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An exact analysis of heat and mass transfer past an oscillating vertical plate with Newtonian heating is presented. Equations
are modelled and solved for velocity, temperature, and concentration using Laplace transforms. The obtained solutions satisfy
governing equations and conditions. Expressions of skin friction, Nusselt number, and Sherwood number are obtained and
presented in tabular forms. The results show that increasing the Newtonian heating parameter leads to increase velocity and
temperature distributions whereas skin friction decreases and rate of heat transfer increases.

1. Introduction

Generally, the problems of free convection flows are usually
modeled under the assumptions of constant surface tem-
perature, ramped wall temperature, or constant surface heat
flux [1–7]. However, in many practical situations where the
heat transfer from the surface is taken to be proportional
to the local surface temperature, the above assumptions
fail to work. Such types of flows are termed as conjugate
convective flows, and the proportionally condition of the
heat transfer to the local surface temperature is termed as
Newtonian heating. This work was pioneered by Merkin
[8] for the free convection boundary layer flow over a
vertical flat plate immersed in a viscous fluid. However,
due to numerous practical applications in many important
engineering devices, several other researchers are getting
interested to consider the Newtonian heating condition in
their problems. Few of these applications are found in heat
exchanger, heat management in electrical appliances (such
as computer power supplies or substation transformer), and
engine cooling (such as thin fins in car radiator). Moreover,
the flow over an oscillating plate with Newtonian heating also
occurs in the conjugate heat transfer around fins where the
conduction within the fin and the convection in the fluid
surrounding it must be simultaneously analyzed in order to
obtain the vital design information and in also convection

flows set up when the bounding surface absorb heat by solar
radiation. The literature survey shows that much attention
to the problems of free convection flow with Newtonian
heating is given by numerical solvers, as we can see [9–16] and
the references therein. However, the exact solutions of these
problems are very few [17–21]. Exact solutions on the other
hand can provide an important check for numerical methods
that are used to study such flows in more complex domains.

Furthermore, the free convection flows together with heat
and mass transfer are of great importance in geophysics,
aeronautics, and engineering. In several process such as
drying, evaporation of water at body surface, energy transfer
in a wet cooling tower, and flow in a desert cooler, heat
and mass transfer occurs simultaneously. In view of such
applications, several authors investigated free convection
flows with simultaneous heat andmass transfer phenomenon
[22–25].

To the best of authors’ knowledge, so far, no study
has been reported in the literature which investigates the
unsteady free convection flow of an incompressible viscous
fluid past an oscillating vertical plate with Newtonian heating
and constant mass diffusion. The present study is an attempt
in this direction to fill this space. In this study, the equations
of the problem are first formulated and transformed into their
dimensionless forms where the Laplace transform method is
applied to find the exact solutions for velocity, temperature
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Figure 1: Physical model and coordinate system.

and concentration. Moreover, expressions for skin friction,
Nusselt number, and Sherwood number are obtained and
presented in tabular forms. Finally, the obtained results are
plotted graphically and discussed for the pertinent flow
parameters.

2. Mathematical Formulation

Consider the unsteady free convection flow of a viscous
incompressible fluid past a vertical plate. The 𝑥󸀠-axis is taken
along the vertical plate and the 𝑦󸀠-axis is taken normal to
the plate. Initially, for time 𝑡󸀠 ≤ 0, both the plate and fluid
are at stationary condition with the constant temperature 𝑇

∞

and concentration 𝐶
∞
. At time 𝑡󸀠 = 0

+, the plate started an
oscillatory motion in its plane with the velocity 𝑈

0
cos (𝜔󸀠𝑡󸀠)

against the gravitational field, where𝑈
0
is the amplitude of the

plate oscillations. At the same time, the heat transfer from the
plate to the fluid is directly proportional to the local surface
temperature 𝑇󸀠 and the concentration level near the plate is
raised from 𝐶

∞
to 𝐶
𝑤
. As the plate is considered infinite in

the 𝑥󸀠-axis, therefore all physical variables are independent of
𝑥
󸀠 and are functions of 𝑦󸀠 and 𝑡󸀠 only.The physical model and

coordinate system are presented in Figure 1.
Under the above assumptions, the governing equations of

the free convective flow with Boussinesq’s approximation are
as follows:
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The radiation heat flux under Rosseland approximation
[26] is expressed by
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It should be noted that by using the Rosseland approx-
imation, we limit our analysis to optically thick fluids. It is
assumed that the temperature difference within the flow are
sufficiently small, and then (5) can be linearized by expanding
𝑇
󸀠4 into the Taylor series about 𝑇

∞
, which after neglecting

higher order terms takes the form
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In view of (5) and (6), (2) reduces to
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To reduce the above equations into their nondimensional
forms, we introduce the following nondimensional quanti-
ties:
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Substituting (8) into (1), (7), and (3), we obtain the
following nondimensional Partial Differential Equations:
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(10)

are the Grashof number, modified Grashof number, Prandtl
number, radiation parameter, and Schmidt number, respec-
tively. The corresponding initial and boundary conditions in
nondimensional form are

𝑡 ≤ 0 : 𝑢 = 0, 𝜃 = 0, 𝐶 = 0 ∀𝑦 ≥ 0, (11)

𝑡 > 0 : 𝑢 = cos (𝜔𝑡) , 𝜕𝜃
𝜕𝑦

= −𝛾 (1 + 𝜃) , 𝐶 = 1 at 𝑦 = 0,

(12)

𝑢 󳨀→ 0, 𝜃 󳨀→ 0, 𝐶 󳨀→ 0 as 𝑦 󳨀→ ∞. (13)
Here, 𝛾 = ℎ

𝑠
]/𝑈
0
is theNewtonian heating parameter.We

note that (12) gives 𝜃 = 0when 𝛾 = 0, which physically means
that no heating from the plate exists [12, 16].
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3. Method of Solution

The Laplace transform method solves differential equations
and corresponding initial and boundary value problems.The
Laplace transform has the advantage that it solves problems
directly, initial value problems without determining first a
general solution and nonhomogeneous differential equations
without solving first the corresponding homogeneous equa-
tions. In order to obtain the exact solution of the present
problem, wewill use the Laplace transform technique. Apply-
ing the Laplace transformwith respect to time 𝑡 to the system
of (9), we get
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where 𝑎 = Gr/(Preff − 1), 𝑏 = Gm/(Sc − 1), 𝑐 = 𝛾/√Preff,
and Preff = Pr/(1+𝑅) is the effective Prandtl number defined
by Magyari and Pantokratoras [27]. By taking the inverse
Laplace transform of (17) and use formulae from Appendix,
we obtain
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Note that the above solution is valid only for Preff ̸= 1 and
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Case 2. When Sc ̸= 1 and Preff = 1,
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The dimensionless expression for skin friction evaluated

from (20) is given by
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Figure 2: Velocity profiles for different values of 𝑡 when 𝑅 = 2,Pr =
0.71,Gr = 5,Gm = 1, Sc = 0.78, 𝛾 = 1, and 𝜔 = 𝜋/6.
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0.2,Pr = 0.71,Gr = 2,Gm = 3, Sc = 0.94, 𝛾 = 1, and 𝜔 = 𝜋/4.

The dimensionless expression of Nusselt number is given
by
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The dimensionless expression of Sherwood number is
given by
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4. Graphical Results and Discussion

In order to reveal some relevant physical aspects of the
obtained solutions, the numerical results for velocity, tem-
perature, and concentration are computed and shown graph-
ically in Figures 2–16, to illustrate the influence of embedded
flow parameters such as time 𝑡, radiation parameter 𝑅,
Prandtl number Pr, Grashof number Gr, modified Grashof
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Table 1: Skin friction variation.

𝑡 𝑅 Pr Gr Gm Sc 𝛾 𝜔 𝜏

0.01 1 0.71 5 2 0.22 1 𝜋/2 5.4263
0.02 1 0.71 5 2 0.22 1 𝜋/2 3.6395
0.01 2 0.71 5 2 0.22 1 𝜋/2 5.4049
0.01 1 1.0 5 2 0.22 1 𝜋/2 5.4401
0.01 1 0.71 10 2 0.22 1 𝜋/2 5.3663
0.01 1 0.71 5 4 0.22 1 𝜋/2 5.2727
0.01 1 0.71 5 2 0.62 1 𝜋/2 5.4537
0.01 1 0.71 5 2 0.22 2 𝜋/2 5.3473
0.01 1 0.71 5 2 0.22 1 𝜋 5.4208

Table 2: Nusselt number variation.

𝑡 𝑅 Pr 𝛾 Nu
0.2 2 0.71 1 1.3119
0.4 2 0.71 1 1.1054
0.2 4 0.71 1 1.1471
0.2 2 1.0 1 1.4659
0.2 2 0.71 2 2.0347

Table 3: Sherwood number variation.

𝑡 Sc Sh
0.2 0.22 0.5917
0.4 0.22 0.4184
0.2 0.62 0.9938

numberGm, Schmidt number Sc, Newtonian heating param-
eter 𝛾, and phase angle 𝜔𝑡. The numerical values for skin
friction, Nusselt number, and Sherwood number for these
parameters are also presented in Tables 1–3.

The velocity profiles for different values of time 𝑡 are
shown in Figure 2. It is observed that the velocity increases
with increasing values of time 𝑡. The velocity profiles in case
of radiation and pure convection are shown in Figure 3. It
is found from this figure that the radiation parameter 𝑅 has
an accelerating effect on velocity. Physically, it is due to the
fact that an increase in the radiation parameter 𝑅 for fixed
values of other parameters decreases the rate of radiative
heat transfer to the fluid, and consequently, the fluid velocity
increases.This behavior of𝑅 is quite identical with that found
in Figure 6 of Mohamed et al. [28].

The effects of Prandtl number Pr on the velocity profiles
are shown in Figure 4 for Pr = 0.71 (air), Pr = 1.0 (electrolytic
solution), Pr = 7.0 (water), and Pr = 100 (engine oil).
It is seen from this figure that an increase in the values of
Prandtl number Pr results in the decrease of velocity. In
heat transfer analysis, the role of Prandtl number Pr is to
control the relative thickness of the momentum and thermal
boundary layers. For small value of Pr the heat diffuses very
quickly compared to the velocity. This means that for liquid
metals, the thickness of the thermal boundary layer is much
bigger than the velocity boundary layer.The effects ofGrashof
numberGr andmodifiedGrashof numberGmon velocity are
shown in Figures 5 and 6. It is found that the effects ofGrashof
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Figure 4: Velocity profiles for different values of Pr when 𝑡 =

0.5, 𝑅 = 2,Gr = 2,Gm = 1, Sc = 0.78, 𝛾 = 1, and 𝜔 = 𝜋/6.
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Figure 5: Velocity profiles for different values of Gr when 𝑡 =

0.2, 𝑅 = 3,Pr = 0.71,Gm = 2, Sc = 0.78, 𝛾 = 1, and 𝜔 = 𝜋/3.

numberGr andmodifiedGrashof numberGmon velocity are
similar. Velocity increases with increasing values of Gr and
Gm. Physically, it is possible because an increase in the values
of Grashof number Gr and modified Grashof number Gm
has the tendency to increase the thermal and mass buoyancy
effects. This gives rise to an increase in the induced flow.
Further, from these figures, it is noticed that Grashof number
and modified Grashof number do not have any influence as
the fluid move away from the bounding surface.

The effects of Sc on the velocity profiles are shown in
Figure 7. Four different values of Schmidt number Sc =

0.22, 0.62, 0.78, and 0.94 are chosen. They physically corre-
spond to hydrogen, water vapour, ammonia, and carbon
dioxide, respectively. It is clear that the velocity decreases as
the Schmidt number Sc increases. Further, it is clear from this
figure that the velocity for hydrogen is themaximum and car-
bon dioxide carries the minimum velocity. Figure 8 displays
the effect of Newtonian heating parameter 𝛾 on the dimen-
sionless velocity. It is found that as the Newtonian heating
parameter increases, the density of the fluid decreases, and
the momentum boundary layer thickness increases and as a
result, and the velocity increases within the boundary layer.

The graphical results for the phase angle 𝜔𝑡 are shown
in Figure 9. It is interesting to note that when the phase
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Figure 6: Velocity profiles for different values of Gm when 𝑡 =

0.2, 𝑅 = 1,Pr = 0.71,Gr = 5, Sc = 0.78, 𝛾 = 1, and 𝜔 = 𝜋/3.
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Figure 7: Velocity profiles for different values of Sc when 𝑡 =

0.4, 𝑅 = 2,Pr = 0.71,Gr = 5,Gm = 2, 𝛾 = 0.1, and 𝜔 = 𝜋/3.

angle 𝜔𝑡 is zero which physically corresponds to no oscilla-
tion, then the fluid approaches to its maximum velocity of
magnitude 1 meter per second, whereas for the phase angle
𝜔𝑡 = 𝜋/2, the velocity gains its minimum value of magnitude
0 meter per second. The oscillations near the plate are of
great significance; however, these oscillations reduce for large
values of the independent variable 𝑦 and approach to zero
as 𝑦 tends to infinity. The velocity profiles are plotted in
Figure 10 for different values of Sc when 𝜔 = 0 (impulsive
motion of the plate). It is found from this figure that the
behavior of Sc on the velocity profiles quite identical with that
found in Figure 6 of Narahari and Nayan [20]. Further, all
these graphical results discussed above are in good agreement
with the imposed boundary conditions given by (12) and (13).
Hence, this ensures the accuracy of our results.

The effects of various parameters on the temperature
and concentration profiles are shown in Figures 11–16. In
these figures, Figure 11 exhibits the influence of dimensionless
time 𝑡 on the temperature. It is found that the temperature
profiles increase with increasing time. From Figure 12, it is
noted that an increase in the radiation parameter 𝑅 leads to
an increase in the temperature due to the fact that thermal
boundary layer thickness of fluid increases. The influence
of Prandtl number Pr on temperature profiles is shown in
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Figure 8: Velocity profiles for different values of 𝛾 when 𝑡 =

0.4, 𝑅 = 3,Pr = 0.71,Gr = 5,Gm = 2, Sc = 0.78, and 𝜔 = 𝜋/3.
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Figure 9: Velocity profiles for different values of 𝜔𝑡when 𝑡 = 1, 𝑅 =
0.5,Pr = 100,Gr = 2,Gm = 0.2, Sc = 0.94, and 𝛾 = 0.01.

Figure 13. It is found that the temperature decreases as the
Prandtl number Pr increases. Physically, the increase of Pr
means the decrease of thermal conductivity of fluid. From
Figure 14, it is observed that an increase in the Newtonian
heating parameter increases the thermal boundary layer
thickness and as a result the surface temperature of the plate
increases. On the other hand, it is found from Figure 15
that the influence of time 𝑡 on concentration profiles is
similar to the velocity and temperature profiles given in
Figures 2 and 11. The effects of Schmidt number Sc on the
concentration profiles are shown in Figure 16. It is seen from
this figure that an increase in the value of Schmidt number
makes the concentration boundary layer thin, and hence, the
concentration profiles decrease.

The numerical results for skin friction, Nusselt number,
and Sherwood number are shown in Tables 1, 2, and 3 for
various parameters of interest. It is depicted from Table 1
that skin friction decreases with, increasing 𝑡, 𝑅,Gr,Gm, 𝛾
and 𝜔𝑡, while it increases as Pr and Sc are increased. Table 2
reveals that the Nusselt number increases as Pr and 𝛾 are
increased and decreases when 𝑡 and 𝑅 are increased. From
Table 3, it is observed that the Sherwood number increases
with increasing Sc, while reverse effect is observed for 𝑡.
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Table 4: Inverse Laplace transform formulae.
𝐹(𝑞) = 𝐿{𝑓(𝑡)} 𝑓(𝑡)

1 1

𝑞

𝑒
−𝑦√𝑞 erf 𝑐 (

𝑦

2√𝑡

)

2 1

𝑞
2
𝑒
−𝑦√𝑞

(

𝑦
2

2

+ 𝑡) erf c(
𝑦

2√𝑡

) − 𝑦√

𝑡

𝜋

𝑒
−𝑦
2
/4𝑡

3 1

𝑞√𝑞 − 𝑎

𝑒
−𝑦√𝑞

𝑒
(𝑎
2
𝑡−𝑎𝑦) erf c(

𝑦

2√𝑡

− 𝑎√𝑡)− erf c(
𝑦

2√𝑡

)

4 1

𝑞
2
√𝑞 − 𝑎

𝑒
−𝑦√𝑞

1

4√𝜋𝑡

𝑒
−𝑦
2
/4𝑡
+ 𝑎𝑒
(𝑎
2
𝑡−𝑎𝑦) erf c(

𝑦

2√𝑡

− 𝑎√𝑡)

5 1

𝑞 + 𝑎

𝑒
−𝑦√𝑞

𝑒
𝑎𝑡

2

𝑒
𝑦√𝑎 erf c(

𝑦

2√𝑡

+ √𝑎𝑡) + 𝑒
−𝑦√𝑎 erf c(

𝑦

2√𝑡

− √𝑎𝑡)
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Figure 10: Velocity profiles for different values of Sc when 𝑡 =

0.3, 𝑅 = 0.5,Pr = 0.71,Gr = 3,Gm = 2, 𝛾 = 1, and 𝜔 = 0.
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Figure 11: Temperature profiles for different values of 𝑡 when 𝑅 =

1,Pr = 0.71, and 𝛾 = 1.

5. Conclusions

In this paper, exact solutions of unsteady free convection
flow of an incompressible viscous fluid past an oscillating
vertical plate with Newtonian heating and constant mass
diffusion are obtained using Laplace transform technique.
The results obtained show that the velocity and temperature
are increased with increasing Newtonian heating parameter.
Further, the effect of Newtonian heating parameter increases
the Nusselt number but reduces the skin friction. However,
the Nusselt number is decreased when the radiation param-
eter is increased. Also, the skin friction is decreased when
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Figure 12: Temperature profiles for different values of 𝑅 when 𝑡 =
0.2,Pr = 0.71, and 𝛾 = 1.
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Figure 13: Temperature profiles for different values of Pr when 𝑡 =
0.2, 𝑅 = 5, and 𝛾 = 0.01.

the radiation parameter, phase angle and Grashof number
are increased. The exact solutions obtained in this study
are significant not only because they are solutions of some
fundamental flows, but also they serve as accuracy standards
for approximate methods, whether numerical, asymptotic, or
experimental.

Appendix

See Table 4.
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Figure 14: Temperature profiles for different values of 𝛾 when 𝑡 =
0.2, 𝑅 = 1, and Pr = 0.71.
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Figure 15: Concentration profiles for different values of 𝑡when Sc =
0.22.

Nomenclature

𝐶
󸀠: Species concentration in the fluid

𝐶
𝑤
: Species concentration near the plate

𝐶
∞
: Species concentration in the fluid far away
from the plate

𝐶: Dimensionless concentration
𝑐
𝑝
: Heat capacity at a constant pressure

𝐷: Mass diffusivity
𝑔: Acceleration due to gravity
ℎ
𝑠
: Heat transfer parameter for Newtonian

heating
Gr: Thermal Grashof number
Gm: Modified Grashof number
𝑘: Thermal conductivity of the fluid
Pr: Prandtl number
𝑞
𝑟
: Radiative heat flux in the 𝑦󸀠-direction

𝑅: Radiation parameter
Sc: Schmidt number
𝑇
󸀠: Temperature of the fluid

𝑇
∞
: Ambient temperature

𝑡
󸀠: Time
𝑡: Dimensionless time
𝑢
󸀠: Velocity of the fluid in the 𝑥󸀠-direction
𝑢: Dimensionless velocity
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Figure 16: Concentration profiles for different values of Sc when
𝑡 = 0.2.

𝑦
󸀠: Coordinate axis normal to the plate
𝑦: Dimensionless coordinate axis normal

to the plate
𝑘: Thermal conductivity
𝑘
∗: Mean absorption coefficient
𝛽: Volumetric coefficient of thermal

expansion
𝛽
∗: Volumetric coefficient of mass

expansion
𝜇: Coefficient of viscosity
]: Kinematic viscosity
𝜌: Fluid density
𝜎: Stefan-Boltzmann constant
𝜏: Skin friction
𝜏
󸀠: Dimensionless skin friction
𝜃: Dimensionless temperature
𝜔
󸀠: Frequency of oscillation

𝜔𝑡: Phase angle
erf 𝑐: Complementary error function.
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