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By using Sherman-Morrison-Woodbury formula, we introduce a preconditioner based on parameterized splitting idea for
generalized saddle point problems which may be singular and nonsymmetric. By analyzing the eigenvalues of the preconditioned
matrix, we find that when 𝛼 is big enough, it has an eigenvalue at 1 with multiplicity at least n, and the remaining eigenvalues are all
located in a unit circle centered at 1. Particularly, when the preconditioner is used in general saddle point problems, it guarantees
eigenvalue at 1 with the same multiplicity, and the remaining eigenvalues will tend to 1 as the parameter 𝛼 → 0. Consequently, this
can lead to a good convergence when some GMRES iterative methods are used in Krylov subspace. Numerical results of Stokes
problems and Oseen problems are presented to illustrate the behavior of the preconditioner.

1. Introduction

In some scientific and engineering applications, such as finite
element methods for solving partial differential equations [1,
2], and computational fluid dynamics [3, 4], we often consider
solutions of the generalized saddle point problems of the form

(
𝐴 𝐵
𝑇

−𝐵 𝐶

)(

𝑥

𝑦
) = (

𝑓

𝑔
) , (1)

where 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑚×𝑛 (𝑚 ≤ 𝑛), and 𝐶 ∈ R𝑚×𝑚

are positive semidefinite, 𝑥, 𝑓 ∈ R𝑛, and 𝑦, 𝑔 ∈ R𝑚. When
𝐶 = 0, (1) is a general saddle point problem which is also a
researching object for many authors.

It is well known that when the matrices 𝐴, 𝐵, and 𝐶

are large and sparse, the iterative methods are more efficient
and attractive than direct methods assuming that (1) has a
good preconditioner. In recent years, a lot of preconditioning
techniques have arisen for solving linear system; for example,
Saad [5] and Chen [6] have comprehensively surveyed some
classical preconditioning techniques, including ILU pre-
conditioner, triangular preconditioner, SPAI preconditioner,
multilevel recursive Schur complements preconditioner, and

sparse wavelet preconditioner. Particularly, many precondi-
tioning methods for saddle problems have been presented
recently, such as dimensional splitting (DS) [7], relaxed
dimensional factorization (RDF) [8], splitting preconditioner
[9], and Hermitian and skew-Hermitian splitting precondi-
tioner [10].

Among these results, Cao et al. [9] have used splitting idea
to give a preconditioner for saddle point problems where the
matrix 𝐴 is symmetric and positive definite and 𝐵 is of full
row rank. According to his preconditioner, the eigenvalues
of the preconditioned matrix would tend to 1 when the
parameter 𝑡 → ∞. Consequently, just as we have seen from
those examples of [9], preconditioner has guaranteed a good
convergence when some iterative methods were used.

In this paper, being motivated by [9], we use the splitting
idea to present a preconditioner for the system (1), where 𝐴
may be nonsymmetric and singular (when rank(𝐵) < 𝑚). We
find that, when the parameter is big enough, the precondi-
tioned matrix has the eigenvalue at 1 with multiplicity at least
𝑛, and the remaining eigenvalues are all located in a unit circle
centered at 1. Particularly, when the precondidtioner is used
in some general saddle point problems (namely, 𝐶 = 0), we
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see that the multiplicity of the eigenvalue at 1 is also at least 𝑛,
but the remaining eigenvalues will tend to 1 as the parameter
𝛼 → 0.

The remainder of the paper is organized as follows.
In Section 2, we present our preconditioner based on the
splitting idea and analyze the bound of eigenvalues of the
preconditioned matrix. In Section 3, we use some numerical
examples to show the behavior of the new preconditioner.
Finally, we draw some conclusions and outline our future
work in Section 4.

2. A Parameterized Splitting Preconditioner

Now we consider using splitting idea with a variable param-
eter to present a preconditioner for the system (1).

Firstly, it is evident that when 𝛼 ̸= 0, the system (1) is
equivalent to

(

𝐴 𝐵
𝑇

−𝐵

𝛼

𝐶

𝛼

)(

𝑥

𝑦
) = (

𝑓

𝑔

𝛼

) . (2)

Let

𝑀 = (

𝐴 𝐵
𝑇

−𝐵

𝛼

𝐼

) , 𝑁 = (

0 0

0 𝐼 −

𝐶

𝛼

) ,

𝑋 = (

𝑥

𝑦
) , 𝐹 = (

𝑓

𝑔

𝛼

) .

(3)

Then the coefficient matrix of (2) can be expressed by𝑀−𝑁.
Multiplying both sides of system (2) from the left with matrix
𝑀
−1, we have

(𝐼 −𝑀
−1
𝑁)𝑋 = 𝑀

−1
𝐹. (4)

Hence, we obtain a preconditioned linear system from (1)
using the idea of splitting and the corresponding precondi-
tioner is

𝐻 = (

𝐴 𝐵
𝑇

−𝐵

𝛼

𝐼

)

−1

(

𝐼 0

0

𝐼

𝛼

) . (5)

Nowwe analyze the eigenvalues of the preconditioned system
(4).

Theorem 1. The preconditioned matrix 𝐼 − 𝑀
−1
𝑁 has an

eigenvalue at 1 with multiplicity at least 𝑛. The remaining
eigenvalues 𝜆 satisfy

𝜆 =

𝑠
1
+ 𝑠
2

𝑠
1
+ 𝛼

, (6)

where 𝑠
1
= 𝜔
𝑇
𝐵𝐴
−1
𝐵
𝑇
𝜔, 𝑠
2
= 𝜔
𝑇
𝐶𝜔, and 𝜔 ∈ C𝑚 satisfies

(

𝐵𝐴
−1
𝐵
𝑇

𝛼

+

𝐶

𝛼

)𝜔 = 𝜆(𝐼 +

𝐵𝐴
−1
𝐵
𝑇

𝛼

)𝜔, ‖𝜔‖ = 1. (7)

Proof. Because

𝑀
−1
=(

(𝐴 +

𝐵
𝑇
𝐵

𝛼

)

−1

−𝐴
−1
𝐵
𝑇
(𝐼 +

𝐵𝐴
−1
𝐵
𝑇

𝛼

)

−1

𝐵

𝛼

(𝐴 +

𝐵
𝑇
𝐵

𝛼

)

−1

(𝐼 +

𝐵𝐴
−1
𝐵
𝑇

𝛼

)

−1
),

(8)

we can easily get

𝐼 −𝑀
−1
𝑁 =(

𝐼 𝐴
−1
𝐵
𝑇
(𝐼 +

𝐵𝐴
−1
𝐵
𝑇

𝛼

)

−1

(𝐼 −

𝐶

𝛼

)

0 (𝐼 +

𝐵𝐴
−1
𝐵
𝑇

𝛼

)

−1

(

𝐵𝐴
−1
𝐵
𝑇

𝛼

+

𝐶

𝛼

)

),

(9)

which implies the preconditioned matrix 𝐼 − 𝑀−1𝑁 has an
eigenvalue at 1 with multiplicity at least 𝑛.

For the remaining eigenvalues, let

(𝐼 +

𝐵𝐴
−1
𝐵
𝑇

𝛼

)

−1

(

𝐵𝐴
−1
𝐵
𝑇

𝛼

+

𝐶

𝛼

)𝜔 = 𝜆𝜔 (10)

with ‖𝜔‖ = 1; then we have

(

𝐵𝐴
−1
𝐵
𝑇

𝛼

+

𝐶

𝛼

)𝜔 = 𝜆(𝐼 +

𝐵𝐴
−1
𝐵
𝑇

𝛼

)𝜔. (11)

By multiplying both sides of this equality from the left with
𝜔
𝑇, we can get

𝜆 =

𝑠
1
+ 𝑠
2

𝑠
1
+ 𝛼

. (12)

This completes the proof of Theorem 1.

Remark 2. FromTheorem 1, we can get that when parameter
𝛼 is big enough, the modulus of nonnil eigenvalues 𝜆 will be
located in interval (0, 1).

Remark 3. InTheorem 1, if the matrix 𝐶 = 0, then for nonnil
eigenvalues we have

lim
𝛼→0

𝜆 = 1. (13)

Figures 1, 2, and 3 are the eigenvalues plots of the pre-
conditioned matrices obtained with our preconditioner. As
we can see in the following numerical experiments, this
good phenomenon is useful for accelerating convergence of
iterative methods in Krylov subspace.

Additionally, for the purpose of practically executing our
preconditioner

𝐻 =(

(𝐴 +

𝐵
𝑇
𝐵

𝛼

)

−1

−𝐴
−1
𝐵
𝑇

𝛼
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𝐵𝐴
−1
𝐵
𝑇

𝛼

)

−1

𝐵

𝛼

(𝐴 +

𝐵
𝑇
𝐵

𝛼

)

−1

1

𝛼

(𝐼 +

𝐵𝐴
−1
𝐵
𝑇

𝛼
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−1
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(14)
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Figure 1: Spectrum of the preconditioned steady Oseen matrix with viscosity coefficient V = 0.1, 32 × 32 grid. (a) Q2-Q1 FEM, 𝐶 = 0; (b)
Q1-P0 FEM, 𝐶 ̸= 0.
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Figure 2: Spectrum of the preconditioned steady Oseen matrix with viscosity coefficient V = 0.01, 32 × 32 grid. (a) Q2-Q1 FEM, 𝐶 = 0; (b)
Q1-P0 FEM, 𝐶 ̸= 0.
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Figure 3: Spectrum of the preconditioned steady Oseen matrix with viscosity coefficient V = 0.001, 32 × 32 grid. (a) Q2-Q1 FEM, 𝐶 = 0; (b)
Q1-P0 FEM, 𝐶 ̸= 0.
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Table 1: Preconditioned GMRES(20) on Stokes problems with
different grid sizes (uniform grids).

Grid 𝛼 its LU time its time Total time
16 × 16 0.0001 4 0.0457 0.0267 0.0724
32 × 32 0.0001 6 0.3912 0.0813 0.4725
64 × 64 0.0001 9 5.4472 0.5519 5.9991
128 × 128 0.0001 14 91.4698 5.7732 97.2430

Table 2: Preconditioned GMRES(20) on steady Oseen problems
with different grid sizes (uniform grids), viscosity V = 0.1.

Grid 𝛼 its LU time its time Total time
16 × 16 0.0001 3 0.0479 0.0244 0.0723
32 × 32 0.0001 3 0.6312 0.0696 0.7009
64 × 64 0.0001 4 13.2959 0.3811 13.6770
128 × 128 0.0001 6 130.5463 3.7727 134.3190

Table 3: Preconditioned GMRES(20) on steady Oseen problems
with different grid sizes (uniform grids), viscosity V = 0.01.

Grid 𝛼 its LU time its time Total time
16 × 16 0.0001 2 0.0442 0.0236 0.0678
32 × 32 0.0001 3 0.4160 0.0557 0.4717
64 × 64 0.0001 3 7.3645 0.2623 7.6268
128 × 128 0.0001 4 169.4009 3.1709 172.5718

Table 4: Preconditioned GMRES(20) on steady Oseen problems
with different grid sizes (uniform grids), viscosity V = 0.001.

Grid 𝛼 its LU time its time Total time
16 × 16 0.0001 2 0.0481 0.0206 0.0687
32 × 32 0.0001 3 0.4661 0.0585 0.5246
64 × 64 0.0001 3 6.6240 0.2728 6.8969
128 × 128 0.0001 4 177.3130 2.9814 180.2944

Table 5: Preconditioned GMRES(20) on Stokes problems with
different grid sizes (uniform grids).

Grid 𝛼 its LU time its time Total time
16 × 16 10000 5 0.0471 0.0272 0.0743
32 × 32 10000 7 0.3914 0.0906 0.4820
64 × 64 10000 9 5.6107 0.4145 6.0252
128 × 128 10000 14 92.7154 4.8908 97.6062

Table 6: Preconditioned GMRES(20) on steady Oseen problems
with different grid sizes (uniform grids), viscosity V = 0.1.

Grid 𝛼 its LU time its time Total time
16 × 16 10000 4 0.0458 0.0223 0.0681
32 × 32 10000 4 0.5748 0.0670 0.6418
64 × 64 10000 5 12.2642 0.4179 12.6821
128 × 128 10000 7 128.2758 1.6275 129.9033

Table 7: Preconditioned GMRES(20) on steady Oseen problems
with different grid sizes (uniform grids), viscosity V = 0.01.

Grid 𝛼 its LU time its time Total time
16 × 16 10000 3 0.0458 0.0224 0.0682
32 × 32 10000 3 0.4309 0.0451 0.4760
64 × 64 10000 4 7.6537 0.1712 7.8249
128 × 128 10000 5 175.1587 3.4554 178.6141

Table 8: Preconditioned GMRES(20) on steady Oseen problems
with different grid sizes (uniform grids), viscosity V = 0.001.

Grid 𝛼 its LU time its time Total time
16 × 16 10000 3 0.0507 0.0212 0.0719
32 × 32 10000 3 0.4735 0.0449 0.5184
64 × 64 10000 4 6.6482 0.1645 6.8127
128 × 128 10000 4 172.0516 2.1216 174.1732

Table 9: Preconditioned GMRES(20) on Stokes problems with
different grid sizes (uniform grids).

Grid 𝛼 its LU time its time Total time
16 × 16 norm(𝐶, fro) 21 0.0240 0.0473 0.0713
32 × 32 norm(𝐶, fro) 20 0.0890 0.1497 0.2387
64 × 64 norm(𝐶, fro) 20 0.8387 0.6191 1.4578
128 × 128 norm(𝐶, fro) 20 6.8917 3.0866 9.9783

Table 10: Preconditioned GMRES(20) on steady Oseen problems
with different grid sizes (uniform grids), viscosity V = 0.1.

Grid 𝛼 its LU time its time Total time
16 × 16 norm(𝐶, fro)/20 10 0.0250 0.0302 0.0552
32 × 32 norm(𝐶, fro)/20 10 0.0816 0.0832 0.1648
64 × 64 norm(𝐶, fro)/20 12 0.8466 0.3648 1.2114
128 × 128 norm(𝐶, fro)/20 14 6.9019 2.0398 8.9417

Table 11: Preconditioned GMRES(20) on steady Oseen problems
with different grid sizes (uniform grids), viscosity V = 0.01.

Grid 𝛼 its LU time its time Total time
16 × 16 norm(𝐶, fro)/20 7 0.0238 0.0286 0.0524
32 × 32 norm(𝐶, fro)/20 7 0.0850 0.0552 0.1402
64 × 64 norm(𝐶, fro)/20 11 0.8400 0.3177 1.1577
128 × 128 norm(𝐶, fro)/20 16 6.9537 2.2306 9.1844

Table 12: Preconditioned GMRES(20) on steady Oseen problems
with different grid sizes (uniform grids), viscosity V = 0.001.

Grid 𝛼 its LU time its time Total time
16 × 16 norm(𝐶, fro)/20 5 0.0245 0.0250 0.0495
32 × 32 norm(𝐶, fro)/20 5 0.0905 0.0587 0.1492
64 × 64 norm(𝐶, fro)/20 8 1.2916 0.3200 1.6116
128 × 128 norm(𝐶, fro)/20 15 10.4399 2.7468 13.1867
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Table 13: Size and number of non-nil elements of the coefficient matrix generalized by using Q2-Q1 FEM in steady Stokes problems.

Grid dim(𝐴) nnz(𝐴) dim(𝐵) nnz(𝐵) nnz(𝐴 + (1/𝛼)𝐵𝑇𝐵)
16 × 16 578 × 578 6178 81 × 578 2318 36904
32 × 32 2178 × 2178 28418 289 × 2178 10460 193220
64 × 64 8450 × 8450 122206 1089 × 8450 44314 875966
128 × 128 33282 × 33282 506376 4225 × 33282 184316 3741110

we should efficiently deal with the computation of (𝐼 +
(𝐵𝐴
−1
𝐵
𝑇
/𝛼))
−1. This can been tackled by the well-known

Sherman-Morrison-Woodbury formula:

(𝐴
1
+ 𝑋
1
𝐴
2
𝑋
𝑇

2
)

−1

= 𝐴
−1

1
− 𝐴
−1

1
𝑋
1
(𝐴
−1

2
+ 𝑋
𝑇

2
𝐴
−1

1
𝑋
1
)

−1

𝑋
𝑇

2
𝐴
−1

1
,

(15)

where 𝐴
1
∈ R𝑛×𝑛, and 𝐴

2
∈ R𝑟1×𝑟1 are invertible matrices,

𝑋
1
∈ R𝑛×𝑟1 , and 𝑋

2
∈ R𝑛×𝑟1 are any matrices, and 𝑛, 𝑟

1
are

any positive integers.
From (15) we immediately get

(𝐼 +

𝐵𝐴
−1
𝐵
𝑇

𝛼

)

−1

= 𝐼 − 𝐵(𝛼𝐴 + 𝐵
𝑇
𝐵)

−1

𝐵
𝑇
. (16)

In the following numerical examples we will always use (16)
to compute (𝐼 + (𝐵𝐴−1𝐵𝑇/𝛼))−1 in (14).

3. Numerical Examples

In this section,we give numerical experiments to illustrate the
behavior of our preconditioner. The numerical experiments
are done by using MATLAB 7.1. The linear systems are
obtained by using finite element methods in the Stokes prob-
lems and steady Oseen problems, and they are respectively
the cases of

(1) 𝐶 = 0, which is caused by using Q2-Q1 FEM;
(2) 𝐶 ̸= 0, which is caused by using Q1-P0 FEM.

Furthermore, we compare our preconditionerwith that of
[9] in the case of general saddle point problems (namely, 𝐶 =
0). For the general saddle point problem, [9] has presented
the preconditioner

𝐻̂ = (

𝐴 + 𝑡𝐵
𝑇
𝐵 0

−2𝐵

𝐼

𝑡

)

−1

(17)

with 𝑡 as a parameter and has proved that when 𝐴 is
symmetric positive definite, the preconditioned matrix has
an eigenvalue 1 with multiplicity at 𝑛, and the remaining
eigenvalues satisfy

𝜆 =

𝑡𝜎
2

𝑖

1 + 𝑡𝜎
2

𝑖

, (18)

lim
𝑡→∞

𝜆 = 1, (19)

where 𝜎
𝑖
, 𝑖 = 1, 2, . . . , 𝑚, are𝑚 positive singular values of the

matrix 𝐵𝐴−1/2.
All these systems can be generalized by

using IFISS software package [11] (this is a free
package that can be downloaded from the site
http://www.maths.manchester.ac.uk/∼djs/ifiss/). We use
restarted GMRES(20) as the Krylov subspace method, and
we always take a zero initial guess. The stopping criterion is

󵄩
󵄩
󵄩
󵄩
𝑟
𝑘

󵄩
󵄩
󵄩
󵄩2

󵄩
󵄩
󵄩
󵄩
𝑟
0

󵄩
󵄩
󵄩
󵄩2

≤ 10
−6
, (20)

where 𝑟
𝑘
is the residual vector at the 𝑘th iteration.

In the whole course of computation, we always replace
(𝐼 + (𝐵𝐴

−1
𝐵
𝑇
/𝛼))

−1 in (14) with (16) and use the 𝐿𝑈 factor-
ization of 𝐴 + (𝐵

𝑇
𝐵/𝛼) to tackle (𝐴 + (𝐵

𝑇
𝐵/𝛼))

−1V, where
V is a corresponding vector in the iteration. Concretely, let
𝐴 + (𝐵

𝑇
𝐵/𝛼) = 𝐿𝑈; then we complete the matrix-vector

product (𝐴 + (𝐵
𝑇
𝐵/𝛼))

−1V by 𝑈 \ 𝐿 \ V in MATLAB term.
In the following tables, the denotation norm (𝐶, fro) means
the Frobenius form of the matrix 𝐶. The total time is the sum
of LU time and iterative time, and the LU time is the time to
compute LU factorization of 𝐴 + (𝐵𝑇𝐵/𝛼).

Case 1 (for our preconditioner). 𝐶 = 0 (using Q2-Q1 FEM in
Stokes problems and steady Oseen problems with different
viscosity coefficients. The results are in Tables 1, 2, 3, 4 ).

Case 1’ (for preconditioner of [9]). 𝐶 = 0 (using Q2-Q1 FEM
in Stokes problems and steady Oseen problems with different
viscosity coefficients The results are in Tables 5, 6, 7, 8).

Case 2. 𝐶 ̸= 0 (using Q1-P0 FEM in Stokes problems and
steady Oseen problems with different viscosity coefficients
The results are in Tables 9, 10, 11, 12).

From Tables 1, 2, 3, 4, 5, 6, 7, and 8 we can see that these
results are in agreement with the theoretical analyses (13) and
(19), respectively. Additionally, comparing with the results in
Tables 9, 10, 11, and 12, we find that, although the iterations
used in Case 1 (either for the preconditioner of [9] or our
preconditioner) are less than those in Case 2, the time spent
by Case 1 ismuchmore than that of Case 2.This is because the
density of the coefficient matrix generalized by Q2-Q1 FEM
is much larger than that generalized by Q1-P0 FEM.This can
be partly illustrated by Tables 13 and 14, and the others can be
illustrated similarly.
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Table 14: Size and number of non-nil elements of the coefficient matrix generalized by using Q1-P0 FEM in steady Stokes problems.

Grid dim(𝐴) nnz(𝐴) dim(𝐵) nnz(𝐵) nnz(𝐴 + (1/𝛼)𝐵𝑇𝐵)
16 × 16 578 × 578 3826 256 × 578 1800 7076
32 × 32 2178 × 2178 16818 1024 × 2178 7688 31874
64 × 64 8450 × 8450 70450 4096 × 8450 31752 136582
128 × 128 33282 × 33282 288306 16384 × 33282 129032 567192

4. Conclusions

In this paper, we have introduced a splitting preconditioner
for solving generalized saddle point systems. Theoretical
analysis showed the modulus of eigenvalues of the precon-
ditioned matrix would be located in interval (0, 1) when the
parameter is big enough. Particularly when the submatrix
𝐶 = 0, the eigenvalues will tend to 1 as the parameter 𝛼 → 0.
These performances are tested by some examples, and the
results are in agreement with the theoretical analysis.

There are still some future works to be done: how to prop-
erly choose a parameter 𝛼 so that the preconditioned matrix
has better properties?How to further precondition submatrix
(𝐼 + (𝐵𝐴

−1
𝐵
𝑇
/𝛼))

−1

((𝐵𝐴
−1
𝐵
𝑇
/𝛼) + (𝐶/𝛼)) to improve our

preconditioner?
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