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Considering the effects of external perturbations on the state vector and the output of the original system, this paper proposes a
new adaptive integral observer method to deal with chaos synchronization between the drive and response systems with unknown
parameters. The analysis and proof are given by means of the Lyapunov stability theorem and Barbalat lemma. This approach has
fewer constraints becausemanyparameters related to chaotic systemcan be unknown, as shown in the paper.Numerical simulations
are performed in the end and the results show that the proposed method is not only suitable to the representative chaotic systems
but also applied to some neural network chaotic systems.

1. Introduction

The introduction and successful application of master-slave
method proposed by Pecora and Carroll [1] have inspired the
people’s passion for researching chaos synchronization. Up
to now, people pay more attention to such synchronization
scheme that all states of the system are often assumed to be
totally known. Common methods are active-passive control
[2], adaptive control [3–5], impulsive control [6, 7], sliding
mode control [8–10], and so forth. In fact, only partial state
information is available inmany practical systems.Therefore,
applying the observer-based theory to chaos synchronization
is very important.

Based on the observer design technique, many observer-
based synchronization schemes [11–18] have been proposed.
References [11–13] have made chaotic system with known
parameters and without external perturbations achieve syn-
chronization based on the observer method. In practice,
exotic disturbances exist inevitably. So in [14, 15], the chaotic
systems with external perturbations have been discussed in
order to realize chaos synchronization, but all parameters
of the systems [14, 15] are supposed to be totally known.
Sometimes, the parameters of chaotic systems cannot be
known in advance. Aimed at this, References [16, 17] have

researched such dynamical systemswith unknownparameter
and external perturbations using adaptive observer, but the
papers in [16, 17] discuss the effects of external disturbances
on the state variables and do not consider the effects of
external disturbances on the outputs of the system. When
the output has disturbances, the gain matrix will enlarge the
effect of the output disturbances using traditional observer,
and then the so-called integral observer is proposed [18].
Reference [18] has implemented integral observer theory and
the nonlinear approximation ability of the orthogonal neural
networks to realize chaos synchronization, where the gain
matrix has been obtained using Linear Matrix Inequality
(LMI) technique, but the proposed method [18] needs to
know the bounds of external disturbances, and, the paper in
[18] only consider the effect of external disturbances on the
output of the system and do not discuss the effect of external
disturbances on the state vector of the system.

Based on the above-mentioned problems, we consider the
effect of external perturbations not only on the state vector
but also on the output of the original system; adaptive integral
observer controller is designed for chaos synchronization
with unknown parameters. From the discussion in Section 3,
we can see that the proposed scheme has fewer constraints,
where the bounded disturbance and other parameters related
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to chaotic system can be unknown. Finally, the Rössler
chaotic system and cellular neural network chaotic system
are illustrated to verify the effectiveness and feasibility of the
method.

The rest of this paper is structured as follows. We start
with system description in Section 2.Then, method of design
of adaptive integral observer and its proof are given in
Section 3. Numerical simulations are shown in Section 4.
And Section 5 gives some conclusions of this paper.

2. System Description

In a common secure communication system, the message is
injected onto a chaotic carrier in transmitter. To recover the
message in the receiver, synchronization of the transmitter
and the receiver systems is crucial. When the state vector
and the output are perturbed due to some reason, a class of
chaotic dynamical systems can be described in the following
equations:

𝑥̇ = 𝐴𝑥 + 𝑓 (𝑥) + 𝐵𝑔 (𝑥) 𝜃 + 𝑑 (𝑡) ,

𝑦 = 𝐶𝑥 + 𝐷

2
(𝑡) ,

(1)

where 𝑥 ∈ 𝑅𝑛 is an 𝑛-dimensional state vector of the system
(1), 𝑦 ∈ 𝑅

𝑚 is a 𝑝-dimensional output vector of the system
(1), 𝐴 ∈ 𝑅

𝑛×𝑛, 𝐵 ∈ 𝑅

𝑛×𝑝, and 𝐶 ∈ 𝑅

𝑚×𝑛 are all known
constant matrices, 𝜃 ∈ 𝑅𝑞 is unknown parameter vector of
chaotic system (1), 𝑑(𝑡) ∈ 𝑅𝑛 and 𝐷

2
(𝑡) ∈ 𝑅

𝑚 are external
perturbations of the state and the output vector, respectively,
and 𝑓 : 𝑅

𝑛
→ 𝑅

𝑛 and 𝑔 : 𝑅

𝑛
→ 𝑅

𝑝×𝑞 are nonlinear
functions of chaotic system (1).

System (1) represents a class of chaotic dynamical systems.
It includes not only the representative chaotic systems, such
as Lorenz system, Rőssler system, and Chua’s system, but also
some neural network systems, such as cellular neural network
(CNN) system and Winner-Take-All competed neural net-
work system.

It regards (1) as the drive system; the response system is

̇

𝑥̂ = 𝐴𝑥 + 𝑓 (𝑥) + 𝐵𝑔 (𝑥)

̂

𝜃 + 𝐾 (𝑦 − 𝐶𝑥) ,
(2)

where𝐾 is gain matrix.
Now the synchronization error between the drive and

response systems is defined as 𝑒 = 𝑥 − 𝑥, and then the error
system is obtained

̇𝑒 = (𝐴 − 𝐾𝐶) 𝑒 + 𝑓 (𝑥) − 𝑓 (𝑥)

+ 𝐵 (𝑔 (𝑥) 𝜃 − 𝑔 (𝑥)

̂

𝜃) + 𝑑 (𝑡) − 𝐾𝐷

2
(𝑡) .

(3)

It is easily found that the error system cannot achieve
asymptotic stability due to existence of the perturbation
𝐾𝐷

2
(𝑡). Furthermore, the larger gain𝐾 causesmore influence

of the perturbation 𝐾𝐷
2
(𝑡) on the error system because of

multiplicative relationship.

So, we propose a new method that is adaptive integral
observer to make the perturbed chaotic system realize syn-
chronization. The drive system (1) is rewritten as

𝑥̇ = 𝐴𝑥 + 𝑓 (𝑥) + 𝐵𝑔 (𝑥) 𝜃 + 𝑑 (𝑡) ,

𝑧̇ = 𝐶𝑥 + 𝐷

2
(𝑡) ,

𝑦 = 𝐶𝑥 + 𝐷

2
(𝑡) ,

(4)

where the vector 𝑧 = ∫𝑡
0
𝑦(𝜉)𝑑𝜉, that is, a definite integral of

the original output 𝑦.
Suppose that 𝑋 = (

𝑥

𝑧 ), ̂𝐴 = (

𝐴 0

𝐶 0
), ̂𝐵 = (

𝐵

0
), 𝐷
1
(𝑡) =

(

𝑑(𝑡)

0
), ̂𝐶 = ( 0

𝐼
), and the system (4) becomes in the following

compact form:

̇

𝑋 =

̂

𝐴𝑋 + 𝐹 (𝑋) +

̂

𝐵𝐺 (𝑋) 𝜃 + 𝐷

1
(𝑡) +

̂

𝐶𝐷

2
(𝑡) ,

𝑌 = 𝑧 =

̂

𝐶

𝑇
𝑋,

(5)

where 𝑋 ∈ 𝑅

𝑛+𝑚 is the state vector and 𝑌 ∈ 𝑅𝑚 is the output
vector of the system (5). ̂𝐴 ∈ 𝑅(𝑛+𝑚)×(𝑛+𝑚), ̂𝐵 ∈ 𝑅(𝑛+𝑚)×𝑝, and
̂

𝐶 ∈ 𝑅

(𝑛+𝑚)×𝑚 are constant matrices, and (̂𝐴, ̂𝐶) is observable.
𝐹 : 𝑅

𝑛+𝑚
→ 𝑅

𝑛+𝑚 and 𝐺 : 𝑅

𝑛+𝑚
→ 𝑅

𝑝×𝑞 are nonlinear fun-
ctions and satisfy Lipschitz conditions:

󵄩

󵄩

󵄩

󵄩

󵄩

𝐹 (𝑋) − 𝐹 (

̂

𝑋)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝑘

𝐹

󵄩

󵄩

󵄩

󵄩

󵄩

𝑋 −

̂

𝑋

󵄩

󵄩

󵄩

󵄩

󵄩

,

󵄩

󵄩

󵄩

󵄩

󵄩

𝐺 (𝑋) − 𝐺 (

̂

𝑋)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝑘

𝐺

󵄩

󵄩

󵄩

󵄩

󵄩

𝑋 −

̂

𝑋

󵄩

󵄩

󵄩

󵄩

󵄩

,

(6)

where 𝑘
𝐹
and 𝑘
𝐺
are Lipschitz constants.

Now, it treats (5) as the drive system, and the response
system is

̇

̂

𝑋 =

̂

𝐴

̂

𝑋 + 𝐹 (

̂

𝑋) +

̂

𝐵𝐺 (

̂

𝑋)

̂

𝜃 + 𝐿 (𝑌 −

̂

𝐶

𝑇
̂

𝑋) +

̂

𝐵𝑢,
(7)

where 𝑢 is nonlinear input and 𝐿 ∈ 𝑅𝑛+𝑚 is the undetermined
gain matrix.

Similarly, if we define the synchronization error between
the drive (5) and response systems (7) as 𝐸 = 𝑋− ̂𝑋, the error
system is gotten as follows:

̇

𝐸 = (

̂

𝐴 − 𝐿

̂

𝐶

𝑇
) 𝐸 + 𝐹 (𝑋) − 𝐹 (

̂

𝑋) +

̂

𝐵 (𝐺 (𝑋) 𝜃 − 𝐺 (

̂

𝑋)

̂

𝜃)

+ 𝐷

1
(𝑡) +

̂

𝐶𝐷

2
(𝑡) −

̂

𝐵𝑢.

(8)

From (8), it is seen that the external perturbations 𝐷
1
(𝑡)

and ̂

𝐶𝐷

2
(𝑡) are all not relevant to the gain matrix 𝐿 if we

choose 𝑌 = 𝑧 = ∫

𝑡

0
𝑦(𝜉)𝑑𝜉 as a new output vector of the

system (5). Thus, to make the error system approach zero as
a limit, the appropriate gain 𝐿 and the nonlinear input 𝑢 can
be obtained according to the following scheme.

3. Design of Adaptive Integral Observer

In order to design an observer to realize synchronization
between the master and slave systems, the following assump-
tions must be made.
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Assumption 1. The unknown parameter 𝜃 and external per-
turbations𝐷

1
(𝑡),𝐷

2
(𝑡) of the system (5) are bounded, which

satisfy ‖𝜃‖ ≤ 𝑘
𝜃
, ‖𝐷
1
(𝑡)‖ ≤ 𝑘

𝐷
1

, and ‖𝐷
2
(𝑡)‖ ≤ 𝑘

𝐷
2

, where 𝑘
𝜃
,

𝑘

𝐷
1

, 𝑘
𝐷
2

are unknown.

Assumption 2. The gain matrix 𝐿 satisfies the following con-
ditions:

(

̂

𝐴 − 𝐿

̂

𝐶

𝑇
)

𝑇

𝑃 + 𝑃 (

̂

𝐴 − 𝐿

̂

𝐶

𝑇
) = −𝑄,

̂

𝐵

𝑇
𝑃 =

̂

𝐶

𝑇
,

(9)

where 𝑃 ∈ 𝑅

(𝑛+𝑚)×(𝑛+𝑚), 𝑄 ∈ 𝑅

(𝑛+𝑚)×(𝑛+𝑚) are positive mat-
rices.

Theorem 3. If the drive system (5) and the response system (7)
satisfy Assumptions 1 and 2, the nonlinear input 𝑢 is described
as

𝑢 = 𝛾 sgn (𝑌 − ̂𝐶𝑇̂𝑋) , (10)

where the adaptive laws for the parameter 𝛾 are

̇

𝛾̂ = 𝛿

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌 −

̂

𝐶

𝑇
̂

𝑋

󵄩

󵄩

󵄩

󵄩

󵄩

, (11)

where the parameter 𝛿 is an arbitrary positive constant. The
unknown parameters of the system (7) can be updated as
follows:

̇

̂

𝜃 = 𝐺

𝑇
(

̂

𝑋) (𝑌 −

̂

𝐶

𝑇
̂

𝑋) .
(12)

Then, as time goes by, the drive system (5)with unknown para-
meters and external perturbations can synchronize the response
system (7) from the arbitrary initial conditions.

Proof. Consider the following Lyapunov function candidate
as

𝑉 = 𝐸

𝑇
𝑃𝐸 + (𝜃 −

̂

𝜃)

𝑇

(𝜃 −

̂

𝜃) +

1

𝛿

(𝛾 − 𝛾)

2

, (13)

where the constant 𝛾 = 𝜎𝑘
𝐸
𝑘

𝐹
+ 𝑘

𝐸
𝑘

𝐺
𝑘

𝜃
+ 𝜎𝑘

𝐷
1

+ 𝜎𝑘

𝐶̂
𝑘

𝐷
2

.
The derivative of 𝑉 along the trajectories of the error

system (8) is

̇

𝑉 =

̇

𝐸

𝑇
𝑃𝐸 + 𝐸

𝑇
𝑃

̇

𝐸 − 2(𝜃 −

̂

𝜃)

𝑇
̇

̂

𝜃 −

2

𝛿

(𝛾 − 𝛾)

̇

𝛾̂

= −𝐸

𝑇
𝑄𝐸 + 2𝐸

𝑇
𝑃 (𝐹 (𝑋) − 𝐹 (

̂

𝑋))

+ 2𝐸

𝑇
𝑃

̂

𝐵 (𝐺 (𝑋) − 𝐺 (

̂

𝑋)) 𝜃 + 2𝐸

𝑇
𝑃

̂

𝐵𝐺 (

̂

𝑋) (𝜃 −

̂

𝜃)

+ 2𝐸

𝑇
𝑃𝐷

1
(𝑡) + 2𝐸

𝑇
𝑃

̂

𝐶𝐷

2
(𝑡) − 2𝛾

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃

̂

𝐵

󵄩

󵄩

󵄩

󵄩

󵄩

− 2(𝜃 −

̂

𝜃)

𝑇

𝐺

𝑇
(

̂

𝑋)

̂

𝐵

𝑇
𝑃𝐸 − 2 (𝛾 − 𝛾)

󵄩

󵄩

󵄩

󵄩

󵄩

̂

𝐵

𝑇
𝑃𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

= −𝐸

𝑇
𝑄𝐸 + 2𝐸

𝑇
𝑃 (𝐹 (𝑋) − 𝐹 (

̂

𝑋))

+ 2𝐸

𝑇
𝑃

̂

𝐵 (𝐺 (𝑋) − 𝐺 (

̂

𝑋)) 𝜃

+ 2𝐸

𝑇
𝑃𝐷

1
(𝑡) + 2𝐸

𝑇
𝑃

̂

𝐶𝐷

2
(𝑡) − 2𝛾

󵄩

󵄩

󵄩

󵄩

󵄩

̂

𝐵

𝑇
𝑃𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

≤ −𝐸

𝑇
𝑄𝐸 + 2

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃 (𝐹 (𝑋) − 𝐹 (

̂

𝑋))

󵄩

󵄩

󵄩

󵄩

󵄩

+ 2

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃

̂

𝐵

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝐺 (𝑋) − 𝐺 (

̂

𝑋)

󵄩

󵄩

󵄩

󵄩

󵄩

‖𝜃‖

+ 2

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃𝐷

1
(𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

+ 2

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃

̂

𝐶𝐷

2
(𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

− 2𝛾

󵄩

󵄩

󵄩

󵄩

󵄩

̂

𝐵

𝑇
𝑃𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

.

(14)

As we know, the states of the dynamical systems are
always bounded when they are periodic, chaotic or equilib-
rium. So, for the state vector of the systems (5), (7), and (8),
they satisfy the following inequalities:

‖𝑋 (𝑡)‖ ≤ 𝑘

𝑋
, ∀𝑡 ∈ [0,∞) , 𝑘𝑋

∈ 𝑅

+
,

󵄩

󵄩

󵄩

󵄩

󵄩

̂

𝑋 (𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝑘

𝑋̂
, ∀𝑡 ∈ [0,∞) , 𝑘

𝑋̂
∈ 𝑅

+
,

‖𝐸 (𝑡)‖ =

󵄩

󵄩

󵄩

󵄩

󵄩

𝑋 (𝑡) −

̂

𝑋 (𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝑘

𝑋
+ 𝑘

𝑋̂
= 𝑘

𝐸
, ∀𝑡 ∈ [0,∞) , 𝑘𝐸

∈ 𝑅

+
.

(15)

Let the constants 𝜎 = ‖[(

̂

𝐵

̂

𝐵

𝑇
)

−1
]

𝑇
̂

𝐵‖, 𝑘
𝐶̂
= ‖

̂

𝐶‖; we can
derive
󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃 (𝐹 (𝑋) − 𝐹 (

̂

𝑋))

󵄩

󵄩

󵄩

󵄩

󵄩

=

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃

̂

𝐵

̂

𝐵

𝑇
(

̂

𝐵

̂

𝐵

𝑇
)

−1

(𝐹 (𝑋) − 𝐹 (

̂

𝑋))

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

≤

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃

̂

𝐵

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

̂

𝐵

𝑇
(

̂

𝐵

̂

𝐵

𝑇
)

−1󵄩
󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝐹 (𝑋) − 𝐹 (

̂

𝑋)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝜎𝑘

𝐸
𝑘

𝐹

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃

̂

𝐵

󵄩

󵄩

󵄩

󵄩

󵄩

,

󵄩

󵄩

󵄩

󵄩

󵄩

𝐺 (𝑋) − 𝐺 (

̂

𝑋)

󵄩

󵄩

󵄩

󵄩

󵄩

‖𝜃‖ ≤ 𝑘

𝐺 ‖
𝐸‖ ‖𝜃‖ ≤ 𝑘𝐸

𝑘

𝐺
𝑘

𝜃
,

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃𝐷

1
(𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

=

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃

̂

𝐵

̂

𝐵

𝑇
(

̂

𝐵

̂

𝐵

𝑇
)

−1

𝐷

1
(𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝜎𝑘

𝐷
1

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃

̂

𝐵

󵄩

󵄩

󵄩

󵄩

󵄩

,

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃

̂

𝐶𝐷

2
(𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝜎𝑘

𝐶̂
𝑘

𝐷
2

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃

̂

𝐵

󵄩

󵄩

󵄩

󵄩

󵄩

.

(16)

So the derivative of 𝑉 is further gotten

̇

𝑉 ≤ −𝐸

𝑇
𝑄𝐸 + 2

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃 (𝐹 (𝑋) − 𝐹 (

̂

𝑋))

󵄩

󵄩

󵄩

󵄩

󵄩

+ 2

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃

̂

𝐵

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝐺 (𝑋) − 𝐺 (

̂

𝑋)

󵄩

󵄩

󵄩

󵄩

󵄩

‖𝜃‖

+ 2

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃𝐷

1
(𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

+ 2

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃

̂

𝐶𝐷

2
(𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

− 2𝛾

󵄩

󵄩

󵄩

󵄩

󵄩

̂

𝐵

𝑇
𝑃𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

≤ −𝐸

𝑇
𝑄𝐸 + 2𝜎𝑘

𝐸
𝑘

𝐹

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃

̂

𝐵

󵄩

󵄩

󵄩

󵄩

󵄩

+ 2𝑘

𝐸
𝑘

𝐺
𝑘

𝜃

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃

̂

𝐵

󵄩

󵄩

󵄩

󵄩

󵄩

+ 2𝜎𝑘

𝐷
1

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃

̂

𝐵

󵄩

󵄩

󵄩

󵄩

󵄩

+ 2𝜎𝑘

𝐶̂
𝑘

𝐷
2

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

𝑇
𝑃

̂

𝐵

󵄩

󵄩

󵄩

󵄩

󵄩

− 2𝛾

󵄩

󵄩

󵄩

󵄩

󵄩

̂

𝐵

𝑇
𝑃𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

.

(17)

Since the parameter 𝛾 = 𝜎𝑘
𝐸
𝑘

𝐹
+ 𝑘

𝐸
𝑘

𝐺
𝑘

𝜃
+ 𝜎𝑘

𝐷
1

+ 𝜎𝑘

𝐶̂
𝑘

𝐷
2

,
then it yields

̇

𝑉 ≤ −𝐸

𝑇
𝑄𝐸 ≤ −𝜆min (𝑄) ‖𝐸‖

2
= −𝜔 (𝑡) .

(18)
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Integration (18) from 0 to 𝑡, it gains the following inequality:

𝑉 (0) ≥ 𝑉 (𝑡) + ∫

𝑡

0

𝜔 (𝑠) 𝑑𝑠 ≥ ∫

𝑡

0

𝜔 (𝑠) 𝑑𝑠.
(19)

As 𝑡 → ∞, and 𝑉(0) is positive and bounded,
lim
𝑡→∞

∫

𝑡

0
𝜔(𝑠)𝑑𝑠 exists and is bounded. Then according to

Barbalat lemma, it obtains

lim
𝑡→∞

𝜔 (𝑡) = 𝜆min (𝑄) lim
𝑡→∞

‖𝐸 (𝑡)‖

2
= 0. (20)

It implies that the error vector of the system (8) asymptoti-
cally approaches zero as time goes by and chaos synchroniza-
tion is realized successfully by using the designed adaptive
observer. Thus, the proof is complete.

Remark 4. We say that this approach has fewer constraints
because of the following reasons. According to the above
discussion, we have seen that, for the bounds of external
perturbations 𝑘

𝐷
1

and 𝑘

𝐷
2

, the bound of the unknown
parameter 𝑘

𝜃
, the Lipchitz constants 𝑘

𝐹
and 𝑘

𝐺
, and the

bound of the error vector 𝑘
𝐸
, the parameters 𝜎, 𝑘

𝐶̂
, all these

constants are only used in proof, and even if these constants
are unknown, the adaptive observer can still be used to realize
synchronization based onTheorem 3.

Remark 5. Theorem 3 is also suitable to those chaotic systems
with known parameters and external perturbations only if
treating the nonlinear function 𝐺(𝑋) = 0, which is also
verified in the following example.

Remark 6. According to Kalman-Yakubovich-Popov lemma
[17], for the response system (7), the gain matrix 𝐿 can be
chosen such that the transfer function matrix

𝐻(𝑠) =

̂

𝐶(𝑠𝐼

𝑛
− (

̂

𝐴 − 𝐿

̂

𝐶))

−1
̂

𝐵
(21)

is strictly positive real, then there exits matrices 𝑃 ∈ 𝑅

𝑛×𝑛,
𝑄 ∈ 𝑅

𝑛×𝑛 satisfying Assumption 2.

4. Numerical Simulation

4.1. Chaos Synchronization of Rössler System. Firstly, we
choose the perturbedRössler systemwith known parameters,
that is, 𝐺(𝑋) = 0, to illustrate the effectiveness of the pro-
posed scheme. The Rössler is described by

𝑥̇

1
= − 𝑥

2
− 𝑥

3
,

𝑥̇

2
= 𝑥

1
+ 𝑎𝑥

2
,

𝑥̇

3
= 𝑐 + 𝑥

3
(𝑥

1
− 𝑏) .

(22)

If the parameters are chosen as 𝑎 = 0.2, 𝑏 = 5.7, 𝑐 =
0.2, the system shows chaotic behavior. Figure 1 gives the
attractors of Rössler system (22) and time evolution of three
states of the system (22) is shown in Figure 2.

When the original system is affected by external distur-
bances, the system becomes

(

𝑥̇

1

𝑥̇

2

𝑥̇

3

) = (

0 −1 −1

1 0.2 0

0 0 −5.7

)(

𝑥

1

𝑥

2

𝑥

3

) + (

0

0

𝑥

1
𝑥

3

) + (

𝑑

1
(𝑡)

𝑑

2
(𝑡)

𝑑

3
(𝑡)

) ,

𝑦 = 𝑥

1
= (1 0 0) 𝑥 + 𝐷

2
(𝑡) ,

(23)

where𝐷
2
(𝑡) and 𝑑

𝑖
(𝑡), 𝑖 = 1, 2, 3 are external perturbations.

In order to use the proposed method in this paper, the
system (23) is rewritten in the following compact form

̇

𝑋 =

̂

𝐴𝑋 + 𝐹 (𝑋) + 𝐷

1
(𝑡) +

̂

𝐶𝐷

2
(𝑡) ,

𝑌 = 𝑧 =

̂

𝐶

𝑇
𝑋,

(24)

where the state 𝑋 = (𝑥1
𝑥

2
𝑥

3
𝑧)

𝑇, the nonlinear function
𝐹(𝑋) = (0 0 𝑥

1
𝑥

3
0)

𝑇, the external perturbation 𝐷
1
(𝑡) =

(𝑑1
(𝑡) 𝑑

2
(𝑡) 𝑑

3
(𝑡) 0)

𝑇, the constant matrix ̂𝐶 = (0 0 0 1)𝑇,
and the matrix ̂𝐴 is

̂

𝐴 = (

0 −1 −1 0

1 0.2 0 0

0 0 −5.7 0

1 0 0 0

) . (25)

One can get that (̂𝐴, ̂𝐶𝑇) is observable and the output of
the system is 𝑌 = 𝑧. It regards the system (24) as the drive
system, and the response system is

(

̇

𝑥̂

1

̇

𝑥̂

2

̇

𝑥̂

3

̇

𝑧̂

) = (

0 −1 −1 0

1 0.2 0 0

0 0 −5.7 0

1 0 0 0

)(

𝑥

1

𝑥

2

𝑥

3

𝑧̂

) +(

0

0

𝑥

1
𝑥

3

0

)

+ 𝐿 (𝑧 − 𝑧̂) +

̂

𝐵𝑢,

(26)

where the vector ̂𝐵 = (1 0 1 1)

𝑇.
In numerical simulations, the external perturbations of

the drive system (24) are chosen 𝐷

1
(𝑡) = (0.028 cos 3𝑡

0.019 sin 7𝑡 0.034 sin 6𝑡 0)𝑇 and 𝐷
2
(𝑡) = 0.012 cos 10𝑡, res-

pectively. The gain matrix is 𝐿 = (19.9044 −8.6846 80.9513

0.5940)

𝑇, it can get and that the eigenvalues of ̂𝐴 − 𝐿̂𝐶𝑇 are
−1.38 ± 2.491𝑖, and −1.667 ± 1.715𝑖, the transfer function is
obtained as follows:

𝐻(𝑠) =

̃

𝐶

𝑇
(𝑠𝐼 − (

̃

𝐴 − 𝐿

̃

𝐶

𝑇
))

−1
̃

𝐵

=

𝑠

3
+ 6.5𝑠

2
+ 4.36𝑠 + 4.76

𝑠

4
+ 6.094𝑠

3
+ 23.03𝑠

2
+ 42.82𝑠 + 46.39

,

(27)

which is strictly positive real.
It is chosen that the initial values of the drive system (24)

and response system (26) are (𝑥
1
(0) 𝑥

2
(0) 𝑥

3
(0) 𝑧(0))

𝑇
=

(−1 1 0 2)

𝑇 and (𝑥
1
(0) 𝑥

2
(0) 𝑥

3
(0) 𝑧̂(0))

𝑇
=(−3 1 1 3.2)

𝑇.
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Figure 1: The attractors of Rössler system (a) 𝑥
1
− 𝑥

2
− 𝑥

3
and (b) 𝑥

3
− 𝑥

1
− 𝑥

2
.

0 10 20 30 40 50 60 70 80 90 100

0

10

20

𝑡

−10

𝑒
1

(a)

0

10

−10

−20

𝑒
2

0 10 20 30 40 50 60 70 80 90 100
𝑡

(b)

0
10
20
30

−10

𝑒
3

0 10 20 30 40 50 60 70 80 90 100
𝑡

(c)

Figure 2: Time evolution of Rössler system.

The nonlinear input 𝑢 is given according to (10). The param-
eter 𝛿 is selected as 1.2, and the initial value of 𝛾(0) is 0.1.
Figure 3 gives time evolution of the synchronization errors
between the drive (24) and response systems (26) with the
nonlinear input (10) and the gain matrix 𝐿. It shows that
the error vector approaches zero asymptotically with time
passage, so the drive system (24) with external perturbations
and unknown parameters synchronizes the response system
(26) by using the proposed method.

4.2. Chaos Synchronization of Cellular Neural Network System.
Weuse cellular neural network (CNN) systemwith unknown
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Figure 3: Time evolution of the synchronization errors of Rössler
system with the gain matrix and nonlinear input.

parameters and external perturbations as another example to
verify the effectiveness of the proposed scheme.

CNN system has aroused wide concern in private com-
munication, image processing, and pattern recognition due
to its characteristic of strong real time, complex dynamics,
high computing speed, and so forth. The three-order CNN
nonlinear system is

𝑥̇

1
= 𝑎𝑥

1
+ 𝑏𝑥

2
+ 𝜃 (

󵄨

󵄨

󵄨

󵄨

𝑥

1
+ 1

󵄨

󵄨

󵄨

󵄨

−

󵄨

󵄨

󵄨

󵄨

𝑥

1
− 1

󵄨

󵄨

󵄨

󵄨

) ,

𝑥̇

2
= 𝑥

1
− 𝑥

2
+ 𝑥

3
,

𝑥̇

3
= 𝑐𝑥

2
.

(28)
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Figure 5: Time evolution of CNN system.

When the parameters 𝜃 = 2, 𝑎 = −1.2179, 𝑏 = 8.342, and
𝑐 = −11.925, this system has a chaotic attractor. Figure 4 gives
the attractors of CNN system (28) and Figure 5 shows time
evolution of its states.

If we regard 𝜃 as unknown parameter, the CNN chaotic
system with external perturbations can be written as

(

𝑥̇

1

𝑥̇

2

𝑥̇

3

) = (

−1.2179 8.342 0

1 −1 1

0 −11.925 0

)(

𝑥

1

𝑥

2

𝑥

3

)

+ (

1

0

0

) (

󵄨

󵄨

󵄨

󵄨

𝑥

1
+ 1

󵄨

󵄨

󵄨

󵄨

−

󵄨

󵄨

󵄨

󵄨

𝑥

1
− 1

󵄨

󵄨

󵄨

󵄨

) 𝜃 + (

𝑑

1
(𝑡)

𝑑

2
(𝑡)

𝑑

3
(𝑡)

) ,

𝑦 = 𝑥

1
= (1 0 0) 𝑥 + 𝐷

2
(𝑡) ,

(29)

where𝐷
2
(𝑡) and 𝑑

𝑖
(𝑡), 𝑖 = 1, 2, 3 are external perturbations.

In order to use adaptive integral observer to realize syn-
chronization, the system (29) becomes of the following
compact form

̇

𝑋 =

̂

𝐴𝑋 +

̂

𝐵𝐺 (𝑋) 𝜃 + 𝐷

1
(𝑡) +

̂

𝐶𝐷

2
(𝑡) ,

𝑌 = 𝑧 =

̂

𝐶

𝑇
𝑋,

(30)

where the state vector 𝑋 = (𝑥1
𝑥

2
𝑥

3
𝑧)

𝑇, the nonlinear
function 𝐺(𝑋) = |𝑥

1
+ 1| − |𝑥

1
− 1|, the matrices ̂𝐵 =

(1 0 0 0)

𝑇 and ̂𝐶 = (0 0 0 1)

𝑇, in addition, the external
perturbation 𝐷

1
(𝑡) = (𝑑1

(𝑡) 𝑑

2
(𝑡) 𝑑

3
(𝑡) 0)

𝑇, and the con-
stant matrix

̂

𝐴 = (

−1.2179 8.342 0 0

1 −1 1 0

0 −11.925 0 0

1 0 0 0

) . (31)

One can get that (̂𝐴, ̂𝐶𝑇) is observable. In simulation,
we choose that the gain matrix is 𝐿 = (11.4319 1.7566

−14.8105 4.9021)

𝑇, and the external perturbations are𝐷
1
(𝑡)=

(0.016 sin 6𝑡 0 0.02 cos 8𝑡 0)𝑇 and 𝐷

2
(𝑡) = 0.013 sin 3𝑡,



Journal of Applied Mathematics 7

0 5 10 15 20 25 30 35 40 45 50

−1

0

1

2

3

4

𝑒
1

(a)

−5

0

5

𝑒
2

0 5 10 15 20 25 30 35 40 45 50

(b)

−10
−5
0
5
10

𝑒
3

0 5 10 15 20 25 30 35 40 45 50

(c)

Figure 6: Time evolution of the synchronization errors of CNN system with the gain matrix and nonlinear input.

respectively. The initial values of the drive system and the
response system are (𝑥1(0) 𝑥2(0) 𝑥3(0) 𝑧(0))

𝑇

= (0.1 0.2

0.2 0.8)

𝑇 and (𝑥1(0) 𝑥2(0) 𝑥3(0) 𝑧̂(0))
𝑇

=(−4 2.5 1 −0.3)

𝑇.
The parameter 𝛿 is selected as 0.1, and the initial value
of 𝛾(0) is 0.3. Figure 6 shows the time evolution of CNN
error system. It can be seen that, with time passage, the
synchronization error vector tends to zero. So the master
systemwith unknown parameters and external perturbations
synchronizes the slave system, which shows that our pro-
posed method is effective.

5. Conclusions

In this paper, we design a new adaptive integral observer to
realize chaos synchronization when both the state vector and
the output of the original system are all perturbed for some
reason. The proposed method is not only suitable to such
chaotic systems with known parameters but also applies to
such chaotic systems with unknown parameters. We can see
that this method has fewer constraints, so it is easy to applied
in practice. In the end, numerical simulations are illustrated
to further verify the validity of the approach.
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