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We are concerned with the following modified nonlinear Schrédinger system: —Au+u—(1 12)uAW?) = Qaf(a+ ,B))Iul""zlvlﬁ U, x €
Q, —Av+v—(1/2)vA(?) = (2[§’/(oc+[j’))|u|°‘|v|ﬁ_2v, x€Qu=0,v=0, x € 0Q,wherea > 2, $>2, a+f < 22", 2" =2N/(N-2)
is the critical Sobolev exponent,and QO ¢ RN (N > 3) isabounded smooth domain. By using the perturbation method, we establish
the existence of both positive and negative solutions for this system.

1. Introduction

Let us consider the following modified nonlinear Schrodinger
system:

2«

1 _
—Au+u— —ul (uz) = u WPy, xeQ,
2 +p

1 2 _
—-Av+v—=vA (vz) = —ﬁ|u|“|v|ﬁ v, x€eQ, @
2 o

+B

u=0, v=0, xe€0dQ,

whereaw > 2, 3> 2,0+ 3 <2-2%,2" = 2N/(N - 2) is the
critical Sobolev exponent, and Q ¢ RN (N > 3) is a bounded
smooth domain.

Solutions for the system (1) are related to the existence
of the standing wave solutions of the following quasilinear
Schrodinger equation:

i0,z=-Az+V (x)z—- f (|z|2) z — kAh (Izlz) W (Izlz) z,
X € RN,
(2)

where V(x) is a given potential, k is a real constant, and f, h
are real functions. We would like to mention that (2) appears

more naturally in mathematical physics and has been derived
as models of several physical phenomena corresponding to
various types of h. For instance, the case h(s) = s was used for
the superfluid film equation in plasma physics by Kurihara [1]
(see also [2]); in the case of h(s) = (1 + 5)1/2, (2) was used as
a model of the self-changing of a high-power ultrashort laser
in matter (see [3-6] and references therein).

In recent years, much attention has been devoted to the
quasilinear Schrédinger equation of the following form:

—Au+ AV (x)u — kA (uz) u=uPu, xe RN, (3)

See, for example, by using a constrained minimization argu-
ment, the existence of positive ground state solution was
proved by Poppenberg et al. [7]. Using a change of variables,
Liu et al. [8] used an Orlicz space to prove the existence of
soliton solution for (3) via mountain pass theorem. Colin and
Jeanjean [9] also made use of a change of variables but worked
in the Sobolev space H'(RY); they proved the existence
of positive solution for (3) from the classical results given
by Berestycki and Lions [10]. Liu et al. [11] established the
existence of both one-sign and nodal ground states of soliton
type solutions for (3) by the Nehari method. In particular,
in [12], by using Nehari manifold method and concentration
compactness principle (see [13]) in the Orlicz space, Guo
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and Tang considered the following quasilinear Schrodinger
system:

1 2 .
—Au+Aa(x)+1)u- 3 (Alulz)u = —(Xlul 2Ivlﬁu,

a+p
x € RY,
1 2 2ﬁ ay -2
—Au+(Ab Du-—(A S :
wt (b () + D= (M) u oy
x € RY,

u(x) —0, v(x)—0, |x]—o00

(4)

with a(x) > 0, b(x) > 0 having a potential well and o« >
2, B>2,a+f < 22" where 2" = 2N/(N - 2) is the
critical Sobolev exponent, and they proved the existence of
a ground state solution for the system (4) which localizes
near the potential well inta ' (0) for A large enough. Guo
and Tang [14] also considered ground state solutions of the
single quasilinear Schrédinger equation corresponding to the
system (4) by the same methods and obtained similar results.

It is worth pointing out that the existence of one-bump or
multibump bound state solutions for the related semilinear
Schrédinger equation (3) for k = 0 has been extensively
studied. One can see Bartsch and Wang [15], Ambrosetti et al.
[16], Ambrosetti et al. [17], Byeon and Wang [18], Cingolani
and Lazzo [19], Cingolani and Nolasco [20], Del Pino and
Felmer [21, 22], Floer and Weinstein [23], and Oh [24, 25]
and the references therein.

The system (1) is a kind of “limit” problem of the system
(4) as A — o00. The existence of solutions for the system (1)
has important physical interest. The purpose of this paper is
to study the existence of both positive and negative solutions
for the system (1). We mainly follow the idea of Liu et al. [26]
to perturb the functional and obtain our main results. We
point out that the procedure to the system (1) is not trivial
at all. Since the appearance of the quasilinear terms uA(u?)
and vA(»?), we need more delicate estimates.

The paper is organized as follows. In Section 2, we
introduce a perturbation of the functional and give our main
results (Theorem 1 and 2). In Section 3, we verify the Palais-
Smale condition for the perturbed functional. Section 4 is
devoted to some asymptotic behavior of sequence {(u,,, v,,)} €
WOIA(Q) X WOM(Q) and {u,} (0, 1] satisfying some condi-
tions. Finally, our main results will be proved in Section 5.

Throughout this paper, we will use the same C to denote
various generic positive constants, and we will use o(1) to
denote quantities that tend to 0.

2. Perturbation of the Functional and
Main Results

In order to obtain the desired existence of solutions for the
system (1), in this section, we introduce a perturbation of the
functional and give our main results.
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The weak form of the system (1) is
J ((1 + u2) VuVe + (1 + |Vu|2) uq))
Q

# [ () vy (1 199) )

— 2a a=2y18 _ 2ﬁ J o) 1B-2 _
2 | g - 2 | iy = o,
(p:v) € G (V) x CF° (),

(5)

which is formally the variational formulation of the following
functional:

I, (u,v) = ((l + uz) [Vul® + uz)

N | —
)

+

L (1 +v?) 1) +v7) - ﬁ jQ lul“v|P.

(6)

N | =

We may define the derivative of I at (1, v) in the direction
of (¢, y) € C°(Q) x C;°(Q) as follows:

<I(', (u,v), (o, 1//)> = JQ (1 + uz) VuVe
+ JQ (1 + |Vu|2) u(p+JQ (1 + v2) VvWy

2
+ JQ (1 + |V )vw

2«

_(x+ﬂ

28
_(x+ﬂ

j Wl 21vPug
Q

[, w2y,
Q
%

We call that (u,v) is a critical point of I, if (u,v) €
W, (Q) x WA (Q), _[Q W |Vul? < oo, IQ VIVv)? < oo and
(I)(u, v), (@, w)) = 0 for all (p, y) € C(Q) x C°(Q). That is,
(u, v) is a weak solution for the system (1).

When we consider the system (1) by using the classical
critical point theory, we encounter the difficulties due to the
lack of an appropriate working space. In general it seems
there is no suitable space in which the variational functional
I, possesses both smoothness and compactness properties.
For smoothness one would need to work in a space smaller
than Wol’z(Q) to control the term involving the quasilinear
term in the system (1), but it seems impossible to obtain
bounds for (PS), sequence in this setting. There have been
several ideas and approaches used in recent years to overcome
the difficulties such as by minimizations [7, 27], the Nehari
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method [11], and change of variables [8, 9]. In this paper, we
consider a perturbed functional

‘hWJ0=iyL(WM4+WWﬂ+LK%ﬂ
1 1
= A_L‘M J;) (|Vu|4+|VV|4)+ 3 JQ ((1+u2) |Vu|2+u2)

1 2 2, 2 2 j a B
+ = 1+ V" + -— ,
[ (@) g |
(8)
where p € (0,1] is a parameter. Then it is easy to see that I, is

a C'-functional on WOIA(Q) X Wol’4(Q). We also can define the
derivative of I L at (1, v) in the direction of (¢, ) as follows:

<I;4 (u,v),((p,w)>=uJ- |Vu|2VuV<p+yJ [Vv|*VaVy
Q Q
+J (1+u2)Vquo+J (1+|Vu|2)u<p
Q Q

2 2
+ L (1+v )Vny/ +JQ (1+|Vv| )m//
2a
+p

Zﬁ ay -2
Mﬁjohu N

j Wl 21vPug
Q

)

for all (¢, y) € C;°(Q) x C;°(Q). The idea is to obtain the
existence of the critical points of I, for 4 > 0 small and to
establish suitable estimates for the critical pointsas gy — 0
so that we may pass to the limit to get the solutions for the
original system (1).

Our main results are as follows.

Theorem 1. Assume thato > 2, $>2and o+ f3<2-2%. Let
Y, — 0andlet {(u,,v,)} C W01’4(Q) X Wol’4(Q) be a sequence
of 1, satisfying I’:n (u,,v,) = 0and 1, (u,,,v,) < C for some C
independent of n. Then, up to a subsequence

u, —u, v,—v in WOI’2 (Q),

u,Vu, — uVu, v,Vv, — vWv in L*(Q),
(10)

4 4
U, JQ (|Vun| + |an| ) — 0,
ILn (U v,) — I (1)
asn — oo and (u,v) is a critical point of I,.
Using Theorem 1, we have the following existence result.

Theorem 2. Assume thata > 2, 3 > 2and o + § < 2- 2%,
Then 1, has a positive critical point (u,,v,) and a negative
critical point (ﬁyﬁ#), and (”w vﬂ) (resp., (a,,,vﬂ)) converges to

a positive (resp., negative) solution for the system (1) asy — 0.

Notation. We denote by | - || the norm of W01’4(Q) and by | - |,
the norm of L°(Q) (1 < s < +00).

3. Compactness of the Perturbed Functional

In this section, we verify the Palais-Smale condition ((PS),
condition in short) for the perturbed functional “(u, v). We
have the following proposition.

Proposition 3. For u > 0 fixed, the functional I,(u, v) satisfies
(PS). condition for all c € R. That is, any sequence {(u,,,v,)} C
Wy (Q) x Wy (Q) satisfying, for ¢ € R,

1/4 (un’ Vn) — 6

., 1)
I; (u,,v,) — 0 strongly in (WOM(Q) X WOM(Q))

has a strongly convergent subsequence in Wy *(Q) x W *(Q),
where (W01’4(Q) X Wol’4(Q))* is the dual space of W01’4(Q) X
Wy (Q).

For giving the proof of Proposition 3, we need the
following lemma firstly.

Lemma 4. Suppose that a sequence {(u,,v,)} C WOM(Q) X
W01’4(Q) satisfies (11). Then

11\
li , 4g(-— ) ‘e, 12
im sup||(u, v,)[" < | 7 arpg) C (12)
Proof. It follows from (11) that

1

a+pf

c+o(1)-

o (1) |(u,v,)|

(Ve |” + [v3,%) (13)

JQ (ui|Vun|2 + vi|an|2)

B
(1t el ot o

Thus we have

11\
I , 43(—— > ‘. (4
msplo )l < (5-055) w09
This completes the proof of Lemma 4. O

Now we give the proof of Proposition 3.



Proof of Proposition 3. From Lemma4, we know that
{(u,, v,,)} is bounded in W,**(Q) x W,*(Q2). So there exists a
subsequence of {(u,,, v,,)}, still denoted {(u,,, v,,)}, such that

(uns Vn) - (u, V) weakly in WOIA (Q) % W01,4 (Q)

as n — 00,
(15)
u, — u, v, — v strongly in L* (Q)

asn— oo forany2<s<2-2".

Now we prove that (u,,,v,) — (4,v)in WOM(Q) X W01’4(Q).
In (9), choosing (¢, y) = (1, — u,,, v, — v,,), we have

0 (1) "(un UV — Vm)"
= <I;4 (un’ Vn) - I/: (le, Vm) ( Uy = Upp Vy m)>

=H J;) (|Vunlzvun - Ivumlzvum) (Vun - V”m)
+u J- (|an|2an - |va|2va) (Vv, = Vv,,)
o
+ J |un - um|2 + J |Vun - Vum|2
o )
+ J- (uiVun - u’ Vu )(Vu -Vu,) + J |V, = v’
0 o
+ J |an—va|2+J (szvn—vanvm) (Vv,~Vv,,)
o o
o A P TR
o
+ [ vl =9 ) (v
= 2 (il Pl vl ) G1,1,)
o

2B (Pl ) ().
(16)

We may estimate the terms involved as follows:

7 J;) (|Vun|2Vun - |Vum|2Vum) (Vu,, — Vu,,)

>u L Vi, — V|,

yJ <|anl2VVn - |va|2va) (Vv, = Vv,,)
Q

>u L Vv, = Vvl
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J (ufqun - uanum) (Vu, — Vu,,)
Q

zj u§|Vun—Vum|2+J (u2-12,) Vu, (Vu,~Vu,,)
Q Q

2 =ty = vyl Cleal + [ea] ) fet] (sl + )

— 0 asm,n— 00,
J (vflen - V,Zﬂva) (Vv, = Vv,,)
Q

ZJ vf,]an—va|2+J. (vfl—vfn)va (Vv,=Vv,,)
Q Q

2 =V = Vialy ([l + ) [Vl vl + [v2all)

— 0 asm,n— 00,

|| GV =, 1920, ) (1, =0,

2 2
< (otalllaall” + Tttt ) 18, = 140

— 0 asm,n — 00,

|| Calowal? =98 ) (= )|

< (|Vn|4||vn“2 + |Vm|4||vm"2) lvn - Vm|4

— 0 asm,n — 00,

20 ) B a2 B
o+ ﬁ JQ <|un| |V”| U, — Iuml | | Uy, m)|
20 _ _
e N (i 1|vm|ﬁ) T

200
s (x+ﬁ <| |a+,8|v |a+[3+|u |oc+ﬁ|v |a+,8) |un_um|a+ﬁ

— 0 asm,n — 00,

Zﬁ o B2 o B2 _ l
a+ﬁ JQ <|u”| |V”| Vi |Mml |Vm| 1/m)(v‘n vm)

2[; a p-1 o B-1
< 255 [ (sl ool =

2B
S 04+ﬁ <| |a+ﬁ|v la+ﬁ+|um|a+ﬁ|v |a+ﬁ)| Va Vm|a+[3

— 0 asm,n — oo.
(17)

Returning to (16), we have
U J (|Vu,, - Vum|4 + |an - va|4)
! (18)
<o (1) ||(u, = thyp> vy = V)| + 0 (1),
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which implies that [(u, — u,,,v, — v,,)I — 0, that is,
(U, u,,) — (u,v)in WOIA(Q) X Wol’4(Q). This completes the
proof of Proposition 3. O

4. Some Asymptotic Behavior

Proposition 3 enables us to apply minimax argument to the
functional I #(”’ v). In this section, we also study the behavior

of sequence {(u,,, v,,)} € WOIA(Q) X WOM(Q) and {yu,} c (0,1]
satisfying

W) 6

."ln_>0’

' !
U,

The following proposition is the key of this section.

1, (v
(19)

*—>0.

n'n

Proposition 5. Assume sequence {(u,,v,)} < W, (Q) x
WOIA(Q) and {p,} € (0,1] satisfy (19). Then after extracting
a sequence, still denoted by n, one has

(455 7,,)
(w,Vu,,v,Vv,) —

(1, (x),v, (x)) —

asn — OoQ.

— (w,v) in Wy (Q) x WP (Q),

WVu,vWy) in L* (Q) x L* (Q), (20)

(u(x),v(x))

ae. x € Q)

Proof. Similar to the proof of Lemma 4, by (19), we have

L1 (1) (10 7,))

CZIMn(“n’Vn)_(X_,_ﬁ

- (4_11 - aiﬁ)”ﬂ ,[Q (lV”n|4 + |an|4)
' <§ - oc41—/3> jQ(IVun|2+ Vv.[*) (2D
u SR INCIREY
" (% o« i /3> J-Q (”ilvunlz + vfl|Vv,,|2)

4 4 2 2
po | (vl 19+ [ (vl + (9, P)
b [ (o nl)+ | @il +v2jonf) <c
Q Q

(22)

for some C independent of . Then, up to a subsequence, we
have

(U v,) = (W) in W2 (Q) x W) (Q),

(u,Vu,, v,Vv,) — @Vu, vwWv) in L* (Q) x L* (Q), (23)

(u, (x),v, (X)) — (u(x),v(x))

asn — 00. This completes the proof of Proposition 5. [

ae. x €Q)

5. Proof of Main Results

In this section, we give the proof of our main results. Firstly,
we prove Theorem 1.

Proof of Theorem 1. Note that (u,,v,) satisfies the following
equation:

Uy, J |Vun|2VunV(p + U, J |an|2anV1//
Q Q
+ J ((1 + ui) Vu, Ve + (1 + |Vun|2) un<p)
Q

o N (CRR RR (R A D R R

2« _
- a+ ﬁ JQ Iunla zlvnlﬁun(p

28 a B2
wr g |l vy =0

for all (¢, v) € Wy *(Q) x W *(Q). Since

(N-2)/N
<J‘ |Mn|4N/(N_2)> < CJ‘ uiqunlz < C,
Q Q

(25)
(| ) c| vwfsc
Q Q
By Moser’s iteration, we have
[0 < C, [V,| 0 < C. (26)
Hence,
Ul <G, Vo <C (27)

for some C independent of #n. To show that (u, v) is a critical
point of I, we use some arguments in [28, 29] (see more
references therein). In (24) we choose ¢ = Eexp(-u,),y =
nexp(-v,), where & € C;°(Q), & > 0,7 € C;°(Q), n > 0.
Substituting (¢, y) into (24), we have

0= Hn JQ lvun|2vun (VE €xp (_un) - gvun exp (_un))
+ Uy J-Q |anlzvvn (VW €xp (_Vn) - ’7V"n €xp (_Vn))
+ J;; 1 +u Vu (VEexp (-u,) — EVu, exp (—u,))

1+V Vv, (Vnexp (-v,) —nVv, exp (-v,))

+
D

+J 1+|Vu| u,& exp (-u,,)
o



+ JQ (1 + |an|2) vnexp (-v,)

B 2«
a+f3

2
_oc+/3

[ bl exp (-u,)
Q

J;lunrqvnf_zvnﬂeXp(—vn)

SWLWM%%WanQ
+mkWM%mWﬂMWJ
+L(1+u )Vu VEexp (-u,)

+ J (1 + vﬁ) Vv, Vnexp (-v,)
Q

|
)
—~
—
+
=
|
N
S
~
<
<
2
S
o
[}
=)
0
s
S
SN—

2«

_oc+/3

28
_oc+[3

[, bl 1o exp ()

JQ |un|alvn|‘872vnn exp (_Vn) .
(28)

Note that 1 +22—u, > 0,1+v>—v, > 0. By Fatow’s Lemma, the
weak convergence of {(u,,, v,,)} and the fact that y,, fQ(IVun I*+
IVV,,I4) is bounded, we have

0< Jﬂ(l+u2) VuVEexp(—u)+JQ(1+1/2)VVV11exp(—v)
+L u exp (- u)+J v exp (-v)
J 1+u -u |Vu|fexp( u)
Q

J 1+v -y |Vv| nexp (-v)
Q

- ai"‘ﬁ jﬂ 1l 2|v]PuE exp (—u)
28

o P esp ()
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= J (1 +u )VuV (Eexp (—u))
2« .
[, g exp (-u

_oc+,8 Q

Zﬁ ay -2
0c+,3L) [ul”[v|]" vy exp (-v).

1+v VvV(nexp( v))

1+|Vu| uf exp (—u)+JQ (1+|Vv|2) v exp (-v)

(29)

Let (x,w) > (0,0), (x,w) € C°(Q) x C°(Q). We may
choose a sequence of nonnegative functions {(§,,1,)} C
Cy (Q) x C°(Q) such that (§,,n,) — (xexpu,wexpv) in
W2 (Q) x WHAQ), (E,,1,) — (yexpu,wexpv)ae. x € Q
and {(§,,,17,,)} is uniformly bounded in L™ (Q) x L*(Q). Then
by approximations in (29) we may obtain

2 2 2
Jﬂ(l+u )VuVX+JQ(1+v )Vva+L(l+|Vu| )“X

2u _
+ 1+ Vv vw——J ul* 2 vPu
J, (L 19vP) o= 22 | P

+p
2 _
_ 2 J [l 2vw > 0
oc+ﬁ Q

(30)

for all (y, w) > (0,0), (x, w) € C;°(Q) x C°(Q).
Similarly, we may obtain an opposite inequality. Thus we
have

JQ (1 +u2) VuVy + J-

2 2
Q(1+v )Vva+J.Q(1+|Vu| )ux

2x _
+ 1+ |V vw——J ul* 2 vPu
J, (1+19ep) e MLt

2ﬁ ay 12 _
_“+ﬁJQ|u| [v|" “vw =0 »
31

for all (x,w) € C;°(Q) x C;°(€2). That is, (u,v) is a critical
point of I, and a solution for the system (1). By doing
approximations again, we have (u, v) in the place of (y, w) of

31)
[ (e2)war e)+ | ((1+27) 908 +?)

—zj|mﬂwﬁza
Q

(32)
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Setting (@, v) = (u,,,v,,) in (24), we have

Uy, J (|Vun|4 + |an|4) + J ((1 + Zui) |V1,¢n|2 + ufl)
Q Q
2 2 2\ _ o B _
+ JQ (1+202) |Vw,| +v;) -2 JQ |w,|*|va|” = 0.

Using _[Q lu, |, [P — JQ [ul*Iv|P asn — o0, (32), (33), and
lower semicontinuity, we obtain

(33)

J Vu,|” — J IVul?, J |Vv,|* — J Vv,
Q o Q Q
J ui|Vun|2 —>J u*Vul?, J 1/,21|an|2 —>J VIV
Q Q Q Q
(34)
asn — 0o.
In particular, we have
u, — u, v, — v in WOI’Z(Q),
u,Vu, — uVu, v,Vv, — vVv in L’ (Q),
4 4 (35)
Uy, J-Q (|Vun| + |an| ) — 0,
I;;n (un’ Vn) - I(; (u,v)
asn — 00. This completes the proof of Theorem 1. O

Next, we apply the mountain pass theorem to obtain
existence of critical points of 1. Set

ZP:{(u, Y)W Q)XW Q) | L (142 IVl +%)

+ J;) ((1 + v2) [Vv|* + v2) < pz}

(36)
for p > 0.
Let us consider the functional
+ 4 4
L (w,v) = u L(qul +[vvl*)
1 +u? |Vu| +u )
(37)

1+v |Vv| +v)

31,
31,

S IRCRAGOE

Here and in the following we denote u* = max{u, 0}. The
functional I, satisfies (PS). condition. Similarly, we may
verify that I; satisfies (PS), condition. By e-Young inequality,
for any & > 0, there exists C, > 0 such that

W) () < ()™ + C, (v (38)

7
Since
(at+p)/4
J |u|“+ﬁsc(J u2|Vu|2> ,
Q Q
(a+p)/4 (39)
o+
J |v|“+‘8§C<J v2|Vv|2) .
Q Q
Then
_ 2 N
e MCRRCY
2 atp 2 J' atp
> — - C
a+ﬁgjg(u) a+f ¢ Q(u)
2 (a+p)/4
> — ¢ SJ (J uZIVu|2>
06+ﬁ o \Ja
(a+p)/4 (40)
2 o+
— Ce <J V2|VV|2>
(X+ﬁ Q
o 2C  wpr_ 2Ce @pr
T oa+p oc+[3
oc+[3p
for &, p small. Thus we have
+
IM (u, v)
1 2 2, 2
>3 [ (o) wur +)
1 J 2 2 2 J’ 1, B
+ = 1+v7) VW +v) - —— u) (v
2 Jo (L)W + ) = 22 | @)
Sl 1 z_(l_ 1 > 2
T2 oc+ﬁp \2 a+p P
(41)

for (u,v) € 0%, and for p > 0 small enough. Choose
(@, y) = (0,0), (x,w) € C;°(Q) x C;°(©2) and T' > 0. Define
a path (g,h): [0,1] — WOM(Q) X W()1’4(Q) by (g(t), h(t)) =
(tTe,tTy). When T is large enough, we have

I (9(1).h(1) <0,

(1+ g M) [vg + 4> D)
Q

(42)
+ J (1+H @) IVROP + K (1)) > o,
Q
sup I (gt),h (@) <m
te[Ol]
for some m independent of ¢ € (0, 1].
Define
¢, = inf sup I (gt),h(@), (43)

(@MeTreo] ¥



where

T ={(g,h) € C([0, 1], W,* (@) x Wy * () | (9 (0),h(0))

=(0,0),(g(1),h (D) = (Tp, Ty) }.
(44)

From the mountain pass theorem we obtain that

- < 1 1 ) 2
c > =—
E7\2 a+p P
is a critical value of I;.

Let (u,,v,) be a critical point corresponding to c,. We
have (uﬂ, v”) > (0,0). Thus (u#, vy) is a positive critical point

of I, by the strong maximum principle. In summary, we have
the following.

(45)

Proposition 6. There exist positive constants p and m inde-
pendent of y such that 1, has a positive critical point (u,,v,)

satisfying

1 1
<5—m> zslﬂ(uﬂ,vﬂ)gm. (46)

Finally, we give the proof of Theorem 2.

Proof of Theorem 2. For a positive solution of the system
(1), the proof follows from Proposition 6 and Theorem 1. A
similar argument gives a negative solution of the system (1).
This completes the proof of Theorem 2. O
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