑏) ∧ ⇓ 𝑏 (𝑥)

≤ ⋁

𝑏∈𝑋

𝐵 (𝑏) ∧ ⇓ 𝑦 (𝑏) ∧ ↓ 𝑏 (𝑥)

≤ ⋁

𝑏∈𝑋

𝐵 (𝑏) ∧ ⇓ 𝑦 (𝑥)

≤ ⇓ 𝑦 (𝑥) .

(18)

Hence ⇓ 𝑦(𝑥) = ⋁
𝑏∈𝑋

𝐵(𝑏)∧ ⇓ 𝑦(𝑏)∧ ↓ 𝑏(𝑥).
(4) implies (1). Assuming (4), we next show that 𝐵 is a

fuzzy basis of 𝑋. In fact, for any 𝑦 ∈ 𝑋,
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(a) 𝑦 = ⊔(𝐵∧ ⇓ 𝑦). Since 𝑦 = ⊔ ⇓ 𝑦, then for any 𝑢 ∈ 𝑋,

𝑒 (𝑦, 𝑢)

= ⋀

𝑥∈𝑋

(⇓ 𝑦 (𝑥) 󳨀→ 𝑒 (𝑥, 𝑢))

= ⋀

𝑥∈𝑋

((⋁

𝑏∈𝑋

𝐵 (𝑏) ∧ ⇓ 𝑦 (𝑏) ∧ ↓ 𝑏 (𝑥)) 󳨀→ 𝑒 (𝑥, 𝑢))

= ⋀

𝑥∈𝑋

⋀

𝑏∈𝑋

((𝐵 (𝑏) ∧ ⇓ 𝑦 (𝑏) ∧ ↓ 𝑏 (𝑥)) 󳨀→ 𝑒 (𝑥, 𝑢))

= ⋀

𝑥∈𝑋

⋀

𝑏∈𝑋

((𝐵 (𝑏) ∧ ⇓ 𝑦 (𝑏)) 󳨀→ (𝑒 (𝑥, 𝑏) 󳨀→ 𝑒 (𝑥, 𝑢)))

= ⋀

𝑏∈𝑋

((𝐵 (𝑏) ∧ ⇓ 𝑦 (𝑏)) 󳨀→ ⋀

𝑥∈𝑋

(𝑒 (𝑥, 𝑏) 󳨀→ 𝑒 (𝑥, 𝑢)))

= ⋀

𝑏∈𝑋

((𝐵∧ ⇓ 𝑦) (𝑏) 󳨀→ 𝑒 (𝑏, 𝑢))

= 𝑒 (⊔ (𝐵∧ ⇓ 𝑦) , 𝑢) .

(19)

Hence 𝑦 = ⊔(𝐵∧ ⇓ 𝑦).
(b) 𝐵∧ ⇓ 𝑦 is a fuzzy directed subset. Firstly, for any 𝑎, 𝑏 ∈

𝑋,

(𝐵∧ ⇓ 𝑦) (𝑎) ∧ (𝐵∧ ⇓ 𝑦) (𝑏)

≤⇓ 𝑦 (𝑎) ∧ ⇓ 𝑦 (𝑏)

≤ ⋁

𝑐∈𝑋

⇓ 𝑦 (𝑐) ∧ 𝑒 (𝑎, 𝑐) ∧ 𝑒 (𝑏, 𝑐)

= ⋁

𝑐∈𝑋

⋁

𝑑∈𝑋

𝐵 (𝑑) ∧ ⇓ 𝑦 (𝑑) ∧ ↓ 𝑑 (𝑐) ∧ 𝑒 (𝑎, 𝑐) ∧ 𝑒 (𝑏, 𝑐)

≤ ⋁

𝑐∈𝑋

⋁

𝑑∈𝑋

𝐵 (𝑑) ∧ ⇓ 𝑦 (𝑑) ∧ 𝑒 (𝑎, 𝑑) ∧ 𝑒 (𝑏, 𝑑)

= ⋁

𝑑∈𝑋

(𝐵∧ ⇓ 𝑦) (𝑑) ∧ 𝑒 (𝑎, 𝑑) ∧ 𝑒 (𝑏, 𝑑) .

(20)

Moreover, note that ⋁
𝑥∈𝑋

⇓ 𝑦(𝑥) = 1 and ⇓ 𝑦(𝑥) =

⋁
𝑏∈𝑋

𝐵(𝑏)∧ ⇓ 𝑦(𝑏)∧ ↓ 𝑏(𝑥). Then ⋁
𝑥∈𝑋

⇓ 𝑦(𝑥) =

⋁
𝑏∈𝑋

𝐵(𝑏)∧ ⇓ 𝑦(𝑏)∧⋁
𝑥∈𝑋

↓ 𝑏(𝑥). Hence⋁
𝑏∈𝑋

(𝐵∧ ⇓ 𝑦)(𝑏) =

1. By Definition 20, (1) holds.

Proposition 25. If 𝐵 is a fuzzy basis of 𝑋, then so is ↓ 𝐵.

Proof. In fact, for any 𝑥 ∈ 𝑋,
(a) 𝑥 = ⊔(↓ 𝐵∧ ⇓ 𝑥). It is clear that 𝐵∧ ⇓ 𝑥 ≤↓ 𝐵∧ ⇓ 𝑥.

Then

1 = sub (𝐵∧ ⇓ 𝑥, ↓ 𝐵∧ ⇓ 𝑥)

≤ 𝑒 (⊔ (𝐵∧ ⇓ 𝑥) , ⊔ (↓ 𝐵∧ ⇓ 𝑥))

= 𝑒 (𝑥, ⊔ (↓ 𝐵∧ ⇓ 𝑥)) .

(21)

Note that ↓ 𝐵∧ ⇓ 𝑥 ≤⇓ 𝑥 ≤↓ 𝑥. Then

1 = sub (↓ 𝐵∧ ⇓ 𝑥, ↓ 𝑥)

≤ 𝑒 (⊔ (↓ 𝐵∧ ⇓ 𝑥) , ⊔ ↓ 𝑥)

= 𝑒 (⊔ (↓ 𝐵∧ ⇓ 𝑥) , 𝑥) .

(22)

Hence 𝑥 = ⊔(↓ 𝐵∧ ⇓ 𝑥).
(b) ↓ 𝐵∧ ⇓ 𝑥 is a fuzzy directed subset. Since 𝐵 is a fuzzy

basis of 𝑋, by Theorems 24, for any 𝑐 ∈ 𝑋, we have ⇓ 𝑥(𝑐) =

⋁
𝑑∈𝑋

𝐵(𝑑)∧ ⇓ 𝑥(𝑑)∧ ↓ 𝑑(𝑐). Then for any 𝑎, 𝑏 ∈ 𝑋,

(↓ 𝐵∧ ⇓ 𝑥) (𝑎) ∧ (↓ 𝐵∧ ⇓ 𝑥) (𝑏)

≤⇓ 𝑥 (𝑎) ∧ ⇓ 𝑥 (𝑏)

≤ ⋁

𝑐∈𝑋

⇓ 𝑥 (𝑐) ∧ 𝑒 (𝑎, 𝑐) ∧ 𝑒 (𝑏, 𝑐)

= ⋁

𝑐∈𝑋

⋁

𝑑∈𝑋

𝐵 (𝑑) ∧ ⇓ 𝑥 (𝑑) ∧ ↓ 𝑑 (𝑐) ∧ 𝑒 (𝑎, 𝑐) ∧ 𝑒 (𝑏, 𝑐)

≤ ⋁

𝑐∈𝑋

⋁

𝑑∈𝑋

𝐵 (𝑑) ∧ ⇓ 𝑥 (𝑑) ∧ 𝑒 (𝑎, 𝑑) ∧ 𝑒 (𝑏, 𝑑)

= ⋁

𝑑∈𝑋

(𝐵∧ ⇓ 𝑥) (𝑑) ∧ 𝑒 (𝑎, 𝑑) ∧ 𝑒 (𝑏, 𝑑)

≤ ⋁

𝑑∈𝑋

(↓ 𝐵∧ ⇓ 𝑥) (𝑑) ∧ 𝑒 (𝑎, 𝑑) ∧ 𝑒 (𝑏, 𝑑) .

(23)

Furthermore, ⋁
𝑑∈𝑋

(↓ 𝐵∧ ⇓ 𝑥)(𝑑) = 1 follows from 1 =

⋁
𝑑∈𝑋

(𝐵∧ ⇓ 𝑥)(𝑑) ≤ ⋁
𝑑∈𝑋

(↓ 𝐵∧ ⇓ 𝑥)(𝑑). Therefore, ↓ 𝐵

is a fuzzy basis of 𝑋.

Since for any 𝐷 ∈ 𝐿
𝑋, ↓ 𝐷 is a fuzzy lower set. Then we

can deduce the following.

Corollary 26. If 𝑋 has a fuzzy basis, then there exists a fuzzy
lower one.

Although the definition of fuzzy algebraic domain was
introduced by compact elements in [8], we next introduce
the notion of a fuzzy algebraic domain and discuss the
relationships between fuzzy algebraic domains and fuzzy
domains from the viewpoint of fuzzy basis.

Definition 27. A fuzzy dcpo (𝑋, 𝑒) is called a fuzzy algebraic
domain if

(1) for any 𝑥 ∈ 𝑋,𝐾∧ ↓ 𝑥 is a fuzzy directed subset of𝑋,
and

(2) for any 𝑥 ∈ 𝑋, 𝑥 = ⊔(𝐾∧ ↓ 𝑥),

where 𝐾 ∈ 𝐿
𝑋 is defined as follows: for any 𝑦 ∈ 𝑋, 𝐾(𝑦) =⇓

𝑦(𝑦). If no confusion arises, 𝐾 always denotes the previous
definition in the sequel.
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Theorem 28. Let (𝑋, 𝑒) be a fuzzy dcpo. (𝑋, 𝑒) is a fuzzy
algebraic domain if and only if 𝐾 is precisely a fuzzy basis of
𝑋.

Proof. By Definitions 20 and 27, it suffices to show that for
any 𝑥 ∈ 𝑋, 𝐾∧ ⇓ 𝑥 = 𝐾∧ ↓ 𝑥.

It is clear that 𝐾∧ ⇓ 𝑥 ≤ 𝐾∧ ↓ 𝑥. Conversely, for
any 𝑦 ∈ 𝑋, obviously, (𝐾∧ ↓ 𝑥)(𝑦) ≤ 𝐾(𝑦). Meanwhile,
(𝐾∧ ↓ 𝑥)(𝑦) =⇓ 𝑦(𝑦)∧ ↓ 𝑥(𝑦) ≤⇓ 𝑥(𝑦). Thus (𝐾∧ ↓ 𝑥)(𝑦) ≤

𝐾(𝑦)∧ ⇓ 𝑥(𝑦) = (𝐾∧ ⇓ 𝑥)(𝑦). By the arbitrariness of 𝑦,
𝐾∧ ↓ 𝑥 ≤ 𝐾∧ ⇓ 𝑥. Therefore, 𝐾∧ ⇓ 𝑥 = 𝐾∧ ↓ 𝑥.

Theorem 29. Let (𝑋, 𝑒) be a fuzzy dcpo. Then (𝑋, 𝑒) is a fuzzy
algebraic domain if and only if

(1) (𝑋, 𝑒) is a fuzzy domain, and

(2) for any 𝑥, 𝑦 ∈ 𝑋, ⇓ 𝑦(𝑥) = ⋁
𝑧∈𝑋

𝐾(𝑧)∧ ↓ 𝑦(𝑧)∧ ↓

𝑧(𝑥).

Proof. Necessity. Suppose that (𝑋, 𝑒) is a fuzzy algebraic
domain, by Theorem 28, and 𝐾 is a fuzzy basis of 𝑋. Thus
(𝑋, 𝑒) is a fuzzy domain follows fromTheorem 22. It remains
to show that for any 𝑥, 𝑦 ∈ 𝑋, ⇓ 𝑦(𝑥) = ⋁

𝑧∈𝑋
𝐾(𝑧)∧ ↓

𝑦(𝑧)∧ ↓ 𝑧(𝑥). On one hand,

⋁

𝑧∈𝑋

𝐾 (𝑧) ∧ ↓ 𝑦 (𝑧) ∧ ↓ 𝑧 (𝑥)

= ⋁

𝑧∈𝑋

⇓ 𝑧 (𝑧) ∧ ↓ 𝑦 (𝑧) ∧ ↓ 𝑧 (𝑥)

≤ ⋁

𝑧∈𝑋

⇓ 𝑦 (𝑧) ∧ ↓ 𝑧 (𝑥)

≤⇓ 𝑦 (𝑥) .

(24)

On the other hand,

⇓ 𝑦 (𝑥)

= ⋀

𝐷∈D𝐿(𝑋)

(𝑒 (𝑦, ⊔𝐷) 󳨀→ (⋁

𝑧∈𝑋

𝐷 (𝑧) ∧ 𝑒 (𝑥, 𝑧)))

≤ 𝑒 (𝑦, ⊔ (𝐾∧ ↓ 𝑦)) 󳨀→ (⋁

𝑧∈𝑋

(𝐾∧ ↓ 𝑦) (𝑧) ∧ 𝑒 (𝑥, 𝑧))

= ⋁

𝑧∈𝑋

𝐾 (𝑧) ∧ ↓ 𝑦 (𝑧) ∧ ↓ 𝑧 (𝑥) .

(25)

Therefore, ⇓ 𝑦(𝑥) = ⋁
𝑧∈𝑋

𝐾(𝑧)∧ ↓ 𝑦(𝑧)∧ ↓ 𝑧(𝑥).

Sufficiency. In fact, for any 𝑦 ∈ 𝑋,
(a) 𝑦 = ⊔(𝐾∧ ↓ 𝑦). Since 𝑦 = ⊔ ⇓ 𝑦, then for any 𝑢 ∈ 𝑋,

𝑒 (𝑦, 𝑢)

= ⋀

𝑥∈𝑋

(⇓ 𝑦 (𝑥) 󳨀→ 𝑒 (𝑥, 𝑢))

= ⋀

𝑥∈𝑋

((⋁

𝑧∈𝑋

𝐾 (𝑧) ∧ ↓ 𝑦 (𝑧) ∧ ↓ 𝑧 (𝑥)) 󳨀→ 𝑒 (𝑥, 𝑢))

= ⋀

𝑥∈𝑋

⋀

𝑧∈𝑋

((𝐾 (𝑧) ∧ ↓ 𝑦 (𝑧)) 󳨀→ (𝑒 (𝑥, 𝑧) 󳨀→ 𝑒 (𝑥, 𝑢)))

= ⋀

𝑧∈𝑋

((𝐾 (𝑧) ∧ ↓ 𝑦 (𝑧)) 󳨀→ ⋀

𝑥∈𝑋

(𝑒 (𝑥, 𝑧) 󳨀→ 𝑒 (𝑥, 𝑢)))

= ⋀

𝑧∈𝑋

((𝐾∧ ↓ 𝑦) (𝑧) 󳨀→ 𝑒 (𝑧, 𝑢))

= 𝑒 (⊔ (𝐾∧ ↓ 𝑦) , 𝑢) .

(26)

Hence 𝑦 = ⊔(𝐾∧ ↓ 𝑦).
(b) 𝐾∧ ↓ 𝑦 is fuzzy directed. For any 𝑥 ∈ 𝑋, (𝐾∧ ↓

𝑦)(𝑥) ≤⇓ 𝑦(𝑥) and ⇓ 𝑦(𝑥) = ⋁
𝑑∈𝑋

𝐾(𝑑)∧ ↓ 𝑦(𝑑)∧ ↓ 𝑑(𝑥).
Then for any 𝑎, 𝑏 ∈ 𝑋,

(𝐾∧ ↓ 𝑦) (𝑎) ∧ (𝐾∧ ↓ 𝑦) (𝑏)

≤⇓ 𝑦 (𝑎) ∧ ⇓ 𝑦 (𝑏)

≤ ⋁

𝑐∈𝑋

⇓ 𝑦 (𝑐) ∧ 𝑒 (𝑎, 𝑐) ∧ 𝑒 (𝑏, 𝑐)

= ⋁

𝑐∈𝑋

⋁

𝑑∈𝑋

𝐾 (𝑑) ∧ ↓ 𝑦 (𝑑) ∧ ↓ 𝑑 (𝑐) ∧ 𝑒 (𝑎, 𝑐) ∧ 𝑒 (𝑏, 𝑐)

≤ ⋁

𝑐∈𝑋

⋁

𝑑∈𝑋

𝐾 (𝑑) ∧ ↓ 𝑦 (𝑑) ∧ 𝑒 (𝑎, 𝑑) ∧ 𝑒 (𝑏, 𝑑)

= ⋁

𝑑∈𝑋

(𝐾∧ ↓ 𝑦) (𝑑) ∧ 𝑒 (𝑎, 𝑑) ∧ 𝑒 (𝑏, 𝑑) .

(27)

Furthermore, since ⋁
𝑥∈𝑋

⇓ 𝑦(𝑥) = 1 and ⇓ 𝑦(𝑥) =

⋁
𝑑∈𝑋

𝐾(𝑑)∧ ↓ 𝑦(𝑑)∧ ↓ 𝑑(𝑥), then

⋁

𝑥∈𝑋

⇓ 𝑦 (𝑥) = ⋁

𝑑∈𝑋

𝐾 (𝑑) ∧ ↓ 𝑦 (𝑑) ∧ ⋁

𝑥∈𝑋

↓ 𝑑 (𝑥) . (28)

Thus ⋁
𝑑∈𝑋

(𝐾∧ ↓ 𝑦)(𝑑) = 1.
Therefore, (𝑋, 𝑒) is a fuzzy algebraic domain.

Remark 30. The main results of Theorems 24, 28, and 29
indicate that the definitions of the fuzzy basis and the fuzzy
algebraic domain are reasonable.

4. An Application of Fuzzy Bases

This section is mainly devoted to giving an application of
fuzzy bases. Our aim is to investigate some special kinds of
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fuzzy Galois connections, under which the image of a fuzzy
domain can be preserved.

Definition 31. Let (𝑋, 𝑒
𝑋
) and (𝑌, 𝑒

𝑌
) be two fuzzy dcpos. A

fuzzy monotone mapping 𝑓 : (𝑋, 𝑒
𝑋
) → (𝑌, 𝑒

𝑌
) is said

to preserve fuzzy way-below relation if for any 𝑥, 𝑦 ∈ 𝑋,
⇓ 𝑥(𝑦) ≤⇓ 𝑓(𝑥)(𝑓(𝑦)).

Proposition 32. Let (𝑋, 𝑒
𝑋
) and (𝑌, 𝑒

𝑌
) be two fuzzy dcpos,

(𝑓, 𝑔) a fuzzy Galois connection from (𝑋, 𝑒
𝑋
) to (𝑌, 𝑒

𝑌
).

(1) If 𝑓 is fuzzy Scott continuous, then 𝑔 preserves fuzzy
way-below relation.

(2) If 𝑓 is surjective, then for any 𝑥, 𝑦 ∈ 𝑌, ⇓

𝑔(𝑥)(𝑔(𝑦)) ≤⇓ 𝑥(𝑦).

Proof. (1) For any 𝐷 ∈ D
𝐿
(𝑋), by Lemma 15, 𝑓

→
(𝐷) ∈

I
𝐿
(𝑌). Then for any 𝑥, 𝑦 ∈ 𝑌,

⇓ 𝑥 (𝑦)

= ⋀

𝑆∈D𝐿(𝑌)

(𝑒
𝑌 (𝑥, ⊔𝑆) 󳨀→ (⋁

𝑑∈𝑌

𝑆 (𝑑) ∧ 𝑒
𝑌
(𝑦, 𝑑)))

≤ ⋀

𝐷∈D𝐿(𝑋)

(𝑒
𝑌
(𝑥, ⊔𝑓

→
(𝐷))

󳨀→ (⋁

𝑑∈𝑌

𝑓
→

(𝐷) (𝑑) ∧ 𝑒
𝑌
(𝑦, 𝑑)))

= ⋀

𝐷∈D𝐿(𝑋)

(𝑒
𝑌
(𝑥, 𝑓 (⊔𝐷)) 󳨀→ 𝑓

→
(𝐷) (𝑦))

= ⋀

𝐷∈D𝐿(𝑋)

(𝑒
𝑋

(𝑔 (𝑥) , ⊔𝐷)

󳨀→ (⋁

𝑏∈𝑋

𝐷(𝑏) ∧ 𝑒
𝑌
(𝑦, 𝑓 (𝑏))))

= ⋀

𝐷∈D𝐿(𝑋)

(𝑒
𝑋

(𝑔 (𝑥) , ⊔𝐷)

󳨀→ (⋁

𝑏∈𝑋

𝐷(𝑏) ∧ 𝑒
𝑋

(𝑔 (𝑦) , 𝑏)))

=⇓ 𝑔 (𝑥) (𝑔 (𝑦)) .

(29)

(2) Since 𝑓 is surjective, 𝑓𝑔 = 𝑖𝑑
𝑌
. Note that for any 𝑆 ∈

D
𝐿
(𝑌), 𝑔

→
(𝑆) ∈ I

𝐿
(𝑋), and 𝑔 is a lower adjoint of 𝑓. Then

for any 𝑥, 𝑦 ∈ 𝑌, by Proposition 13, we have

⇓ 𝑔 (𝑥) (𝑔 (𝑦))

= ⋀

𝐷∈D𝐿(𝑋)

(𝑒
𝑋

(𝑔 (𝑥) , ⊔𝐷)

󳨀→ (⋁

𝑏∈𝑋

𝐷 (𝑏) ∧ 𝑒
𝑋

(𝑔 (𝑦) , 𝑏)))

≤ ⋀

𝑆∈D𝐿(𝑌)

(𝑒
𝑋

(𝑔 (𝑥) , ⊔𝑔
→

(𝑆))

󳨀→ (⋁

𝑏∈𝑋

𝑔
→

(𝑆) (𝑏) ∧ 𝑒
𝑋

(𝑔 (𝑦) , 𝑏)))

= ⋀

𝑆∈D𝐿(𝑌)

(𝑒
𝑋

(𝑔 (𝑥) , 𝑔 (⊔𝑆)) 󳨀→ 𝑔
→

(𝑆) (𝑔 (𝑦)))

= ⋀

𝑆∈D𝐿(𝑌)

(𝑒
𝑌
(𝑥, 𝑓𝑔 (⊔𝑆))

󳨀→ (⋁

𝑑∈𝑌

𝑆 (𝑑) ∧ 𝑒
𝑋

(𝑔 (𝑦) , 𝑔 (𝑑))))

= ⋀

𝑆∈D𝐿(𝑌)

(𝑒
𝑌 (𝑥, ⊔𝑆)

󳨀→ (⋁

𝑑∈𝑌

𝑆 (𝑑) ∧ 𝑒
𝑋

(𝑔 (𝑦) , 𝑔 (𝑑))))

≤ ⋀

𝑆∈D𝐿(𝑌)

(𝑒
𝑌 (𝑥, ⊔𝑆)

󳨀→ (⋁

𝑑∈𝑌

𝑆 (𝑑) ∧ 𝑒
𝑌
(𝑓𝑔 (𝑦) , 𝑓𝑔 (𝑑))))

= ⋀

𝑆∈D𝐿(𝑌)

(𝑒
𝑌 (𝑥, ⊔𝑆) 󳨀→ (⋁

𝑑∈𝑌

𝑆 (𝑑) ∧ 𝑒
𝑌
(𝑦, 𝑑)))

=⇓ 𝑥 (𝑦) .

(30)

Proposition 33. Let (𝑋, 𝑒
𝑋
) and (𝑌, 𝑒

𝑌
) be two fuzzy dcpos,

(𝑓, 𝑔) a fuzzy Galois connection from (𝑋, 𝑒
𝑋
) to (𝑌, 𝑒

𝑌
). If

(𝑌, 𝑒
𝑌
) is a fuzzy domain and 𝑔 preserves fuzzy way-below

relation, then 𝑓 is fuzzy Scott continuous.
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Proof. For any 𝐷 ∈ D
𝐿
(𝑋), we need to show that 𝑓(⊔𝐷) =

⊔𝑓
→

(𝐷). Indeed,

𝑒
𝑌
(⊔𝑓
→

(𝐷) , 𝑓 (⊔𝐷))

= ⋀

𝑦∈𝑌

(𝑓
→

(𝐷) (𝑦) 󳨀→ 𝑒
𝑌
(𝑦, 𝑓 (⊔𝐷)))

= ⋀

𝑦∈𝑌

((⋁

𝑥∈𝑋

𝐷 (𝑥) ∧ 𝑒
𝑌
(𝑦, 𝑓 (𝑥))) 󳨀→ 𝑒

𝑌
(𝑦, 𝑓 (⊔𝐷)))

= ⋀

𝑦∈𝑌

⋀

𝑥∈𝑋

(𝐷 (𝑥) 󳨀→ (𝑒
𝑌
(𝑦, 𝑓 (𝑥)) 󳨀→ 𝑒

𝑌
(𝑦, 𝑓 (⊔𝐷))))

= ⋀

𝑥∈𝑋

(𝐷(𝑥) 󳨀→ ⋀

𝑦∈𝑌

(𝑒
𝑌
(𝑦, 𝑓 (𝑥)) 󳨀→ 𝑒

𝑌
(𝑦, 𝑓 (⊔𝐷))))

= ⋀

𝑥∈𝑋

(𝐷 (𝑥) 󳨀→ 𝑒
𝑌
(𝑓 (𝑥) , 𝑓 (⊔𝐷)))

≥ ⋀

𝑥∈𝑋

(𝐷 (𝑥) 󳨀→ 𝑒
𝑋 (𝑥, ⊔𝐷))

≥ ⋀

𝑥∈𝑋

(𝐷 (𝑥) 󳨀→ 𝐷 (𝑥)) = 1.

(31)

For the converse, let 𝑢 = ⊔𝐷. Since (𝑌, 𝑒
𝑌
) is a fuzzy

domain,𝑓(⊔𝐷) = 𝑓(𝑢) = ⊔ ⇓ 𝑓(𝑢). Note that 𝑒
𝑋
(𝑔𝑓(𝑢), 𝑢) =

1. Then for any V ∈ 𝑌,

⇓ 𝑓 (𝑢) (V) ≤⇓ 𝑔𝑓 (𝑢) (𝑔 (V))

=⇓ 𝑔𝑓 (𝑢) (𝑔 (V)) ∧ 𝑒
𝑋

(𝑔𝑓 (𝑢) , 𝑢)

≤ ⋀

𝑆∈D𝐿(𝑋)

(𝑒
𝑋 (𝑢, ⊔𝑆) 󳨀→ (⋁

𝑑∈𝑋

𝑆 (𝑑) ∧ 𝑒
𝑋

(𝑔 (V) , 𝑑)))

≤ 𝑒
𝑋 (𝑢, ⊔𝐷) 󳨀→ (⋁

𝑑∈𝑋

𝐷 (𝑑) ∧ 𝑒
𝑋

(𝑔 (V) , 𝑑))

= 1 󳨀→ (⋁

𝑑∈𝑋

𝐷 (𝑑) ∧ 𝑒
𝑋

(𝑔 (V) , 𝑑))

= ⋁

𝑑∈𝑋

𝐷 (𝑑) ∧ 𝑒
𝑋

(𝑔 (V) , 𝑑)

= ⋁

𝑑∈𝑋

𝐷 (𝑑) ∧ 𝑒
𝑌
(V, 𝑓 (𝑑))

= 𝑓
→

(𝐷) (V) .

(32)

Thus 1 = sub(⇓𝑓(𝑢), 𝑓
→

(𝐷)) ≤ 𝑒
𝑌
(⊔ ⇓ 𝑓(𝑢), ⊔𝑓

→
(𝐷)) =

𝑒
𝑌
(𝑓(⊔𝐷), ⊔𝑓

→
(𝐷)). Therefore, 𝑓(⊔𝐷) = ⊔𝑓

→
(𝐷).

Definition 34. Let (𝑋, 𝑒
𝑋
) and (𝑌, 𝑒

𝑌
) be two fuzzy dcpos. 𝑓 :

(𝑋, 𝑒
𝑋
) → (𝑌, 𝑒

𝑌
) is called a fuzzy morphism if 𝑓 is a fuzzy

Scott continuous upper adjoint.

Theorem 35. Let (𝑋, 𝑒
𝑋
) be a fuzzy domain, and let (𝑌, 𝑒

𝑌
) be

a fuzzy dcpo. If 𝑓 : (𝑋, 𝑒
𝑋
) → (𝑌, 𝑒

𝑌
) is a surjective fuzzy

morphism, then (𝑌, 𝑒
𝑌
) is a fuzzy domain.

Proof. By Theorem 22 and Corollary 26, there exists a fuzzy
lower basis 𝐵 of 𝑋. Now we show that 𝑓→ (𝐵) is a fuzzy basis
of 𝑌.

Since 𝑓 is a surjective morphism, then for any 𝑦 ∈ 𝑌,
there exists a lower adjoint 𝑔 of 𝑓 and an 𝑥 in 𝑋 such that
𝑦 = 𝑓(𝑥). For any 𝑢 ∈ 𝑌, by Proposition 32 (2), we have

𝑓
→

(⇓ 𝑔𝑓 (𝑥)) (𝑢)

= ⋁

V∈𝑋

⇓ 𝑔𝑓 (𝑥) (V) ∧ 𝑒
𝑌
(𝑢, 𝑓 (V))

= ⋁

V∈𝑋

⇓ 𝑔𝑓 (𝑥) (V) ∧ 𝑒
𝑋

(𝑔 (𝑢) , V)

≤ ⋁

V∈𝑋

⇓ 𝑔𝑓 (𝑥) (𝑔 (𝑢))

≤⇓ 𝑓 (𝑥) (𝑢) .

(33)

Obviously, 𝑓→ (𝐵∧ ⇓ 𝑔𝑓(𝑥)) ≤ 𝑓
→

(𝐵).
Hence

𝑓
→

(𝐵∧ ⇓ 𝑔𝑓 (𝑥)) ≤ 𝑓
→

(𝐵) ∧ 𝑓
→

(⇓ 𝑔𝑓 (𝑥))

≤ 𝑓
→

(𝐵) ∧ ⇓ 𝑓 (𝑥) .

(34)

Furthermore, since 𝐵 is a fuzzy lower set, then by
Proposition 32 (1),

(𝑓
→

(𝐵) ∧ ⇓ 𝑓 (𝑥)) (𝑢)

= (⋁

V∈𝑋

𝐵 (V) ∧ 𝑒
𝑌
(𝑢, 𝑓 (V)))∧ ⇓ 𝑓 (𝑥) (𝑢)

≤ (⋁

V∈𝑋

𝐵 (V) ∧ 𝑒
𝑋

(𝑔 (𝑢) , V))∧ ⇓ 𝑔𝑓 (𝑥) (𝑔 (𝑢))

= 𝐵 (𝑔 (𝑢)) ∧ ⇓ 𝑔𝑓 (𝑥) (𝑔 (𝑢))

≤ ⋁

V∈𝑋

𝐵 (V) ∧ ⇓ 𝑔𝑓 (𝑥) (V) ∧ 𝑒
𝑋

(𝑔 (𝑢) , V)

= ⋁

V∈𝑋

𝐵 (V) ∧ ⇓ 𝑔𝑓 (𝑥) (V) ∧ 𝑒
𝑌
(𝑢, 𝑓 (V))

= 𝑓
→

(𝐵∧ ⇓ 𝑔𝑓 (𝑥)) (𝑢) .

(35)
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Therefore, 𝑓→ (𝐵∧ ⇓ 𝑔𝑓(𝑥)) = 𝑓
→

(𝐵)∧ ⇓ 𝑓(𝑥). Note that 𝑓
is fuzzy Scott continuous and 𝐵∧ ⇓ 𝑔𝑓(𝑥) ∈ D

𝐿
(𝑋), then

⊔ (𝑓
→

(𝐵) ∧ ⇓ 𝑦) = ⊔ (𝑓
→

(𝐵) ∧ ⇓ 𝑓 (𝑥))

= ⊔ 𝑓
→

(𝐵∧ ⇓ 𝑔𝑓 (𝑥))

= 𝑓 (⊔ (𝐵∧ ⇓ 𝑔𝑓 (𝑥)))

= 𝑓 (𝑔𝑓 (𝑥))

= 𝑓 (𝑥) = 𝑦.

(36)

It follows from Lemma 15 that 𝑓
→

(𝐵)∧ ⇓ 𝑦 = 𝑓
→

(𝐵)∧ ⇓

𝑓(𝑥) = 𝑓
→

(𝐵∧ ⇓ 𝑔𝑓(𝑥)) ∈ D
𝐿
(𝑌). Thus 𝑓

→
(𝐵) is a

fuzzy basis of 𝑌. Therefore, by Theorem 22, (𝑌, 𝑒
𝑌
) is a fuzzy

domain.

5. Conclusion

In this paper, we propose the notion of a fuzzy basis in a fuzzy
dcpo, which generalizes the concept of an ordinary basis.
It provides a new approach to explore fuzzy domains. We
can extend this approach further; for example, we can define
a fuzzy complete basis on a fuzzy complete lattice [24] to
investigate fuzzy completely distributive lattices introduced
in [8, 13]. Moreover, in crisp setting, the definition of a wight
is in close touch with the notion of a basis, and fuzzy Scott
topology on fuzzy directed complete posets was given in [9].
As a followup of this paper, we can further give a fuzzy vision
of a weight on fuzzy Scott topology and study its relative
properties.
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[20] R. Bělohlávek, Fuzzy Relational Systems: Foundations and Prin-
ciples, Kluwer Academic Publishers; Plenum Publishers, New
York, NY, USA, 2002.

[21] L. Fan, “A new approach to quantitative domain theory,”
Electronic Notes inTheoretical Computer Science, vol. 45, pp. 77–
87, 2001.

[22] X. Ma, J. Zhan, and W. A. Dudek, “Some kinds of (e, e or q)-
fuzzy filters of BL-algebras,” Computers & Mathematics with
Applications, vol. 58, no. 2, pp. 248–256, 2009.

[23] J. Zhan and Y. B. Jun, “Soft BL-algebras based on fuzzy sets,”
Computers & Mathematics with Applications, vol. 59, no. 6, pp.
2037–2046, 2010.

[24] Q. Zhang, W. Xie, and L. Fan, “Fuzzy complete lattices,” Fuzzy
Sets and Systems, vol. 160, no. 16, pp. 2275–2291, 2009.

[25] W. Yao and L.-X. Lu, “Fuzzy Galois connections on fuzzy
posets,”Mathematical Logic Quarterly, vol. 55, no. 1, pp. 105–112,
2009.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


