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Time-dependent reliability-based design optimization (RBDO) has been acknowledged as an advance optimization methodology
since it accounts for time-varying stochastic nature of systems. This paper proposes a time-dependent RBDOmethod considering
both of the time-dependent kinematic reliability and the time-dependent structural reliability as constrains. Polynomial chaos
combined with the moving least squares (PCMLS) is presented as a nonintrusive time-dependent surrogate model to conduct
uncertainty quantification. Wear is considered to be a critical failure that deteriorates the kinematic reliability and the structural
reliability through the changing kinematics. According to Archard’s wear law, a multidiscipline reliability model including the
kinematics model and the structural finite element (FE) model is constructed to generate the stochastic processes of system
responses. These disciplines are closely coupled and uncertainty impacts are cross-propagated to account for the correlationship
between the wear process and loads. The new method is applied to an airborne retractable mechanism. The optimization goal is
to minimize the mean and the variance of the total weight under both of the time-dependent and the time-independent reliability
constraints.

1. Introduction

In recent decades, numerous endeavors have been made to
develop the reliability-based design optimization (RBDO)
methods, due to the fact that RBDO maximizes the perfor-
mance under constrains of target reliability level accounting
for various sources of uncertainty [1, 2]. These developed
RBDOmethodologies can be classified into two groups: time-
independent RBDO and time-dependent RBDO.

Time-independent RBDO,which assumes reliability con-
straints are time independent, has been studied widely [2].
However, in many engineering cases, because of the degra-
dation and stochastic loads, systems deterioration with time
is such a severe problem that it must be taken into account.
For instance, wear is one of the most critical failures that
substantially affect the life span of bearings, hinges, and other
mechanisms, and it should be considered in design phase
[3]. For these applications, time-dependent RBDO methods
should be conducted because the reliability is time varying.

Most literatures on this topic concentrate on the time-
dependent structural reliability problem. Two basic scenarios
are presented, which are out-crossing methods [4–7] and
extreme value methods [8, 9].

The out-crossing methods require the calculation of the
crossing rate of the likelihood that the performance falls into
the failure domain. The most fundamental equation of solv-
ing the out-crossing problems is the Rice formula. Kuschel
and Rackwitz [4, 5] proposed a method based on the out-
crossing approach to evaluate the time-dependent reliability
in the context of first-order reliability methods (FORM) and
asymptotic second-order reliability methods (SORM). The
most probable point (MPP) in this method is defined as
“point of maximum local crossing rate.” Rectangular wave
renewal processes and Gaussian processes are derived for
load models, and the optimization goal is to minimize
the total cost which contains initial cost and failure cost.
Streicher and Rackwitz [6] improved this method by consid-
ering the dependencies among different failure modes, and
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the numerical Laplace transforms are used for the treatment
of aging components. Andrieu-Renaud et al. [7] presented an
out-crossing-based method which is called PHI2. The limit
state function is considered as a random process whose out-
crossing of the zero level is to characterize.

The extreme value methods consider the failure event to
be equivalent to the event that the extreme value is greater
than or less than the threshold in a time interval, and time-
dependent reliability can be translated to a time-independent
one if the distribution of the extreme value is identified.
Li et al. [8] discovered that correlative information among
the component random events is inherent in the equiva-
lent extreme-value event. Thus an equivalent extreme value
approach is presented to evaluate the structural reliability.
In the approach proposed by Chen and Li [9], a virtual
stochastic process associated to the extreme value of the
studied stochastic process is constructed. The probability
density evolution method is used to evaluate the instan-
taneous probability density function (PDF) of the virtual
stochastic process, which would generate the PDF of the
extreme value simultaneously.

According to Bhatti [10], kinematic reliability is defined
as the probability of output member’s position and ori-
entation falling into a specified range from the desired
position and orientation. Fewer researches focus on time-
dependent kinematic reliability analysis. Zhang et al. [11, 12]
proposed a mean value first-passage method based on the
out-crossing methods in structural reliability to evaluate the
time-dependent reliability of the function generator mech-
anisms. This method is under the assumption of normality
for random dimension variables with small variances; thus
the motion error is a nonstationary Gaussian process, but
their work only contains the randomness of parameters. The
degradation of mechanisms which is a significant factor to
the time-dependent kinematic reliability was not taken into
account.

Wear is one of the most critical degradation failures for
mechanisms.Worn joints would lead tomotion errors as well
as raise the stress. Thus wear would substantially deteriorate
the kinematic reliability and structural reliability through the
changing kinematics. Meanwhile, loads dominate the wear
of joints, and worn joints would result in fluctuation of the
motion of mechanisms and thus change the loads on joints
conversely.The correlationship between the wear process and
loads is required to be considered in the analysis of wear-
related time-dependent reliability. Furthermore, each type of
mechanisms has its particular wear characteristic which is
determined by its function and operation condition. Because
of the scarcity of the full-scale wear tests, it is hardly to
obtain the accurate time-varying wear data in design phase
especially for those newly designed mechanisms. Therefore,
stochastic degradation process of system responses is difficult
to obtain. All of these factors make the conventional out-
crossing methods and extreme value methods inapplicable to
the wear-related time-dependent RBDO problem.

In this paper, a new time-dependent RBDO strategy
is proposed to account for both of the time-dependent
kinematic reliability and the time-dependent structural reli-
ability as constrains. In order to perform the uncertainty

quantification, a time-dependent surrogate model, which is
called polynomial chaos combined with the moving least
squares (PCMLS), is presented to approximate the stochastic
process. Nonintrusive polynomial chaos (NIPC) is used to
describe the stochastic nature of system responses at selected
time points. Then moving least squares (MLS) method is
employed to approximate the time variant functions of PCE
coefficients. Because of the explicit polynomial formula and
simple structure, Monte Carlo simulation (MCS) is able to
be conducted on the surrogate model to evaluate the time-
dependent kinematic reliability and structure reliability.

To tackle with the scarcity of wear data, a multidiscipline
reliability model is constructed according to Archard’s wear
law. Disciplines in the model are closely coupled and uncer-
tainty impacts are cross-propagated to simulate the wear pro-
cess. The model takes an iterative simulation to generate the
stochastic processes of system responses.The correlationship
between the wear process and loads is considered in the
model, and the uncertain inputs include random variables
and stochastic loads. Thus the time-dependent degradation
tests and data are not necessary.

The proposed time-dependent RBDO method includes
three stages: (1) multidiscipline reliability model and sim-
ulation for generation of degradation process; (2) PCMLS
for time-dependent uncertainty quantification; (3) genetic
algorithm (GA) for the global optimum.

The whole approach is demonstrated at an airborne
retractable mechanical system under the stochastic wind
load. Wear of the hinge is considered to be the most critical
failure. The multidiscipline reliability model, which involves
kinematics model and structural FE model, is constructed.
The optimization goal is to minimize the mean and variance
of the total weight under the time-dependent probabilistic
constraints related to the kinematic reliability and the struc-
ture reliability.

The paper is organized as follows. In Section 2, the
theories of NIPC and MLS are presented, respectively, and
the PCMLS model is derived. In Section 3, the theoretical
basis and the numerical procedure of the multidiscipline
reliability model are presented. In Section 4, the proposed
time-dependent RBDO is formulated. The case of the air-
borne retractable mechanical system is studied in Section 5.
Conclusions are drawn in Section 6.

2. Polynomial Chaos Combined with
the Moving Least Squares

The polynomial chaos expansion is a promising surrogate
model that uses a set of orthogonal polynomial bases to
approximate the random space of the system response [13].
According to whether it requires the modification of the
deterministic code, the polynomial chaos approaches can be
divided into two groups: intrusive approach and nonintrusive
approach. Intrusive approach calculates the unknown poly-
nomial chaos coefficients by projecting resulting equations
onto basis functions for different modes. It requires the
modification of the deterministic code. Thus it is difficult,
expensive, and time consuming for many complex compu-
tational problems [14]. On the contrary, in the nonintrusive
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PC (NIPC), simulations are used as black boxes and the
calculation of chaos expansion coefficients is based on a
set of simulation response evaluations. Most nonintrusive
approaches are based on sampling or quadrature methods.
Hosder et al. [14] applied the point-collocation NIPC to
an aerospace problem with multiple uncertain variables.
Sudret [15] proposed a nonintrusive regression-based PCE to
conduct the global sensitivity analysis. Cheng and Sandu [16]
proposed a least squaresNIPC approach based on collocation
at a low-discrepancy set of points which is demonstrated
to have similar accuracy with the Galerkin approach by
numerical experiments.

Most NIPC methods are used to approximate the time-
independent responses. However, a few literatures concen-
trate on the improvement of NIPC methods to propagate
the time-dependent uncertainty. Witteveen et al. [17] pro-
posed the probabilistic collocation for limit cycle oscilla-
tion (PCLCO) to modeling the long-term stochastic behav-
ior of dynamical systems. PCLCO transforms the time-
dependent issue into a time-independent one through the
time-independent parametrization of the periodic response.
Then the NIPC can be performed due to the independence
of time, but PCLCO is only applicable to approximate the
periodically time-dependent response. This paper proposes
a surrogate model method which involves polynomial chaos
combinedwith themoving least squares (PCMLS) to quantify
more general time-dependent uncertainty. The surrogate
model is essentially a time-dependent polynomial chaos
expansion, and the coefficients of which are approximation
functions achieved by the MLS method. The polynomial
chaos expansion with time-dependent coefficients is used to
approximate the stochastic process.

2.1. Polynomial Chaos Expansion. The polynomial chaos of a
system response can be described as follows [18–20]:
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Γ
𝑝
(𝜉
𝑖
1

, . . . , 𝜉
𝑖
𝑝

) = (−1)
𝑝
𝑒
(1/2)𝜉

𝑇
𝜉 𝜕

𝑝

𝜕𝜉
𝑖
1

⋅ ⋅ ⋅ 𝜕𝜉
𝑖
𝑝

𝑒
−(1/2)𝜉

𝑇
𝜉
, (2)

where 𝜉 is the vector of normal random variables {𝜉
𝑖
𝑘

}
𝑝

𝑘=1
. In

practical engineering, PCE contains limited input uncertain-
ties. Thus (1) can be simplified as follows:
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where 𝑛 is the number of random variables in the system.
The multidimensional Hermite polynomials form an or-

thogonal basis for the space of square-integrable PDFs, and
the PCE is convergent in the mean-square sense [21]. In
general, the approximation accuracy rises with the order of
the PCE.

Probabilistic collocation method is one of the most effi-
cient NIPCmethods.The coefficients of the PCE are obtained
according to evaluations of the system response at selected
collocation points, and these collocation points correspond
to the roots of the polynomial of one degree higher than
the order of the PCE [14]. Furthermore, the probabilistic
collocation method just requires calls of the simulation the
same as the number of PCE coefficients thus it is very
efficient.Thematrix form of probabilistic collocationmethod
is describe as follows:
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where 𝜉
𝑗
represents the 𝑗th set of collocation points. Total𝑁

𝑐

sets of collocation points are required. Equation (5) can be
written in a compact form

r (Ξ) =Ψ (Ξ) a. (6)

As a linear algebraic equation, (6) can be solved by Gauss
elimination method and so forth. The sets of collation points
are required to be chosen carefully to keep the matrix Ψ(Ξ)
nonsingular, and the vector of coefficients can be derived as

a = Ψ−1 (Ξ) r (Ξ) = D (Ξ) r (Ξ) . (7)

2.2. Moving Least Squares. In order to reduce the cost
of constructing numeral PCEs along the time period of
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degradation, the PCE is only built at some selected time
points, and the moving least squares (MLS) method is
employed to approximate the time-dependent functions of
PCE coefficients. MLS is a generalization of the least squares
technique, and it has become a widespread and powerful tool
in interpolating and approximating implicit surfaces [22–25].
MLS starts with a weighted least squares formulation for an
arbitrary fixed point inR𝑑, and then this pointmoves over the
entire parameter domain, where a weighted least squares fit is
computed and evaluated for each point individually. Suppose
a compact set Ω ⊆ R𝑑 is given and a continuous function 𝑓
will be reconstructed from its values 𝑓(𝑥
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where 𝑑 represents the dimension of the function 𝑓, 𝑞 repre-
sents the order of p(x) which is the polynomial basis vector,
and 𝑤(‖x − x

𝑖
‖) is the weighting function. The functional

form and parameters of the weighting function determine the
accuracy of the MLS approximation. The weighting function
should satisfy the principles as follows [26].
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(4) Theweighting function should bemonotone decreas-
ing, and the weight values should decrease with the
increase of the distance from 𝑥.

The most common weighting functions are spline func-
tion, compactly supported radial basis function (CSRBF),
Gaussian function, and so forth. Among these weighting
functions, the spline functions are used widely because its
order can be chosen to obtain high approximation accuracy.
Note that the higher the order of the spline functions would
not necessarily perform a better approximation, and the order
of the spline function is decided by the highest order of the
approximated function derivative.

The approximation function can be written as

̂
𝑓 (x) = pT (x) b (x) , x ∈ Ω, (12)

where b(x) is the coefficient vector. For a one-dimension
problem, the polynomial basis p(x) has the form

pT = (1, x) , 𝑞 = 1,

pT = (1, x, x2) , 𝑞 = 2.

(13)

It is defined as
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and b(x) can be derived as

b (x) = A−1 (x)B (x) f , (16)

where

A (x) = pTw (x) p, (17)

B (x) = pTw (x) . (18)

Therefore, the approximation function can be derived as

̂
𝑓 (x) = Φ (x) f , (19)

where Φ(x) = pT(x)A−1(x)B(x).

2.3. The Proposed PCMLS Method. The multidiscipline reli-
ability model is simulated step by step, and one step is
defined as a task execution in which the mechanism would
perform a required function. The PCE is constructed on
system responses at some selected steps along the service life.
After this,MLSmethod is employed to approximate the time-
dependent functions of PCE coefficients. Total𝑁

𝑠
tasks need

to be completed which is decided by the length of service life
and frequency of task arrival. 𝑇

𝑖
is defined as the 𝑖th selected

step (or task), and 𝑚 is the total number of selected steps
that PCEs are required to be built on. According to (7), the
coefficients for all of the PCEs are solved by the following
equation:

a𝑇1 = D (Ξ) r𝑇1 (Ξ) ,

a𝑇2 = D (Ξ) r𝑇2 (Ξ) ,

...

a𝑇𝑚 = D (Ξ) r𝑇𝑚 (Ξ) ,
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𝑖
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After the calculation of Λ, a new matrix Η of PCEs
coefficients is created. Each row represents coefficients of the
PCE at a selected step, and each column represents a specific
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coefficient varying with steps. Η can be then expressed in a
column form

H = [a
0
, a
1
, . . . , a
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𝑐
−1
] , (22)

where a
0
is the vector of the first coefficients of PCEs

along with the steps. According to (19), the approximation
functions of time-dependent PCE coefficients are derived as
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PCE, which is written as follows
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The proposed PCMLS method is able to consider the statis-
tical correlation between a pair of responses at two different
time points.Themultidiscipline reliabilitymodel is simulated
step by step to describe the degradation behavior of the
mechanical system. Uncertainties of the parameters and
design variables are brought into the model at the beginning
of the simulation. The system degradation at the current
step is computed according to the system degradation at
the step before. Thus these uncertainties would propagate
through different disciplines as well as evolve over time, and
the system responses at different time points have statistical
correlationship. The statistical correlation information is
contained in the samples of system responses at different time
points.

The proposed PCMLS method is a nonintrusive method
to construct the time-dependent PCE. The PCMLS model
uses samples of system responses to perform the NIPC at
different time steps. Then the MLS is conducted to approx-
imate the time-dependent PCE coefficients. In this manner,
the statistical correlation information is extracted into the
time-dependent coefficients of the PCE, which are actually
functions of time, and these time-dependent PCE coefficients
would make the polynomials of PCE vary with time and thus
would make the statistical properties of the approximated
responses vary with time as well. Therefore, the statistical
correlation is considered in the PCMLS model.

3. Multidiscipline Reliability Model
Considering Wear

Wear is one of the most critical failures that substantially
deteriorate the kinematic reliability and structural reliability
of mechanisms in their service life. For a linkage mechanism,
wear of the hinges would affect the sport stability, raise the
stress in hinges, and lead to motion errors.

Numerical wear prediction develops fast recently. It helps
to study the effect of the wear evolution on the stress
distribution and deformation of the motion pairs, which
can hardly be measured with the experimental techniques.

Söderberg and Andersson [27] presented a wear simulation
method based onArchard’s wear law and adaptive FEmethod
to simulate the wear of the brake pad under steady-state
drag conditions. Rezaei et al. [3] proposed an adaptive wear
modeling method to study the wear progress in radial sliding
bearings. In thismethod, remeshing is performed both on the
contact elements and their proximity elements. All of these
proposed methods are demonstrated by experiments.

However, these methods are based on the assumption
that the sliding velocity and loads on the motion pairs hardly
vary during the wear process. These two parameters are then
considered to be boundary conditions, which are regarded
as constants. In practice, the wear process would modify the
kinematics continuously and lead to variation of the loads and
the sliding velocity of motion pairs all the time. Traditional
methods that neglect the variation of loads and the sliding
velocity will cause inaccuracy at the wear simulating results.
Meanwhile, in the above-mentioned methods, wear process
is simulated at nominal state. Uncertainties of geometry and
material are not taken into account.

In this section, a multidiscipline reliability model that
includes kinematics model, structural FE model, and wear
model is constructed to simulate the wear process of the
hinges in the linkage mechanism.

3.1. Wear Mechanism. To the plastically dominated wear,
Archard’s law would serve as the appropriate model as
discussed by Lim andAshby [28]. In this model, the worn out
volume is considered to be proportional to the normal load.
The model is expressed mathematically as follows:
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H
, (25)

where 𝑑𝑤/𝑑𝑡 is defined to be the wear volume loss rate, 𝐾 is
the dimensionless wear coefficient, 𝐹

𝑁
is the applied normal

force,H is the Brinell hardness of the softer material and it is
usually considered to be a constant, and V denotes the relative
sliding velocity. Since the wear depth is of interest, (25) is
often written in the following form

𝑑ℎ

𝑑𝑡

= 𝑘
𝐻
𝑃V, (26)

where ℎ is the wear depth, 𝑑ℎ/𝑑𝑡 is the wear depth rate, and𝑃
is the contact pressure. We have 𝑘

𝐻
= 𝐾/𝐻, and it is defined

as the wear coefficient with the dimension of (Pa−1).Thewear
process is considered to be a time-dependent process.

In practical engineering, the contact pressure varies with
time because the real contact area changes during the wear
process. Meanwhile, the contact pressure and relative sliding
velocity vary with stochastic loadings.Thus both of these two
parameters are time dependent. The numerical solution for
the wear depth is obtained by estimating the differential form
in (26) with a finite difference to yield the following updated
formula:

ℎ
𝑖
= ℎ
𝑖−1

+ 𝑘
𝐻
𝑃 (Θ
𝑖
, 𝑡
𝑖
) V (Θ

𝑖
, 𝑡
𝑖
) ⋅ Δ𝑡, (27)

where ℎ
𝑖
is the wear depth at the 𝑖th step, Θ

𝑖
is the vector of

stochastic loads at the 𝑖th step, and 𝑡
𝑖
is 𝑖th step.
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3.2. Multidiscipline Reliability Model. In Archard’s wear law,
thewear rate is a function of both the pressure and the relative
sliding velocity of two contact surfaces, and the pressure is
obtained through nonlinear FEA, while the relative sliding
velocity requires kinematics analysis. Meanwhile, the pres-
sure and relative sliding velocity are varying with the wear
process due to the fact that worn joints would change the
kinematics.Therefore, the calculation of wear depth needs an
iterative process.

For a linkage mechanism, the multidiscipline reliability
model includes kinematics model and structural FE model.
The kinematics model is constructed on the entire mech-
anism to obtain the relative sliding velocity of hinges, and
loads on hinges can also be given by the kinematics model.
Then these loads are transmitted into the structural FE
model, which is built with commercial finite element software
ANSYS. FE model of hinges is solved by the nonlinear con-
tact analysis to compute the stress distribution and contact
pressure. After that, the conduct pressure and sliding velocity
are delivered to the wear model to calculate the wear depth,
according to which, the kinematics model and structural FE
model would be updated in the next step, and the schematic
of the multidiscipline reliability model is shown in Figure 1.

In Figure 1, Δℎ
𝑖
, ΔΘ
𝑖
, ΔV
𝑖
, and Δ𝑃

𝑖
are the variation

ranges of the wear depth, loads on hinges, relative sliding
velocity, and contact pressure, respectively. Variation ranges
of these parameters come from the dimension tolerances,
parameter distributions, and stochastic environmental dis-
turbance.Therefore, uncertainties exist in every discipline. As
these disciplines are naturally closely coupled anduncertainty
impacts are cross-propagated, the correlationship between
the wear process and loads is considered in the multidisci-
pline reliability model.

The simulationwould generate the stochastic processes of
stress and wear depths in hinges. The increase of wear depth
would deteriorate the kinematic reliability, and the raise of
stress in hinges would decrease the structural reliability.Thus
the multidiscipline reliability model can be used to eval-
uate wear-related time-dependent kinematic reliability and
structure reliability. The effect of wear process on the whole
mechanism is taken into account by the coupling among
wear model and other disciplines. The proposed method
permits that values of parameters in wear model are obtained
from relevant disciplines instead of determined by empirical
assumptions; hence the multidiscipline reliability model is
of higher accuracy. The simulation routine is described in
Figure 2.

In this procedure, there are two different types of
discretizations which include (1) the continuous geometry
discretized by finite elements; (2) the continuous material
removal is approximated at a discrete set of steps. These
discretizations are important factors to the accuracy of the
simulation results. Thus the size of the discretizations is
required to be determined carefully.

Since the multidiscipline reliability model is built, wear
process can be simulated and studied. Uncertainties exist in
the model and propagate through different disciplines. MCS
should be employed to quantify the time-dependent uncer-
tainty. However, the non-linear contact FEA and kinematics

analysis, which contain numerous nonlinear algebraic equa-
tions and differential equations required to solve numerically,
are very computationally expensive. Furthermore, the iter-
ative process in a single simulation leads to repeated calls
of these expensive models. Therefore, traditional MCS are
computational infeasible. The PCMLS model proposed in
this paper can be employed to approximate the stochastic
processes generated by the multidiscipline reliability model.
Then the computational expensive implicit model is replaced
by an explicit surrogate model with simple structure, and
MCS is able to be conducted on the surrogate model which
would substantially reduce the computational cost.

4. Time-Dependent RBDO Procedure

Time-dependent RBDO procedure is the organization of all
the elements such as system optimization, system analysis,
discipline analysis, and time-dependent uncertainty analysis.
How to efficiently arrange these elements into an execution
sequence is the key to realize time-dependent RBDO. This
paper proposes a three-stage strategy, and the procedure is
shown in Figure 3.

In the first stage, multidiscipline reliability model consid-
ering wear is constructed. In the second stage, the PCMLS
model is applied to approximate the stochastic processes. In
the third stage, a double-loop optimization is employed. In
the outer loop, optimization algorithm executes optimum
search. At each iteration, the inter loop calls uncertainty
analysis, which appliesMCS to PCMLSmodel, to evaluate the
design and its time-dependent uncertainty characteristics.
Because the PCMLS model is an explicit formula both with
high accuracy and simple structure, it would significantly
improve the computational efficiency of the whole time-
dependent RBDO procedure. The general time-dependent
RBDObased on the PCMLSmodel is reformulated as follows:

min ̃
ℎ (x, d, q)

s.t. 𝑃 {(𝑔
𝑖
(T, 𝑟
𝑖 (
𝜉,T) , 𝑐𝑓

𝑖

) ≤ 0)} ≥ 𝑅
𝑇𝐷
𝑖

,

𝑖 = 1, 2, . . . , 𝑛
𝑇𝐷
,

𝑃 {𝑔
𝑗 (
x, d, q) ≤ 0} ≥ 𝑅

𝑇𝐼
𝑗

, 𝑗 = 1, 2, . . . , 𝑛
𝑇𝐼
,

x𝐿 ≤ x ≤ x𝑈,

(28)

where x is the vector of random design variables, d is the
vector of deterministic parameters, and q is the vector of
random parameters. 𝑟

𝑖
(𝜉,T) is the PCMLS model of the 𝑖th

system response, 𝑐
𝑓
𝑖

is the failure criterion of the 𝑖th system
response, 𝑔

𝑖
(T, 𝑟
𝑖
(𝜉,T), 𝑐

𝑓
𝑖

) is the time-dependent limit state
function, 𝑅

𝑇𝐷𝑖
is the time-dependent reliability constrains,

𝑛
𝑇𝐷

is the total number of the time-dependent responses,
𝑔
𝑗
(x, d, q) is the 𝑗th time-independent limit state function,

𝑅
𝑇𝐼𝑗

is the time-independent reliability constrains, and 𝑛
𝑇𝐼

is
the total number of the time-independent responses.
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Figure 1: Schematic of the multidiscipline reliability model considering wear.
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Figure 2: Simulation routine of the multidiscipline reliability model considering wear.



8 Journal of Applied Mathematics

Optimization

Time dependent
uncertainty analysis

PCMLS model

Multidiscipline reliability model 
considering wear

Wear model

Kinematics
model FE model

Objectives,
reliability constrains

Design variables

Uncertain variables Time dependent
reliability

Collocation points Time dependent kinematics
and structural responses

Initial design Optimal design

Figure 3: Procedure of time-dependent RBDO considering wear.
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Figure 4: Schematic of the airborne retractable mechanical system.

5. Case Study

The engineering case is an airborne retractable mechani-
cal system. It is a four-link mechanism which consists of
the hydraulic actuator, rods, and pin-and-lug hinges. It is
designed to carry the functional device tomove in accordance
with the predetermined trajectory for switching between
working and stopping positions.

The system performs a retractable action when a task
arrives, and it is required to work reliably during the service
life. When the retractable system is performing, it is under
the loads of wind and the weight of the functional device.
The hinges are working in a nonlubricated environment.
Therefore, wear of the hinges is considered to be a critical
failure. Worn hinges give rise to fluctuation of the rod loads,
decrease the kinematic accuracy, and lead to the mechanism

lock during the movement. Furthermore, worn hinges would
increase the stress in hingeswhichmay cause them to fracture
during the operation. The top hinge in Figure 4 is the most
dangerous one for it bears the largest load. Thus wear in this
hinge is considered in the multidiscipline reliability model.

5.1. Multidiscipline Reliability Model. The multidiscipline
reliability model is built to simulate the system degrada-
tion caused by wear according to the proposed method in
Section 3. The kinematics model of the mechanism and the
FE model of the rods and hinges are built at the initial design
point.

Through the kinematics simulation, the kinematics
parameters are calculated and shown in Figure 5.The driving
force is supplied by the hydraulic actuator to make the
mechanismmove properly. Because of the clearance between
the pin and lug in hinges, there are fluctuations both in
the driving force and instant relative velocity. The maximum
driving force is 15423N, which is below the rated pressure
of the hydraulic actuator, and thus the mechanism would
operate properly.

The FE model is built with commercial finite element
software ANSYS. The materials of pin and lug are different,
and the pin is more wear resistant than lug. Thus, the
multidiscipline reliability model is based on the assumption
that worn part only involves the lug. From Figure 6(b), the
contact mainly occurs at the head and shoulder of the lug
where the wear may be more serious.

The process that themechanismmoves from the stopping
position to the working position and then moves back is
defined as a task. As the total time of each task is short, the
wear loss of each task is very small. Therefore, each task is
as a step, during which the kinematics analysis and FEA is
conducted. At the end of the step, wear depth is calculated
according to the parameters delivered by the kinematics
model and FE model, and kinematics model and FE model
would be updated in the next step according to the changing
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Figure 5: Driving force and instant relative velocity between pin and lug computed by the kinematics model. (a) Driving force curve during
the movement; (b) instant relative velocity curve during the movement.
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Figure 6: FE model and nonlinear contact analysis results exported by ANSYS. (a) FE model of the top hinge; (b) contour picture of the
pressure on the contact surface of lug.

geometry. In the service life, the mechanism would act about
2000 times which is considered to be the total steps in the
algorithm.

The positions of three fixed supports and the length of
the functional device arm are determined by requirements
from higher level system. Thus they are considered to be
boundary conditions in the optimization. The coordinate
(𝑋
𝐴
, 𝑌
𝐴
) defines the length and orientation of the upper rod

andnether rod.Thus the coordinates of point𝐴 are significant
design variables. Moreover, radiuses of the functional device
arm and the upper rod contribute to the total weight of the
mechanical system, and they are constrained by loads. Thus
they are the other two design variables. In the multidisci-
pline reliability model, the parameter uncertainties involve

machining errors and environment disturbance which are
summarized in Table 1. The uncertain parameters of geom-
etry are sampled at the beginning of the simulation, and the
wind disturbance is sampled at each step.

According to results from the simulation at the initial
design point, the time-dependent wear depth and contact
pressure are shown in Figure 7, while the time-dependent lug
stress and maximum driving force are described in Figure 8.

The contact pressure in Figure 7(b) is the average pressure
of the whole contact surface. Thus the wear depth calculated
by the contact pressure is also the average wear depth of lug.
At the 2000th step, the wear depth is up to 13.4645 𝜇mwhich
is below the limit determined by the mechanism accuracy.
With the increasing of the time step, the contact pressure
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Table 1: Information on design variables and parameters.

Type Symbol Description Mean Std Distribution

Random design variables

𝑋
𝐴

Coordinate𝑋 of point A 1176 2 Normal
𝑌
𝐴

Coordinate 𝑌 of point A −497 2 Normal
𝑅ur Outer radius of the upper rod 30mm 0.3mm Normal
𝑅arm Outer radius of the device arm 50mm 0.5mm Normal

Random parameters

𝐿 sr Length of actuator slider rod 1600mm 3mm Normal
𝑅nr Radius of the nether rod 20mm 0.2mm Normal
𝐺d Weight of device 2600N 10N Normal
𝑊
𝑥

Wind disturbance of𝑋 direction 400N 5N Normal
𝑊
𝑦

Wind disturbance of 𝑌 direction 375N 5N Normal
𝑊
𝑧

Wind disturbance of 𝑍 direction 206N 5N Normal
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Figure 7: Time-dependent responses of wear depth and contact pressure. (a) Wear depth curve during the service life; (b) contact pressure
curve during the service life.

shows a downward trend, and this trend makes the growth of
the wear depth slows down gradually. These phenomena are
consistent with the literatures [3, 21] which is demonstrated
by experiments. The fluctuation of contact pressure is caused
by the fluctuation of the driving force.

Stress of lug raises as the wear depth grows, which
illustrates that the wear would deteriorate the structure of lug.
The clearance between pin and lug increases with the growth
of the wear depth, which leads to the maximum driving force
fluctuatewith time. In every task, stochastic wind disturbance
is loading on the device.Thus the stochastic wind disturbance
is another reason to the vibration in stress and maximum
driving force. Some experiments have been conducted on the
prototype, and results are extracted to employ V&V on the
multidiscipline reliability model.

5.2. The PCMLS Model. Figures 7 and 8 illustrate that the
wear depth and the stress of lug are time-dependent re-
sponses. The proposed PCMLS model is conducted to
approximate these two responses.

The preliminary sensitivity analysis (SA) is firstly em-
ployed to screen out the critical parameters whose deviation
would have a great impact on the system responses. Total 10
parameters are considered in SA, which are shown in Table 1.
The forward difference method, which is commonly used in
the preliminary sensitivity analysis, is executed due to its sim-
plicity and rapidity.The sensitivity of the wear depth and von
Mises stress of the lug are evaluated by several perturbation
sizes of these 10 parameters to obtain reliable results.

Based on the SA results and the practical engineering
experiences, four parameters are chosenwhich include “coor-
dinate 𝑋 of point 𝐴,” “coordinate 𝑌 of point 𝐴,” “length of
actuator slider rod,” and “weight of the device”. Thus the
dimension of the PCE is four. Secondly, the sets of collocation
points are selected, and the total number of sets is calculated
by (4). Then collocation points of standard normal random
variables are transformed into inputs of the multidiscipline
reliability model. The transformation functions are listed in
Table 2.

Thirdly, the sets of transformed values are brought
into the multidiscipline reliability model to generate
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Figure 8: Time-dependent responses of stress of lug and maximum driving force. (a) Stress curve during the service life; (b) maximum
driving force curve during the service life.

Table 2: Transformation functions of critical random parameters.

Symbol Description Transformation functions
𝑋
𝐴

Coordinate𝑋 of point A 1176 + 2𝜉
1

𝑌
𝐴

Coordinate 𝑌 of point A −497 + 2𝜉
2

𝐿 sr Length of actuator slider rod 1600 + 3𝜉
3

𝐺d Weight of the device 2600 + 10𝜉
4

the time-varying system responses, respectively, and the
responses at every 200 steps are selected to build the PCE,
which means that the PCE are constructed at step 1, 200,
400, and so on till 2000. The coefficients of PCEs can be
calculated by (20).

After the construction of PCEs, MLS is employed to
approximate the time-varying functions of PCE coefficients.
The discrete points in Figure 9 show that they have a nearly
linear increase over time. In this case, as mentioned in
Section 2.2, low-order spline weighting functions should be
used to approximate the time-dependent functions of the
PCE coefficients. In this case, the cubic spline function
performed a better approximation. Thus the cubic spline
function is chosen as the weighting function which is given
as follows:

𝑤 (𝑥) =

{
{
{
{
{
{

{
{
{
{
{
{

{

2

3

− 4𝑥
2
+ 4𝑥
3

𝑥 ≤

1

2

,

4

3

− 4𝑥 + 4𝑥
2
−

4

3

𝑥
3 1

2

< 𝑥 ≤ 1,

0 𝑥 > 1.

(29)

The order of PCMLS is determined by the PCE order. As 2-
order PCE and 3-order PCE are performed to approximate
the wear depth and stress of the lug at different time steps,
MLS is used to obtain the time-dependent functions of the
PCE coefficients, and the accuracy of PCMLS increases with

the order. The comparative results are obtained at selected
time steps which are 1, 500, 1000, 1500, and 2000 steps. The
Monte Carlo simulation with 1000 samples is employed as a
benchmark for the comparison. The statistics including the
mean and the variance of the wear depth and stress of the
lug are compared between the 2-order PCMLS and 3-order
PCMLS, which are shown in Tables 3, 4, 5, and 6.

The accuracy of the PCMLS approximation is determined
by two main factors: the PCE order and the number of MLS
nodes. From Tables 3, 4, 5, and 6, the PCMLS approximation
accuracy rises with the PCE order. However, high-order
PCE requires more samples, in other word, more execution
of the simulation of the multidiscipline reliability model,
and it would increase the computation burden intensively.
Meanwhile, the MLS approximation accuracy, which rises
with the number of nodes (in this case the samples of
PCE coefficients at different time steps), would also have
an influence to the accuracy of PCMLS. More MLS nodes
would obtain high-accuracy approximation [26] but would
introduce more computation at the same time. In order to
apply the PCMLS to the real engineering problem, a tradeoff
between accuracy and efficiency should be considered and
determined.

Figure 9 shows two examples of MLS approximation
curves for the PCE coefficients. It can be seen that the
curves fit these points well, and the root-mean-square errors
of these two approximation curves are 4.116𝑒 − 7 and
0.3821, respectively. Approximation functions of the other
14 coefficients are also built by MLS. Then the PCMLS
model is constructed completely, and the time consuming
multidiscipline reliability model is replaced by the PCMLS
model to conduct time-dependent uncertainty quantification
using MCS.

The wear depth of the hinge would deteriorate the
kinematics accuracy of the mechanism. According to
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Figure 9: Examples of MLS approximation curves for PCE coefficients of the wear depth and the stress of lug. (a) MLS approximation curve
for 𝑎
0
of the wear depth PCE; (b) MLS approximation curve for 𝑎

0
of the stress of lug PCE.

Table 3: Comparative results of mean of the wear depth of the lug along the time axis.

Method Samples Mean of the wear depth of the lug (𝜇m)
1 step 500 step 1000 step 1500 step 2000 step

MCS 1000 0.9413 5.5165 10.6144 13.2563 18.4850
2-order PCMLS 15 0.9450 5.5036 10.6283 13.1739 18.3849
Relative error — 0.0039 0.0023 0.0013 0.0062 0.0054
3-order PCMLS 35 0.9388 5.5178 10.6205 13.2022 18.4134
Relative error — 0.0027 0.0002 0.0006 0.0041 0.0039

Table 4: Comparative results of the variance of the wear depth of the lug along the time axis.

Method Samples Variance of the wear depth of the lug
1 step 500 step 1000 step 1500 step 2000 step

MCS 1000 0.0042 0.0211 0.1501 0.1591 0.1843
2-order PCMLS 15 0.0052 0.0246 0.1349 0.1382 0.1625
Relative error — 0.2381 0.1659 0.1013 0.1314 0.1183
3-order PCMLS 35 0.0045 0.0205 0.1409 0.1423 0.1677
Relative error — 0.0714 0.0284 0.0613 0.1056 0.0901

Table 5: Comparative results of the mean of the Von Mises stress of the lug along the time axis.

Method Samples Mean of the Von Mises stress of the lug (MPa)
1 step 500 step 1000 step 1500 step 2000 step

MCS 1000 40.7708 43.4974 46.6781 48.1653 50.4784
2-order PCMLS 15 40.6015 43.6492 46.4639 48.2551 50.3862
Relative error — 0.0042 0.0035 0.0046 0.0019 0.0018
3-order PCMLS 35 40.6575 43.5669 46.6246 48.1785 50.5254
Relative error — 0.0028 0.0016 0.0011 0.0003 0.0009
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Table 6: Comparative results of the variance of the Von Mises stress of the lug along the time axis.

Method Samples Variance of the Von Mises stress of the lug
1 step 500 step 1000 step 1500 step 2000 step

MCS 1000 0.4718 0.5598 0.5822 0.6020 0.6336
2-order PCMLS 15 0.3941 0.4821 0.4748 0.6624 0.6946
Relative error — 0.1647 0.1388 0.1845 0.1003 0.0963
3-order PCMLS 35 0.4069 0.4889 0.6551 0.6593 0.6789
Relative error — 0.1376 0.1267 0.1252 0.0952 0.0715
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Figure 10: Time-dependent reliability computed through the PCMLSmodel. (a) Time-dependent kinematic reliability caused by the wear at
the top hinge; (b) time-dependent structure reliability caused by the increase of stress of lug.

the requirements of the kinematics accuracy, the failure
criterion of wear depth is determined as 50 𝜇m, and the
safety strength of lug is 80MPa.MCS is applied to the PCMLS
model to calculate the time-dependent kinematic reliability
and structure reliability with 10000 simulations. Note that
the first passage time is a critical concept in the time-
dependent reliability analysis, and we use the discretization
of random processes and Monte Carlo simulation method
to compute the time-dependent structure reliability. When
the time-dependent limit state function first falls into the
failure domain, this sample would be regarded as a failure
and would be eliminated from the survival ones. The results
are presented in Figure 10. The kinematic reliability after the
2000th task is 0.9890, and the structure reliability is 0.9850,
which all satisfy the reliability constrains of the retractable
mechanism.

5.3. Time-Dependent RBDO. The time-dependent RBDO
is formulated for the retractable mechanism. The design
optimization problem is defined as tominimize themean and
the variance of the total weight subject to two time-dependent
reliability constrains and three time-independent reliability
constrains. The failures of retractable mechanism are defined
as follows:

(1) the practical wear depth of lug exceeds the allowable
wear depth determined by the kinematics accuracy;

(2) the stress in the lug is greater than the strength of the
lug;

(3) the stress in the upper rod is greater than the strength
of the upper rod;

(4) the stress in the device arm is greater than the strength
of the device arm;

(5) the mechanism gets locked when the practical max-
imum driving force exceeds the rated output of the
hydraulic actuator.

The previous two failure criteria are related to the time-
dependent reliability. The design problem is formulated as

min 𝐹 (𝜇weight (x,d,q) , 𝜎weight (x,d,q))

s.t. 𝑃 {𝑔 (T, 𝑟
𝑤𝑑

(𝜉,T) , 𝑐
𝑓𝑤𝑑

) ≤ 0} ≥ 𝑅
𝑤𝑑
,

𝑃 {𝑔 (T, 𝑟
𝑠𝑙 (
𝜉,T) , 𝑐𝑓𝑠𝑙) ≤ 0} ≥ 𝑅

𝑠𝑙
,

𝑃 (𝑔
𝑖 (
x,d,q) ≤ 0) ≥ 𝑅

𝑖
, 𝑖 = 1, 2, 3,

x𝐿 ≤ x ≤ x𝑈,

(30)

where 𝑔(T, 𝑟
𝑤𝑑
(𝜉,T), 𝑐

𝑓𝑤𝑑
) is the time-dependent limit state

function of the wear depth and 𝑔(T, 𝑟
𝑠𝑙
(𝜉,T), 𝑐

𝑓𝑠𝑙
) is the

time-dependent limit state function of the stress of lug.
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Table 7: Comparison of optimal design results between time-independent RBDO and proposed time-dependent RBDO.

Type 𝑋
𝐴

𝑌
𝐴

𝑅ur (mm) 𝑅arm (mm) Mean of total weight (kg) Variance of total weight
Time-independent RBDO 1235.01 −421.40 22.45 45.24 15.3631 0.2383
Time-dependent RBDO 1239.28 −415.93 22.85 47.19 15.9832 0.3369
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Figure 11: Comparison of time-dependent reliability curves by time-dependent RBDOand time-independent RBDO. (a) Curves of kinematic
reliability; (b) curves of structure reliability.

Also 𝑔
𝑖
(x, d, q) is the time-independent limit state function

of time-insensitive responses which include the maximum
driving force of the mechanism, stress in the upper rod, and
stress in the device arm.

The RBDO in the case study is a multiobjective optimiza-
tion problemwhich hasmean and variance of the total weight
as two objectives.Thedesign objective is generally formulated
as follows:

𝐹 =

𝑙

∑

𝑖=1

[(±)

𝑤
1𝑖

𝑠
1𝑖

𝜇
𝑖
+

𝑤
2𝑖

𝑠
2𝑖

𝜎
𝑖
] , (31)

where 𝑤
1𝑖
and 𝑤

2𝑖
are the weights and 𝑠

1𝑖
and 𝑠
2𝑖
are the scale

factors for the mean and variance of the 𝑖th performance
response, respectively. 𝑙 is the total number of the perfor-
mance responses. The “+” sign is used when the response
mean is to beminimized, and the “−” sign is be usedwhen the
response mean is to be maximized. This formulation belongs
to the weighted sum method which is the most common
approach to multiobjective optimization. The weights and
scale factors should be positive to make the minimum of the
objective to be Pareto optimal. In this case, we decide the scale
factors to be the ideal points, which are shown as follows:

𝑠
1
= 𝜇weight

∘
= 12,

𝑠
2
= 𝜎weight

∘
= 0.1.

(32)

The weights of these two objectives are chosen as one, which
means the mean and variance of the weight are equally
important.

Genetic algorithm (GA) is adopted in this paper because
it is able to converge to the global solution rather than to
a local solution. Since the two objectives are combined to
form a single objective, a conventional single-objective GA
is performed in the proposed RBDO. We have written the
GA in MATLAB according to the literature [29] without
modification.

The optimal design results are shown in Table 7, which
involves the time-independent RBDO and the proposed
time-dependent RBDO, and it is indicated that the optimal
design results of these twomethods are different. Because the
proposed time-dependent RBDO considered the wear loss
in the top hinge, its design result reallocated loads on three
hinges of the mechanism, and this made the other two hinges
partly share the load which was originally applied to the top
hinge. Thus the wear in the top hinge was reduced to make
the design of the mechanism satisfy the time-dependent
reliability constrains. However, because of the increase of
loads on the other two hinges, the upper rod and the device
arm are required to bear more loads. Therefore, the outer
radiuses of the upper rod and the device arm are greater than
the design result of the time-independent RBDO. Thus the
retractable mechanism in the design of the proposed time-
dependent RBDO is a little heavier than the design of the
time-independent RBDO.
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The time-dependent reliability curves by twomethods are
given in Figure 11.

Figure 11 shows that the optimal design given by the
proposed time-dependent RBDO is able to satisfy the time-
dependent reliability constrains during the service life of
2000 tasks, but the design of time-independent RBDOwould
just be the optimal solution at the initial time. After the
1400th and 1800th tasks, the kinematic reliability and struc-
tural reliability fall below 0.98, respectively. The comparison
indicates the necessity to account for the wear in hinges as
well as time-dependent kinematic and structural reliability in
design phase. The proposed time-dependent RBDO method
is able to obtain the optimal design under the time-dependent
reliability constrains. Thus it is applicable to engineering
problem.

6. Conclusion

Existence of wear in mechanisms would deteriorate the time-
dependent kinematic reliability and structural reliability
through the changing kinematics. Thus wear-related time-
dependent reliability should be taken into account in design
phase. This work develops a time-dependent RBDO method
considering wear as a critical failure. It involves both of the
time-dependent kinematic reliability and time-dependent
structural reliability as constrains.

The PCMLS model that combines the NIPC with the
MLS is presented to conduct the time- dependent uncertainty
quantification. The NIPC is expanded to propagate time-
dependent uncertainty with time-dependent coefficients
achieved by MLS approximation functions.

The multidiscipline reliability model, which includes
kinematics model and structural FE model, is constructed
according to Archard’s wear law to generate the stochastic
processes of system responses. As these disciplines are closely
coupled and uncertainty impacts are cross-propagated, the
correlationship between the wear process and loads is
considered in the model. The PCMLS model is applied
to approximate the stochastic processes generated by the
multidiscipline reliability model. Then MCS is conducted on
the PCMLS model to evaluate the time-dependent kinematic
reliability and structural reliability.

The procedure of the three-stage time-dependent RBDO
is given, and the new method is demonstrated at an airborne
retractable mechanism.The optimization goal is to minimize
the mean and the variance of the total weight. Constraints
include both of the time-dependent and time-independent
reliabilities. The optimal design is compared to the time-
independent RBDO result.The comparison indicates that it is
necessary to account for wear and time-dependent reliability
in design phase, and the proposed time-dependent RBDO
method is applicable to engineering problem.
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