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We introduce a new relaxed viscosity approximation method with regularization and prove the strong convergence of the method
to a common fixed point of finitely many nonexpansive mappings and a strict pseudocontraction that also solves a convex

minimization problem and a suitable equilibrium problem.

1. Introduction

Let H be a real Hilbert space with inner product {,-) and
norm || - ||, C a nonempty closed convex subset of H, and P
the metric projection of H, onto C. Let T : C — C be self-
mapping on C. We denote by Fix(T') the set of fixed points of
T and by R the set of all real numbers. A mappingT: C — C
is called {-strictly pseudocontractive if there exists a constant
{ € [0,1) such that

Ire-of < e o +Ja-Dx-a-0oF,
Vx,y € C.

In particular, if { = 0, then T is called a nonexpansive
mapping. A mapping A : C — H is called a-inverse strongly
monotone, if there exists a constant & > 0 such that

(Ax- Ay, x—y) = dx-y|, Vx,yeC. (2)

Let f: C — Rbeaconvexand a continuous Fréchet dif-
ferentiable functional. Consider the minimization problem
(MP) of minimizing f over the constraint set C

minf (x), (3)

where we assume the existence of minimizers. We denote by
I the set of minimizers of (3). The gradient-projection algo-
rithm (GPA) generates a sequence {x,} determined by the
gradient Vf and the metric projection P as follows:

X1 = Po(x, - AVf (x,)), Vn=0, (4)
or more generally,
Xpg1 = PC (xn - /\nvf (xn)) , Vnz0, (5)

where, in both (4) and (5), the initial guess x, is taken from C
arbitrarily, the parameters A or A, are positive real numbers.
The convergence of algorithms (4) and (5) depends on the
behavior of the gradient Vf. As a matter of fact, it is known
that if Vf is strongly monotone and Lipschitz continuous,
then, for 0 < A < 2a/L?, the operator

$ == P (I - AVf) 6)

is a contraction. Hence, the sequence {x,,} defined by the GPA
(4) converges in norm to the unique solution of (3). More
generally, if the sequence {A,,} is chosen to satisfy the property

o : 2a
0< llnn’_l)lorcl)fAn < llrrlllsolip)\n < Ik (7)



then the sequence {x,} defined by the GPA (5) converges in
norm to the unique minimizer of (3). If the gradient Vf is
only assumed to be a Lipschitz continuous, then {x,} can
only be weakly convergent if H is infinite dimensional. A
counterexample is given by Xu in [1].

Since the Lipschitz continuity of the gradient Vf implies
that it is inverse strongly monotone (ism), it can be expressed
as a proper convex combination of the identity mapping
and a nonexpansive mapping. Consequently, the GPA can be
rewritten as the composite of a projectionand an averaged
mapping which is again an averaged mapping. This shows that
averaged mappings play an important role in the GPA. Very
recently, Xu [1] used averaged mappings to study the conver-
gence analysis of the GPA which is an operator-oriented
approach.

We observe that the regularization, in particular, the
traditional Tikhonov regularization, is usually used to solve
ill-posed optimization problems. Consider the following reg-
ularized minimization problem:

minf, (x) = £ () + S I (8)

where o > 0 is the regularization parameter and again f is
convex with an L-Lipschitz continuous gradient Vf.

The advantage of a regularization method is that it is pos-
sible to get strong convergence to the minimum-norm solu-
tion of the optimization problem under investigation. The
disadvantage is however its implicity, and hence explicit
iterative methods seem more attractive. See, for example, [1].

Given a mapping A : C — H, the classical variational
inequality problem (VIP) is to find x* € C such that

(Ax",x-x") 20, VxeC. 9)

The solution set of VIP (9) is denoted by VI(C, A). It is well
known that x* € VI(C, A) if and only if x* = Po(x" — AAx™)
for some A > 0. The variational inequality was first discussed
by Lions [2] and now is well known. The variational inequality
theory has been studied quite extensively and has emerged
as an important tool in the study of a wide class of obstacle,
unilateral, free, moving, and equilibrium problems arising in
several branches of pure and applied sciences in a unified
and general framework. See, for example, [3-10] and the
references therein.

In this paper, we study the following equilibrium problem
(EP) which is to find x* € C such that

F(x",y)+h(x",y)>0, VyeC. (10)

The solution set of EP (10) is denoted by EP(F,h). We will
introduce and consider a relaxed viscosity iterative scheme
with regularization for finding a common element of the
solution set I' of the minimization problem (3), the solution
set EP(F, h) of the equilibrium problem (10), and the common
fixed point set Fix(T) N ([, Fix(S;)) of finitely many nonex-
pansive mappings S; : C — C, i = 1,..., N, and a strictly
pseudocontractive mapping T in the setting of the infinite-
dimensional Hilbert space. We will prove that this iterative
scheme converges strongly to a common fixed point of the
mappings T,S; : C — C, i = 1,...,N, which is both a
minimizer of MP (3) and an equilibrium point of EP (10).
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2. Preliminaries

Let H be a real Hilbert space whose inner product and norm
are denoted by (-, -) and ||||, respectively. Let K be a nonempty
closed convex subset of H. We write x,, — x to indicate
that the sequence {x,} converges weakly to x and x, — x
to indicate that the sequence {x,} converges strongly to x.
Moreover, we use w,(x,) to denote the weak w-limit set of
the sequence {x,} and w,(x,,) to denote the strong w-limit set
of the sequence {x,}; that is,

w, (x,) = {x €H:x, —x
for some subsequence {xni} of {xn}},
W, (xn)::{x €H:x, —x

for some subsequence {xni} of {xn}}.

(1)

The metric (or nearest point) projection from H onto K is
the mapping Py : H — K which assigns to each point x € H
the unique point Pyx € K satisfying the property

-P = inf |[x — y|| =: ,K).
fe- B =inf eyl =d 0.
Some important properties of projections are gathered in
the following.
Proposition 1. For given x € Hand z € K

(z=Px o {(x—2z,y-2) <0, forall y € K;
(ii) z = Pxyx © lx—z|? < ||x—y||2—||y—z||2,forall yeK;

(iii) (Pgx — Py, x — ¥) = |Pgx — Pyl forall y €
H, which hence implies that Py is nonexpansive and
monotone.

Definition 2. A mapping T : H — H is said to be
(a) nonexpansive if

=Tyl < fe-5], VeyeHs @3

(b) firmly nonexpansive if 2T — I is nonexpansive, or
equivalently,

(x -y, Tx-Ty) > |[Tx - Ty, Vx,y € H; (14)

alternatively, T is firmly nonexpansive if and only if T
can be expressed as

T=%(I+S), (15)

where S : H — H is nonexpansive; projections are
firmly nonexpansive.

Definition 3. Let T be a nonlinear operator with domain
D(T) € H and range R(T) € H.
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(a) T is said to be monotone if

(x-y,Tx-Ty) >0, Vx,yeD(T). (16)
(b) Given a number 8 > 0, T is said to be 8 strongly
monotone if

(x=y,Tx-Ty) > B|x - y||2, Vx,y e D(T). (17)

(c) Given a number v > 0, T is said to be v-inverse
strongly monotone (v-ism) if

x—y,Tx-Ty) >9|Tx - Ty|", Vx, eD(T). (18)
Y y Y y

It can be easily seen that if T is nonexpansive, then
I — T is monotone. It is also easy to see that a projection
Py is l-ism. Inverse strongly monotone (also referred to as
cocoercive) operators have been applied widely in solving
practical problems in various fields.

Definition 4. A mapping T : H — H is said to be an aver-
aged mapping if it can be written as the average of the identity
I and a nonexpansive mapping; that is,

T=010-a)l+as, 19)

where @« € (0,1) and S : H — H is nonexpansive. More
precisely, when the last equality holds, we say that T is «-
averaged. Thus, firmly nonexpansive mappings (in particular,
projections) are (1/2)-averaged maps.

Proposition 5 (see [11]). LetT : H — H be a given mapping.

(i) T is nonexpansive if and only if the complement 1-T is
(1/2)-ism.
(ii) If T is v-ism, then for y > 0, yT is (v/y)-ism.
(iii) T is averaged if and only if the complement I —T is v-
ism for some v > 1/2. Indeed, for « € (0,1), T is a-
averaged if and only if I — T is (1/2«)-ism.

Proposition 6 (see [11]). Let S,T,V : H — H be given
operators.

DT =(1-a)S+aV for some « € (0,1) and if S is
averaged and V is nonexpansive, then T is averaged.

(ii) T is firmly nonexpansive if and only if the comple-
ment I =T is firmly nonexpansive.

(iii) If T = (1 — «)S + &V for some o € (0,1) and if S is
firmly nonexpansive and V is nonexpansive, then T is
averaged.

(iv) The composite of finitely many averaged mappings is
averaged. That is, if each of the mappings {Ti}f\:j1 is
averaged, then so is the composite Ty ---Ty. In par-
ticular, if T\ is o, -averaged and T, is o, -averaged,
where oy, a, € (0,1), then the composite T\ T, is a-
averaged, where o = &) + &, — ;.

(v) If the mappings {T;}\, are averaged and have a com-

mon fixed point, then

N
() Fix (T;) = Fix (T, -+ Ty). (20)

i=1

The notation Fix(T') denotes the set of all fixed points of the
mapping T, that is, Fix(T) = {x € H : Tx = x}.

It is clear that, in a real Hilbert space H, T : C — C
is {-strictly pseudocontractive if and only if there holds the
following inequality:

2 1-C

(Tx=Ty.x-y) < |x =] - =
X ||(I -T)x—-(I- T)y”z, Vx,y € C.
(1)

This immediately implies that if T is a {-strictly pseudo-
contractive mapping, then I — T is ((1 — {)/2)-inverse
strongly monotone; for further detail, we refer to [12] and
the references therein. It is well known that the class of strict
pseudocontractions strictly includes the class of nonexpan-
sive mappings.

Lemma 7 (see [12, Proposition 2.1]). Let C be a nonempty
closed convex subset of a real Hilbert space H and T : C — C
be a mapping.

(i) If T is a {-strictly pseudocontractive mapping, then T
satisfies the Lipschitz condition where

1
ITx - Ty < 1%2 lk=y], Vuyec. ()

(ii) If T is a {-strictly pseudocontractive mapping, then the
mapping I — T is semiclosed at 0; that is, if {x,} is a
sequence in C such that x, — X weakly and (I -
T)x, — 0 strongly, then (I - T)X = 0.

(iil) If T is a {-(quasi-)strict pseudocontraction, then the
fixed point set Fix(T') of T is closed and convex so that
the projection Pryy 1y is well defined.

The following lemma is an immediate consequence of an
inner product.

Lemma 8. In a real Hilbert space H, there holds the following
inequality:

I+ y|° <lxl>+2(y.x+y), VxyeH  (23)

The following elementary result on real sequences is quite
well known.

Lemma 9 (see [13]). Let {a,} be a sequence of nonnegative real
numbers satisfying the property

a1 <(1-s,)a,+s,t,+€, Yn=0, (24)

where {s,} C (0, 1] and {t,} are the real sequences such that
(1) ZZZO S, = 005
(ii) either limsup,_, £, <0 or Yoo s,lt,l < co;
(iii) Y2y €, < 00 wheree, > 0, for alln > 0.

Then, lim a, = 0.

n— 00



Lemma 10 (see [14]). Let C be a nonempty closed convex
subset of a real Hilbert space H. Let T : C — C be a {-strictly
pseudocontractive mapping. Let y and § be two nonnegative
real numbers such that (y + 8){ < y. Then,

ly(x=»)+8(Tx-Ty)| < (y+8)|x-y|, VxyeC
(25)
25

The following lemma appears implicitly in the paper of
Reinermann [15].

Lemma 11 (see [15]). Let H be a real Hilbert space. Then, for
all x,y € Hand A € [0,1],

Ax + (1 -2) |
2 2 (26)
= Ml + =M [y =A@ =) x -y

Lemma 12 (see [16]). Let C be a nonempty closed convex
subset of a real Hilbert space H. Let F : Cx C — Rbea
bifunction such that

(f1) F(x,x) =0 forall x € C;

(f2) F is monotone and upper hemicontinuous in the first
variable;

(f3) F is lower semicontinuous and convex in the second
variable.

Leth: CxC — R be a bifunction such that
(hl) h(x,x) = 0 for all x € C;

(h2) h is monotone and weakly upper semicontinuous in the
first variable;

(h3) h is convex in the second variable.
Moreover, let one suppose that

(H) for fixedr > 0 and x € C, there exists a bounded K ¢ C
and X € K such that forall z € C\ K, -F(X,z) +
h(z,X) + (1/r){x—z,z— x) < 0.

Forr>0andx € H, letT, : H — 2° be a mapping defined
by
T,x

={zeC:F(z,y)+h(z,y) (27)
Ly zz-x) 20, Vyec}
r

called the resolvent of F and h. Then,

(D) T,x+0;

(2) T,x is a singleton;

(3) T, is firmly nonexpansive;

(4) EP(F, h) = Fix(T,) and it is closed and convex.
Lemma 13 (see [16]). Let one suppose that (f1)-(f3), (h1)-(h3)
and (H) hold. Let x, y € H, 1,1, > 0. Then,

rh—n

T, y- Trlx" <|y-x|+

Ty-y. @8
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Lemma 14 (see [17]). Suppose that the hypotheses of
Lemma 12 are satisfied. Let {r,;} be a sequence in (0, 00) with
liminf, | 1, > 0. Suppose that {x,} is a bounded sequence.
Then, the following statements are equivalent and true.

(@) if lx, - Trﬂxnll — 0asn — 00, each weak cluster
point of {x,,} satisfies the problem:

F(x,y)+h(x,y)>0, VyeC, (29)
that is, w,,(x,) € EP(F, h).

(b) The demiclosedness principle holds in the sense that, if
x, = x"and|lx, - T, x,| — 0asn — oo, then
(I-T,)x" =0forallk>1.

3. Main Results

We now propose the following relaxed viscosity iterative
scheme with regularization:

F (it ) 4 it 9) + - =t = %, 2 0,
Vy € C,
Y1 = BuaSithy + (1= Bo1) thys
Vi = BuiSithy + (1= Bpi) Ynjt» 1=2,...,N, (30)
Vn = BuQVunN + (1-B,) Pc (J’n,N - /\Vfa,,()’n,N)) >
Xas1 = Ou¥n + YaP (Vn = AV, ()

+ SnTPC (yn - /\Vfoc,,(yn)) >

for all n > 0, wherethe mapping Q : C — Cis a p-
contraction; the mapping T : C — Cisa(-strict pseudocon-
traction; S; : C — Cis a nonexpansive mapping for each i =
1,...,N; Vf: C — H satisfies the Lipschitz condition (10)
with0 < A < (2/L); F,h : C x C — R are two bifunctions
satisfying the hypotheses of Lemma 12; {«, } is a sequence in
(0,00) with % o, < 00; {B,},{0,} are sequences in (0, 1)
with 0 < liminf,_, o, <limsup,_, 0, < 1; {y,}, {5,} are
sequences in [0, 1] with o, +y,,+38,, = 1, for alln > 0; {ﬁn’i}fil
are sequences in (0,1) and (y, + 6,){ < y,, foralln > 0;
{r,} is a sequence in (0,00) with liminf, , 7, > 0 and
liminf, , &, > 0.

Before stating and proving the main convergence results,
we first establish the following lemmas.

Lemma 15. Let one suppose that Q = Fix(T) n (); Fix(S;)) N
EP(F,h) NT #0. Then, the sequences {x,}, {y,}, {y,;} for alli,
and {u,)} are bounded.

Proof. First of all, we can show as in [18] that Po(I — AVf,)
is nonexpansive for A € (0,2/(« + L)), and P-(I — /\Vfan) is
nonexpansive for all n > 0 and A € (0,2/L). We observe that
if p € Q, then

Iy = ol <l = 2l < I = 2l (3D
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For all, from i = 2 to i = N, by induction, one proves that

”yn,i - P" S :Bn,i “un - p" + (1 - /3n,i) "yn,i—l - p” 32)
s “un —P” S ”xn _p"
Thus, we obtain that for everyi =1,..., N,
D= ol < -l < bo-pl. G

For simplicity, put y, v = Pc(y,,n — AVfy (7)) and y, =
Pc(y, = AVf, (y,)) for every n > 0. Then, y, = «,Qy, v +
(1-a,)y,yand x,,, = 0,9, +V,5, +8,Ty, for every n > 0.
Taking into consideration that Tp = p and Po(I - AVf)p = p
for A € (0,2/L), we have
|7 = 2l
= "PC (I - Avfocn)yn,N - PC (I - )LVf) P"
< [Pe(1-AVf,) yan = Pe (1291,, ) ]
+[[Pe (12, ) p = Pe (1-2f) p
< yun = 2l + “Pc (I-AVf, ) p—Pc(I-AVf) P“

< Iy = 2l + Ay [ 2] "
34

Similarly, we get ||,
(34) we have

- pl <y, - pll + Aa, | pll. Thus, from

1y = 2l = 184 (Qun = ) + (1= B,) (G = P)I
< BullQynn = P+ (1= B) [Fun — £l
< Bl Qv — Qe + B QP - 1l
+ (1= B,) (Iynn = 2l + 20, 1 21)
< Bup v = Pl + B Qe - pl
+ (1= B,) (I = 21l + Aa, [ 2])
= (1=B,(1=p)) [yun -2l
+ B, [Qp - pll + (1= B,) Aes, [ ]
= (1= B, (1=p) [yun — 2l

- 22 )

IN

Ly =2l + Aat, | o]

{
max - 1. 122
{

lQp - p|
%= ol = —— s

max

| ||<21p_—pp|| }

IN

IN

+ A‘xn "p” :
(35)

max

Since (y, + 6,)¢ < y, forall n > 0, utilizing Lemma 10, we
derive from (35)

%01 = £
=llo (v =) +va (5 = 2) + 8, (7, p)|
< )y = Pl + 1 (5 = p) + 8, (T7, - P
< [y = Pl + (v +8,) |7, - £l
<0, |y, = Pl + (3 + 8,) (I3 - £l + Aes, 1))
< [y = pll + Aa, [ p

QP p
< max{ b, - ol SL2 a2,
Q —
- max{ I, - ol SL 2 2k
(36)
By induction, we get
Qp-p
b - o < max - ol 1211
P
(37)

+2A|p| - Zoci, Vn 2 0.

i=0

This implies that {x,,} is bounded and so are {y,}, {u,},and
{y,} foreachi = 1,..., N.Itis clear that both {}, \} and {7, }
are also bounded. Slnce 1Ty, -pll < ((1+)/(1- C))||yn p||
{T'y,} is also bounded.

Lemma 16. Let one suppose that Q2 # 0. Moreover, let one
suppose that the following hold:

(H1) lim, _, B, =0and Y2, B, = 00;
(H2) Zfﬁl |Bn - ﬂn—ll <ooor hmn—»oo(lﬁn - ﬁn—ll/ﬁn) =0;

(H3) Zn llﬁnl /—gn lzl < Ooorllmn—mo(lﬁnz ﬁn lzl/ﬁn) -
0 foreachi=1,...,N;

(H4) zzzl |rn -
(H5) ¥,2, lo, —

(H6) Y2 Iy /(1 = a,) —
hm,,_,oo(l/ﬁn)h’n/(l -

Tyl < ocoorlim, , (Ir, —1,,1/B,) = 0;
Opl/B) =

Vuoi/1 = 0,_)] < o©0 or
Gn)_))n—l/(l _Gn—1)| =0

0,1l <ooorlim,_, (o,

Then, lim,, _, . l1x,,11
regular.

- x,|| = 0, that is, {x,} is asymptotically

Proof. Taking into account 0 < liminf, , o, <
limsup, _, 0, < 1, we may assume, without loss of gener-

ality, that {0,,} C [c,d] for some ¢,d € (0, 1). First, we write



X, =0, 1 Vuq + (1 =0,_1)v,_;, foralln > 1, wherev,_, =
(X, = 01 Y1)/ (1 = 0,_). It follows that for all n > 1

Xnt1 = On)n _Xn T Op-1Yn-1
1-o0, 1-0,,

Vi = Vp-1 =

ynjjn + 8nTj7n _ )/n—lj;n—l + an—lTj;n—l
1-o0, 1-0,,

Yu (yn B ynfl) + 6n (T)-;n - Tyn—l)
1-o0,

Yn _ V-1 =
+<1—on 1—(7,,_1))/”1

+ < 5n _ 6n—1

l1-0, 1-0,,4

) Tjin—l .
(38)

Since (y, +6,){ < y, for all n > 0, utilizing Lemma 10, we
have

||Yn (yn - yn—l) + 8n (Tyn - Tyn—l)”
(39)

= (Yn + 6n) ")7n - ,anl" .

Next, we estimate ||, — ¥, _,||. Observe that for everyn > 1
175 = Fasvl
< |Pe (1= AYfy,) yun = Pe (1= A, ) v
+ [P (T=2AVfe, ) yorw = Po (T =AYy, ) ]
< Y = Yol
+[Pe (1251, )y = Pe (1= AVfa,.,) yera]
<[y = Yool
(1 =2Yf,) yuiw = (1 =AYy, ) i
= 9n = Vaw | + AV, Gnin) = AV, G|

= “yn,N - yn—l,N" +A I‘xn - an—l' "yn—l,N" >
(40)

and similarly,

“yn - )7n71|| < "yn - yn—l" +A |(xn - anfll ”yn—ln . (41)

Also, from (30), we have
Y = BuQun + (1= By) o
Ynt = Bua Qpant (1= Boct) Fuano (42)
Vn>1.
Simple calculations show that
Yu= Y1 = (1= By) (Fun = Fucrn)
+ (B = Buct) (Wnorn = Fu1n) (43)
+ B (N = Q1) -
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Then, passing to the norm we get from (40) that

1y = yucil
< (1= B) 17 = Fuavl
+ 1By Buc Q018 = Tt v+ B [y = Qs
< (1= B,) (Iynn = Yucrnll+A oty = i [ 7o)
1By = Buct Qs = Tl
+ Bup [Yun = Yuorn
<(1=(1=p) B) Iun = Yuorl
+ Aoty = oy | |1
1By = But Q1. = Tl
<(1=(1=p) B) [¥un = Yurl

+ Ml (l“ﬂ - (xn—1| + |ﬁn - ﬁn—ll) >
(44)

where Ay, vl + 1Qy, n = Funll < My, forall n > 0 for some
M, = 0. Furthermore, by the definition of y,; one obtains
that, foralli = N,...,2

19 = erill < B 4 = 14|
+[Sittn s = il |Bui = Buoril - (45)
+ (1= Bui) [¥mict = Yu-rica |-
In the case of i = 1, we have
1701 = Yuoral
< B [n =t
+ 81201 = v [ 1Bt = B
(1= Bo) b = 14|

= "”n - ”n—l" + ||51”n—1 - ”n—l" |/5n,1 - /3n—1,1| .
(46)

Substituting (46) in all (45) type one obtains fori = 2,...,N
”yn,i - yn—l,i” < ”un - un—l”
+ Z "Skun—l - yn—l,k—1|| |ﬁn,k - ﬁn—l,k|
k=2

- un—l" |ﬂn,1 - ﬁn—l,ll .

+ ||S1“n—1 )
47
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This together with (44) implies that

"yn_yn—ln
< (1 _(1 _P)ﬁn)

» [ iy~ s

N
+ Z "Skun—l - yn—l,k—l" |Bn,k - ﬁn—l,k|
k=2

|

ﬁn,l - ﬁn—l,l

‘Xn—ll + |ﬁn - :anll)
< (1 _(1 _p)/jn) "un_u

+ "Slun—l - ”n—l“
+ Ml (lan -
nflll

N
+ Z "Skun—l ~ Vn-1k-1 “ |:Bn,k - ﬁnfl,kl
k=2

un—l“ Iﬁn,l - ﬁn—1,1|
‘xn—ll + |ﬁn - :anll) :

+ |1ty —
+ Ml (lan -

By Lemma 13, we know that

n-1

4, = ey || < %0 = Xpa || + 6|1 =

n

where k =
obtain

Supnz() ” Uy,

"yn - yn—l"

< (1= (1= p)B) (b =50l |1 -

n-1

: )
Tn

N
+ Z ”Skun—l - yn—l,k—l" |/3n,k - ﬁn—l,k'
k=2

un—l" |ﬁn,1 - /))n—l,1|
(Xn71| + |Bn - ﬂn%')

|rn B Tn—l'

+ |81,y -

+ Ml (|(xn -

x| + %

<(1-(1-p)B) [xn -

n

N

+ Z ”Skun—l - yn—l,kflu |ﬁn,k - ﬁn—l,k|
k=2

urﬁl" |/3n,1 - ﬁn—l,l'

(xn—1| + |Bn - /3n—1|)

B (1 - (1 _p)ﬁn) “xn_x

+ |81,y -

+ My (Je, —

n—1 ”

+M2[

T — Tn—l' o
1’— + Z Iﬁn,k - /3n—1,k| + lﬁn,l - ﬁn—l,l'
k=2

n

+ |(Xn - “n—ll + |/3n - /‘gn—ll :|

S(1_ l_p)ﬁn)"x -

Xn— 1“

+M |:|” n1|+ZIJBnk ﬁn1k|

+ ety = oy | + By = B ] >

(48)

where b > 0 is a minorant for {r,} and x + M, + Zszz ISeu,, —
Yortll + 1812, — u, | < M,, for all n > 0 for some M, > 0.

(50)

This together with (38)-(39), implies that

"Vn - anln =

(49)

— x,|l. So, substituting (49) in (48) we

“le ()711 B yn—l) + 811 (Tyn B Tyn—l)“

1-o0,
N l Vi
1-o0, 1 _
ol - 2 i
1- On 1- 01
(9 + 8) 17 = 7
1-o0,
B R ¢ W TP
+ 1- o, 1— o, “yn—ln
y” Yn—l ~
—— - —|T
+ l-0, 1-o0,, “ ;an"
Hjjn - 5}(}’[*1“
y” Yn—l _ -
T - 1 _ - T
e [ A1 L1 )
< 3 = sl + ey = a1y
Yo Yua ~ _
R e [ LA L1 1)
< (1-(1-p)B,) ||xn — x|

< (1_(1_P)Bn)"xn_x

+M2|:|r +Z|ﬁnk ﬁn lkl

+ l‘xn - “n—l' + |ﬁn - ﬂn—1| ]

+A |‘xn - ‘xn—ll ||J’n—1||

yn _ Yn—l ~ ~
it e [ L Y S}

n-1 "



N
Yy — Ve
+M3[| : bn ll +Z|ﬂn,k_ﬁn—l,k|
k=1

+ |‘xn - ‘Xn71| + |ﬁn - ﬁnfll :|

Vn

+ M |o, — o,y | + My

n

= (1-(1-p)B.) IIxn %

r,
+M3[| +Z|ﬁnk ﬁnlk'
+2 |“n - (xn—1| + |ﬁn - ﬁn—1|
+’ Vn _ Yn-1 :|’
l-0, 1-0,,

-0, 1-

n-1

(51)

where M, + Ally, |l +|¥,Il + 1T, < Mj, foralln > 0 for some

M; > 0.
Further, we observe that
Xpt1 = 0V t (1 - an) Vi
Xy =0, 1Vnat (1 - ﬁn—l) Va-1>
Vn>1.

Simple calculations show that

Xns1 = Xn = (1 - on) (Vn - anl)
+ (an - O—nfl) (ynfl - anl)
+ 0y (yn - yn—l) .

Then, passing to the norm, we get from (51)

”xn+1 - xn"
< (1 - Gn) “Vn - anln
+ |0n - an71| "yn—l -

< (1 _Un)

1/nfl” + 0y ||yn - )’;H"

X { (1 - (1 - P) ﬁn) Hxn - xn—l”

|rn - rn—ll N
+ M3 b + Z l:Bn,k - ﬁnfl,kl
k=1

+2|“n _(anll + I:Bn _ﬁn—1|+
+ ‘ Yn _ Yn-1 ]}
-0, 1-0,,

(52)

(53)
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+ |Un - an—l' "yn—l - Vn—l”

+ 0, { (1 - (1 - P) ﬁn) "xn - xn—l"
Ty =T N
+ M2 g + Z Iﬁn,k - ﬁn—l,kl
b k=1

+|an—an1|+|ﬁn-/snl|]}

< (1 - (1 - P) ﬁn) ”xn - xn—l"
|r
+M3 - Zlﬁnk ﬁn lkl
+2 l‘xn - “n—l' + |ﬁn - ﬂn—1|
+| Vn _ Vn-1 :|
-0, 1-0,,

+ lan - Gn—ll "yn—l - Vn—l”
< (1 - (1 - P) ﬁn) ”xn - xn—l"

+M[|r +Z|ﬁnk ﬂnlk|

+ |/3n - ﬁn—l' + |0n - Gn—ll

+| Yn _ Yn-1
l1-0, 1-o0

n—-1

:| +2M |ocn —ocn_l| ,
(54)

where M; + ||y, — v, < M, for all n > 0 for some M > 0. By
hypotheses (H1)-(H6) and Lemma 9, from Zn 0 &, < 00, we
obtain the claim. O

Lemma 17. Let one suppose that Q) #@. Let one suppose that
{x,} is asymptotically regular. Then, ||x, - y,| — 0and ||x, -

Uyl = llx, = T, x,Il > 0asn — oo.

Proof. We recall that, by the firm nonexpansivity of T, , a
standard calculation (see [17]) shows that if v € EP(F, h), then

A e i e (55)

Let p € Q. Then by Lemma 11, we have from (33)-(34) the
following

(1-8,) Gun -2
< ﬁn”Qyn,N - P”Z + (1 - ﬁn) ||j7n,N - P”Z

"j;n —P“Z = ”ﬂn (Qyn,N _P) +

= ﬁn“Qyn,N - p||2 + Hj;n,N - p”Z

< Bl Qv = 27 + [y = Pl + A, ]
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= ﬁnHQyn,N - p"2 + ”yn,N - p”Z
+ Acty ol 2 [y = Pl + A, [ 2])

< ﬁn“Qyn,N - P"2 + ”xn - P"2

+Aa, o (2%, - pll + Aa, 1)
(56)

"yn - P”z = “PC (I - )vaoc,,)yn - P (I - /\Vf) p"2
< (19 - pl + Ao, ]’

= “yn - p"2 + )“xn ||P|l (2 "yn - p" + /\‘xn "p”) .
(57)

Since (y, +6,)¢ < y, for all n > 0, utilizing Lemma 10, we
have

%1 - 2l
~p)+6,(T7, - p)I’

+6,) ——

= ||0n (yn - P) + Vu (yn

00 P) (1 48) 5

n
2

x [Yn (yn _p) +8n (Tyn _P)]

= Un”yn - P"2 +(y, +9,)

1 _ -
. +6n [Vn (yn _P) +8n (Tyn -
— 0y (Vn+6n) P) )/n+5
2
x [Yn (jin - p) + 671 (Tyn - P)]

= Un”yn - P"2 + (v, +9,)

2
p) + 8n(T5;n _p)]

1 —
x Yn+6n [Vn(yn_

2

— 0y (Vn + (Sn)

Vo +8 [Vn(yn yn)+6n(T)7n_yn)]

Oy = I+ (s +8,)

[YH (j;n _p) + 6n (Tyn -

1
I’l+8}’l

- I
yn +(S n+1 yn
<o lyn— 2l + (3 +8) |7, - 2l

0.
- yTn8"x"+1 - yn"Z
n n

9
= Gnllyn - p"2 + (1 - Gn) ”)771 - p"2
- l—O'n" n+l yn"
< an|lyn - P"2 + (1 - Un)
%[y = I + A, o]l (213, = pll + 2, [ ])]
- 1—0n|| n+1 yn"
< "yn - pllz + /\‘xn "P” (2 “yn - P" + A“n ”P")
Oy
- 1_—O_n|| n+1 yn"
2 2
< ﬁn"Qyn,N - p” + “xn - P"
+ Ao, [[pll 2]1x, = pll + Aer, [ )
+Aat, [P 2]y = 2l + Aer, [ p])
Oy
- 1_—O_n|| n+1 yn"
= "xn - p”Z + :Bn“Qyn,N - P"2
+22a, ol (I, = ol + [y = pll + Aes, [ ]))
- 1_—%" n+l J’n"
(58)

Taking into account 0 < liminf, _, o, < limsup,_, o, <
1, we may assume that {0,} C [c,d] for some ¢,d € (0, 1). So,
we deduce that

l—C“ n+1 yn“

<

0,
1 —nO'n " Xn+1 yn"

< Joew = I = s = 27 + Bull Qi = I
+ 20a, ||l (I, = oIl + Iy = 2l + Acx, [ 1)

< ("xn - p“ + ”anrl - P”) ”xn - xn+1” + ﬁn”Qyn,N - P"2

+ 22a, ol (o = 2l + 1y = 2l + Aeu [ P]) -
(59)

Sincew,, — 0,3, — Oand |x,—x,.,| — Oasn — oo, we
conclude from the boundedness of {x,,}, {y,}, and {y, 5} that
lx, 1=y, = Oasn — oo.This together with ||x,—x,,,,I| —
0, implies that

nango ”xn - yn” =0. (60)
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Furthermore, from (33), (55), and (56), we have
"yn - p”2 < :Bn“Qyn,N - p"2 + ”yn,N - P“z
+Aa, [l 2 [y = Pl + Aex, [ 1)

B ﬁn“Qyn,N - p"2 + ”un - p"2

(61)
+ A, [l 2y = Pl + Act, 1)
< Bl Qi = 2 + s = 2 = e, —
+ Ay, [l (211, = pll + Aev, 1)
which hence implies that
I~ sl < Bul Qs ol + b~ 6l - I
+ Act, [l (21, = o + Ac, [l
< BulQn - pI° 62)

* ("xn - p“ + “yn - P") "xn - yn"
+Aa, 1ol (2 ]1x, = pll + A, [ ) -

Since, — 0, B, — Oand|x, -y, — 0Oasn — oo, we
deduce from the boundedness of {x,}, {y,}, and {y, } that

nli_{%o ”xn - un" =0. (63)
O

Remark 18. By the last lemma we have w,,(x,) = w,(1,) and
wy(x,) = w,(u,); that is, the sets of strong/weak cluster points
of {x,} and {u,} coincide.

Of course, if B,,; — B;#0,asn — oo, for all index i, the
assumptions of Lemma 16 are enough to assure that

"xn+1 B xn"

n,i

=0, Vie{l,....N}. (64

In the next lemma, we examine the case in which at least one
sequence {3, } is a null sequence.

Lemma 19. Let one suppose that Q+0. Let one suppose

that (HI1) holds. Moreover, for an index k, € {1,...,N},
lim,, _, o Bk, = 0, and the following hold:
(H7) for all i,
|ﬁnz ﬁn 11| - i |“n - ‘xn—1| - i |/5n - ﬂn—ll

n—>oo

1m = lm
ﬁnﬁnko nmeo ﬁnﬁn,ko n—oeo ﬂnﬁn,ko

= lim 19 = 0| = lim I = 7o
n—eo ﬁnﬁn,ko n—eo ﬁnﬁn,ko

_ l_)m le _ Yn—l — 0)
" Ooﬁnﬁnk — 0y 1_O-n—l

(65)
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(H8) there exists a constant T > 0 such that (1/,)|1/B,,x, -
1/B1x,| <7 foralln> 1. Then,

||xn+1 B xn”

n,k,y

lim

n— oo

=0. (66)

Proof. We start by (54). Dividing both the terms by 3, we
have

"xn+1 - xn"
ﬁn,kg
X, — X, _
<[1-(-p)p) Bl
ﬁn,ko
M Irn - rn—1| i Zi\]:l |ﬁn,k - ﬁn—l,k|
bﬁn,kﬂ ﬂn,ko

2|(xn_(xn—1| | ﬁn 1| | o, Gn—l'

ﬁn,ko ﬂn ko ﬁn,ko

|Yn 1_ n) Yn- 1/ 0y l)l
ﬁnk0

(67)
So, by (H8) we have

"xn+1 — Xy "

ﬁn,ko
(1 _ "xn_xn—ll’
<[1-(1-p)B] T

1

+[1-(1-p) [%ﬁ

ﬂn] “xn - xn—l”

+M |rn - rn—1| ZkN:I |:Bn,k - ﬁn—l,kl
bﬁn,k0 ﬁn,kO

+ h}n/ (1 B an) B ynfl/ (1 B O'nfl)l

ﬂn,ko
+2 |(xn - (xn—1| |:Bn - ﬁn—ll + |Gn B Gn—1| :|
ﬁn,k0 fjn,k0 fjn,k0
X, — Xy
<1-(-p g 22l

ﬁn—l,ko

1 1
ﬁn,kg ﬁ n—1,k,
r

n_rn—ll Zk llﬁnk ﬁn lkl
bﬁn,ko ﬁnko

+ "xn - xnfln

+M[|
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+ h/n/ (1 B Gn) B Yn—l/ (1 B 0n—1)|
ﬁn,ko

2 |ocn - ocn_ll

/3 n,ky

|ﬁn - ﬁn—ll + |Un - Gn—ll

ﬁ n.ky ﬁ n.ky

+

“xn ~ X1 ”
ﬁnfl,ko
|rn ~ rnfll i zllc\lzl |ﬁn,k - ﬁn—l,kl

bBk, Bk,
+ |Yn/ (1 - Gn) - Vn—l/ (1 - Gn—l)l
:Bn,kg

+2 |(xn - ‘xn—ll + I:Bn - ﬁnfll + |Gn - on—1| :|
ﬁ n,k, ﬁ n,ko B 1,k

“xn ~ Xn1 ” 1

ﬁn—l,ko + (1 - P) ﬁn !

+ ﬁnT "'xn — Xp-1 "

<[1-(1-p)B,]

+ M

=[1-(1-p)B,]

1-p

X <|r [, = x|

+M |: |rn B rn—ll + Zszl |ﬁn,k - ﬁn—l,k|
b/jn/jn,ko ﬁnﬁn,kg

+ |yn/ (1 B an) - Vn—l/ (1 B Un—l)|
ﬁnﬁn,ko

2 |(xn B (xn—1| + |ﬁn - /3n—1|
ﬁmBn,kg ﬁnﬁn,ko

+|0n _Un—ll :| } ]
/‘gnlgn,k(,

(68)

Therefore, utilizing Lemma 9, from (HI), (H7), and the
asymptotical regularity of {x, } (due to Lemma 16), we deduce
that

. ”xn+1 - xn" _

lim

0. (69)
nmo B

O

Lemma 20. Let one suppose that Q)+ @. Let one suppose that
(H1)-(H6) hold. Then,

lim ”yn,N - yn,N" = lim ||)7n - yn" =0. (70)

n— 00 n— 00

1

Proof. Let p € Q. Then, by Lemma 11 we have

Iy, - 2l
= 1B, Qry — )+ (A= B) G~ )
< Bull Qv = 2l + (1= B [T - 2l
= Bul Qv =2+ (1-B,)
x [P (I=AVf, ) yun = Pl - AYf)p|
< BullQyun — 2 +(1-B,)
X |(I = AVf) yo = 0= AVF)p = Aet, yn
< BulQyn — pl* + (1-B,)
% [(1 = AVf) s = (1= AVF) p|
220, (Y (1= AVf) Yo = (1= AVf) p) |

< Bl Qyun — pI* + (1-B,)
2 2 2
% (D = 2 +22 (A= 2 ) 19 ) - V()
+2/hxn "yn,N" "(I - Avaty,) YN~ (I - AVf) P" ]

< ﬁn”Qyn,N - p"2 + (1 - ﬁn)

2
I, = ol +22. (1= 1) I9f ) - 70"

X

+2/\06n "yn,N" "(I - Avfot,,) YN~ (I - )va) P" ] .
(71)

So, we obtain

(122 (5 = 1) 1% O - VO

= ﬂn"Qyn,N - P”z + (1 - ﬁn) "xn - p||2 - "yn - P“Z
+ (1 - ﬁn) ZA(X,‘ “yn,N”
x “(I - /\vftx,,) YnN ~ (I - /\Vf) P"

< Bul Qe = 2l + (% = 2l + v - )
x (“xn - P" - "yn - PH)
+ ZA(Xn "yn,N” 'l(I - /\Vfocn) Yu N~ (I - /\Vf) P"

< ﬁn"Qyn,N - p”Z + (”xn - P" + "yn - P“) (”xn - yn”)

+ 2/\06,, "yn,N“ 'l(I - /\vfan) Yu N — (I - /\Vf) p" .
(72)
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Sinceeat, — 0,8, — 0,llx, -y, = 0,and 0 < A < 2/L,
from the boundedness of {x,}, {y,}, and {y,, ;} it follows that
lim,, _, IV (y,.n) = Vf(p)Il = 0, and hence
nlgrgo “Vftxn (yn,N) - Vf (P)" =0. (73)
Moreover, from the firm nonexpansiveness of P we obtain
17 - 2l
= [Pott = A9f )y = Pott = A9 F)p|
< <(I - AVfoc,,) YN~ (I - AVf) b, yn,N - p>
1 2
= 2 (=297 ) s = = 25F) o]+ |7 = oI

- ||(I_ Avftxn)yn,N - (I_Avf)P_ (yn,N - P)“z}

< 2 (= 2 22 |9, ) - 57 ()]
x |(1=A9f, ) yun = (1= AVS) p|
+ ||}7n,N - P"2 - ")’n,N - )7n,N||2
+21 <yn,N - yn,N> vfoc,, (yn,N) - Vf (P)>
- V|, Gan) - F ()}
(74)
and so

17 = 21" < 1y = 21 = 17 = Tl
+ 20 |V, Gue) = VS (2]
x| (1= AVfy, ) yun = (1= AVF) p|
+ 20 {Yun = T Ve, ) = Y (p))

X Vfe, Gn) - 5F (]
(75)

Thus, we have
Iy = 27 < BllQyn = 2" + (1 = B) |7 — 2l
< Bl Qun = I + 130 = I
= (1= B) |9y = Tl
+ 2 |[Vfe, () = V£ ()]
x| (1= A9, ) yun = (1= AYF) p|
+2(1=B,) A (=T Ve, ()= Vf ()

(1= B N|Vhu, Gun) = V7 (2]
(76)
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which implies that

(1= B) 9 = Tl

< Bl Qi = 21 + 3 - 2I°
Ny = 2l +2A|VFe, Gun) = ¥ ()
x|(1=A9f,.,) yon = (1= AVF) p|
+2(1= B) M = T Ve, ) = VF ()
- (1= B V|, 0an) - VF (D)

< BulQyn = 2l + %, - Pl
= oI + 21| Vfo, (n) =V (0)]
x|(1 = A%f,.,) yun = (1= AVS) p|
+2(1= BIA D = T Ve, i) = Vf ()
- (1= B V|, ) - VF (D)

< Bl Qn = 21 + (% = 21+ 13 = 1) I~ 2
+ 20| Vf,, () = Vf ()
x| (1= A%f,.,) yun = (1= A1) p|

+2A ”yn,N - yn,N" ||Vf0£n (yn,N) - Vf (P)" :
(77)

Since B, — 0, [Ix, = y,I — 0,and [Vf, (y,,x) = V(D) —

0, from the boundedness of {x,}, {y,}, {y,n} and {y, n}. it
follows that lim,, , [y, ny = 7.~/ = 0. Observe that

13 = Funel = BullQnn = Funll — 0 as n— oo, (78)
and hence
17 = 2l
<17 = Funll + 17 = 2
= | (1= AVfa,) 3u=Pe (1= AYfy ) e +1Fre = 3l
< |n = Yl + 1 Fun = 2l
< 5w = Funell + 17w = Vel + 17 = 22

=2 ”yn - jjn,N” + "yn,N - yn,N” — 0 asn-— oo
(79)

Thus, lim, _, 17, — vl = 0. =

Lemma 21. Let one suppose that Q2+ @. Let one suppose that
0 < liminf, | B,; < limsup,_, B,; < 1 foreachi =
1,..., N. Moreover, suppose that (H1)-(H6) are satisfied. Then,
lim IS;u,, —u, |l = 0 foreachi=1,...,N.

n— 00
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Proof. First of all, observe that

Xnt1 = Vn = Vn (yn - yn) + (Sn (Tj;n - yn)

=Yn (5771 - yn) + 6n (Tj;n - Tyn) + (Sn (Tyn - yn) .
(80)

By Lemmas 16 and 20, we know that ||x,,; — x,[l — 0and
17, - v, = 0asn — oco. Hence, utilizing Lemma 7(i), we
have

||6n (Tyn - yn)"
= ”xn+1 Vi~ VYn (jin - yn) - 6n (Tyn - Tyn)"
< ”xn+1 - yn" T Vn ")7n - yn” + 8n ”Tyn - Tyn”

< ”xn+1 - yn" + "j;n - yn” + "T)7n - Tyn”

~ 1+¢
< ”xn+1 - xn" + "xn - yn" + "yn - yn" + I__c ”yn - yn”

2 -
= ”xn+1 - xn" + "xn - yn" + 1__( ”yn - yn“ >
(81)

which together with ||x, — v,/ — 0 implies that
lim, _,  I6,(Ty, — y)I = 0. Taking into account
lim inf 8, > 0, we have

HIL% ”Tyn - yn" =0. (82)
Let us show that for each i € {1,..., N}, one has ||S;u,, —

Yuial — 0Oasn — oo.Let p € Q. Wheni = N, by
Lemma 11, we have from (33)-(34) the following:

Iy = 2 < Bl Qo = I + (1= ) 7y - 2
< Bul Qi = 21" + [7n - £
< BullQun = I + (1 = 2l + Aty 1)’
= Bul Q= ol + 1y — £l
+ A0, [P 2 lynn = Pl + Ay 1)
= Bl Qun = 21 + BunelSn - 2l
+ (1= Bu) [ns — 2l
= Bun (1= Bon) ISty = Vs ”2
+ Act, [Pl 2l ynn =l + Ay )
< Bl Qn = I + s~ I’
= Bu (1= Bune) ISwthn = Yt

+ A [l 2 3 = Pl + Acx, [ 2])

13

< ﬂn"Qyn,N - P”Z + “xn - p"2
- ﬂn,N (1 - ﬁn,N) ||SNun - yn,N—l“2
+ Act, | o]l 2 [y = Pl + A, 2] -
(83)

So, we have

Bun (1- /3n,N) ”SN”n = Yn,N-1 “2
< Bul Qv = I + % = 2l = Iy - 2l
+Aa, [l 21y = 2l + Ae, 1)
< Bl = 21 + (1 = 2l + Iy = ) I = 72l
+ Acty o]l 2 |7 = 2l + Ay [12]) -
(84)

Since «, — 0,3, — 0,0 < liminf, B,y <
limsup,,_, B, n < Liandlim, , _|lx, - v, = 0, it is known
that {||Syu,, — ¥, 1[I} is a null sequence.

Leti € {1,...,N — 1}. Then, one has

Iy - oI
< Bull Qi = 2l + 17 = 2l
< Bul Q= I+ (v = 2l + Acx, ]’
= Bull iy = I + un - 2l
+ A, || 21y = Pl + Aer, [ 1)
< Bull Qv = 2l + BunilSws, = oI
+ (1= Bn) [Vt = P“2
+Aa, 1ol 2 [ = Pl + Act, [ )
< Bul Qi = oI + Bunlxa - 2l
+ (1= Bun) [y — 2
+ Ay [ ol @[y = Pl + Aer, [ 1)
< Bul Qv = I° + 2, 2] 21320 = £l + Act [ 2]}
+ Bl = P"2
+(1-Bun) [ﬁn,N—l"SN—l”n -’
+ (1= Bunt) [an—a = 1]

< Bl Q= I + Ay [l 2 [y = Pl + Aty 2]
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+ (ﬁn,N + (1 - [;n,N) ﬁn,N—l) ”xn - P"2

N
+ H (1= Bui) |un—2 = P”z’

k=N-1
(85)

and so, after (N — i + 1) iterations,
7. - ol
< Bull Qv = PI” + 2, 1]l (23 = £l + Acty [ 2])

+ <ﬂn,N + Z <H(1 _ﬁn,1)> ﬂn,j—l)
j=iv2 \ I=j

N
< = oI+ TT (1= Bu) Iy = 2l

k=i+1

< ﬁn"Qyn,N - P||2 + /\‘xn "P" (2 ”yn,N - P" + /‘(xn "P")

+ <ﬁn,N + i <ﬁ(1 _ﬁn,1)> ﬁn,jl)

j=it2 \ I=j

X "xn - p”2 + 1_[ (1 - /';n,k)

k=i+1
X [ﬁn,i"siun - p"2 + (1 - ﬂn,i) "yn,ifl - P“2
_ﬂn,i (1 - ﬁn,i) “Siun - yn,i—lllz]

< Bul Qi = 2l + A, [l @y = Il + A, 2]

N
+ [, - P”2 - :Bn,il—[ (1= Bug) ISit4 — yn,i—1"2’
. (86)
Again, we obtain that
N
ﬁn,ilk_! (1= Buk) “Si”n = Ynji-1 ”2

< Bl Qv = I + Ay ol 2y = 2l + Aes, [ )
+ = ol =y 2l

< Bull Qv — 2l + Ay [l 2 [y = Il + A 2]
+ (o = 2l + 1y = 2D 0 = 2l

(87)

Since @, — 0, 3, — 0,0 < liminf, ,B,; <

limsup, , B,; < 1 foreahi = 1,...,N - 1, and
lim, , llx, — v, = 0, it is known that

Jim Sz, = 0] = 0. (88)

Obviously, for i = 1, we have ||S,u,, —u, || — 0.
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To conclude, we have that

"Szun - un“ < "SZun - yn,l" + "yn,l - un"

(89)

|,

from which ||S,u,, — u,ll — 0. Thus, by induction [|S;u,, —
u,ll — Oforalli=2,..., N sinceitis enough to observe that

= "Szun - yn,l" + ﬂn,l "Slun — U,

"Si”n - un“

< "Siun - yn,i—l“ + ”yn,i—l - Si—lun" + "Si—lun - un” 90)
< "Siun = Ynji-1 “ + (1 - ﬁn,i—l) "Si—lun = Ynji-2 ||

+ "Si—lun - un” . O

Remark 22. As an example, we consider N = 2 and the fol-
lowing sequences:

(a)o,=1/2+2/n,y,=0,=1/4—1/nforalln > 4
(b) B, =1/nr,=2-1/n,foralln > 1;

(© Bur=1/2-1/n, B,, =1/2-1/n* foralln> 2.

Then, they satisfy the hypotheses on the parameter sequences
in Lemma 21.

Lemma 23. Let one suppose that Q#0 and B,; — f; for all
iasn — 00. Suppose there exists k € {1,..., N} such that
Bux — 0asn — co. Letky € {1,..., N} be the largest index
such that B, — 0asn — oo. Suppose that

(@) ((Xn + ﬁn)/ﬁn,ko — O0asn — oo;

(ii) if i < kg and B,; — 0, then B, /B,; — Oasn —
00;

(iii) if B,; — P #0, then f3; lies in (0,1).

Moreover, suppose that (Hl), (H7), and (H8) hold. Then,
lim,, , IIS;u,, —u,ll = 0 foreachi=1,...,N.

Proof. First of all, we note that if (H7) holds, then also (H2)-
(H6) are satisfied. So {x,} is asymptotically regular. Let k,
be as in the hypotheses. As in Lemma 21, for every index
i € {l,...,N} such that 8,; — f;#0 (which leads to
0 < liminf, ,B,; < limsup,_, B,; < 1), one has ||S;u, —
Vil = 0asn — oo.

For all the other indexes i < k,, we can prove that [|S;u,, —
Vil = 0asn — ooinasimilar manner. By the following
relation (due to (86)):

|1 = I
< Gnllyn - p”2 + (Yn + 8n) “}771 - p”2

= 0n||yn - p”2 + (1 - Gn) ||5;n - p”2
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< 0y - P + (1= 0,) Iy — ol + A, | p])°

< (1 = ol + Aoty [1p)?

= Iy = " + A, o] 2 Iy = 2l + Act, [ 2])

< BullQyn = 2I” + At 12 2 13 — 2l + Aex, [ 2]

N

+ "xn - p”2 - ﬁn,il—[ (1 - ﬁn,k) "Siun - yn,i—l"2

k=i

+Aa, [l 2 Iy = pll + Ac, 1]
< Bl Qi =PI + 205, ]
X (e = oI+ Iy = Pl + Acs, [ )

N
+ "xn - P”Z - ﬁn,il_[ (1 - ﬁn,k) "Siun - yn,i—lllz’
k=i
(1)
we immediately obtain that
N 2
(1 - ﬁn,k) "Siun - yn,i—1"
k=i
/3n 2 %
< Qy,.n—pl + =221
ﬁn,i “ Vn N P” :Bn,i "p" (92)

x (“xn - P" + "yn - P“ + Aan "P”)

Xp — Xy
(= ol # s ol el
ﬂn,i
By Lemma 19 or by hypothesis (ii) of the sequences, we have
"xn - xn+1” _ "xn - xn+1“ ) ﬁ")ko _o. (93)
ﬁn,i ﬁn,ko /3n,i
So, the thesis follows. O

Remark 24. Let us consider N =
sequences:

3 and the following

(@) «, = 1/n5/4,,8n = l/nl/z,rn =2-1/n* foralln > 1;
(b) o, = 1/2+2/n*, y, =8, = 1/4—1/n*, forall n > 2;

©) B1 = 1/n1/4, B2 =1/2- 1/, Buz = 1/n1/3,for all
n>1.

It is easy to see that all hypotheses (i)-(iii), (H1), (H7), and
(H8) of Lemma 23 are satisfied.

Remark 25. Under the hypotheses of Lemma 23, analogously
to Lemma 21, one can see that

Jdim [|Siu, = | =0, Vie{2,....N}. (94)

Corollary 26. Let one suppose that the hypotheses of either
Lemma 21 or Lemma 23 are satisfied. Then, w,(x,) =

ww(un) = ww(yn,l)’ ws(xn) = ws(un) = ws(yn,l)’ and
w,(x,) C Q.
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Proof. By Remark 18, we have w,(x,) = w,(u,) and w,(x,,) =
w,(u,). Observe that

"xn - yn,lll = "xn - un" + "yn,l - un"
(95)

= [ = hall + By 1124, = 20|

By Lemmas 17 and 21, ||x,, — u,| — 0and |[|S;u, —u,|l — 0
asn — 00, and hence

lim |x, -y, = 0. (96)

n— 00

So, we get w,,(x,,) = w,(¥,1) and wy(x,) = w,(y, ).

Let p € w,(x,). Since p € w,(u,), by Lemma 21
and Lemma 7(ii) (demiclosedness principle), we have p €
Fix(S;) for all index i, that is, p € ();Fix(S;). Taking
into consideration that T is {-strictly pseudocontractive, by
Lemma 7(i), we get

”Txn - xn”

< “Txn - Tyn" + ”Tyn - yn" + "yn - xn"

1+¢ (97)
< 1o e gl =Tyl + e = 0l

2
= 1-¢ "x"_yn" + "yn_Tynl >

which together with ||x,, — y,[l — 0 (by Lemma 17) and ||y, —
Ty, — 0 (by (82)) implies that

lim [|lx, - Tx, | = 0. (98)

Utilizing Lemma 7(ii) (demiclosedness principle), we
have p € Fix(T). Furthermore, by Lemmas 14 and 17, we
know that p € EP(F, h). Finally, by similar argument as in
[18], we can show that p € I, and as a result p € Q. O]

Theorem 27. Let one suppose that QO #@. Let {B,}, {B,;}, i
L,..., N, besequences in (0, 1) such that 0 < liminf, , B,; <
limsup,, _, ,B,.; < 1 for all index i. Moreover, Let one suppose
that (H1)-(H6) hold. Then, the sequences {x,}, {y,}, and {u,,},
explicitly defined by scheme (30), all converge strongly to the
unique solution x™ € Q of the following variational inequality:

Al

(Qx" -x",z-x") <0, VzeQ. (99)

Proof. Since the mapping P,Q is a p-contraction, it has a
unique fixed point x*; it is the unique solution of (99). Since
(H1)-(H6) hold, the sequence {x,} is asymptotically regular
(by Lemma 16). In terms of Lemma17, ||x,, — y,| — 0 and
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llx, —u,l — 0asn — oco. Moreover, utilizing Lemmas 8
and 10, we have from (33)-(34) the following:

s = [
%2 ~ %12
< Unl|yn -X “ + (1 - an) "yn —-X "
B 0nl|yn -x" “2 + (1 - Un) ("yn - x*" + /‘(Xn "P")2
< (|3 = x| + Aax, )’
=l = "7 + Aoty 2]l 23 = %" | + Aa, [ )
< "ﬁn (Qyn,N - Qx*) + (l - ﬁn) (yn,N - x*)"2
+2B,(Qx" = x", y, = x7)
+ Acty [ o] (2 [y = %7 + Aet, [ 1))
< Bup 1y = %1+ (1= B) [ = x[)°
+ zﬁn <Qx* - x*’yn - x*>
+ Acty [| ol (2 [y = %7 + Aex, [ 1))
= (1= (1=p) B Iymn = "I
+ zﬁn <Qx* - x*’yn - X*>
+ Acty [| ol (2 [y = %7 + Aer, [ 1))
< (1 - (1 - p) ﬂn) ||un - x*”2
+ zﬁn <Qx* - X*,)/n - X*>
+ Acty [| ol (2 [y = %7 + Aet, [ 1))
< (1 - (1 - P) ﬁn) ||xn -x" “2
+2p,{Qx" —x", y, - x7)
+ Adty [|p]| (2 [y = %7 + Aet, [ )
= (1 - (1 - P) ﬁn) len -x" “2

2 5 * #
+(1_p)ﬂn'TP<QX —-X ’yn_x>

(100)

+Aa, [l (2 [y = 7] + Ae, [ 2]) -

Now, let {xnk} be a subsequence of {x,} such that

limsup (Qx* — x",x, — x") = lim <Qx* -x",x, —x*>.
n— 00 k— oo k

(101)

By the boundedness of {x,,}, we may assume, without loss of
generality, that x,, — z € w,,(x,). According to Corollary 26,
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we know that w,(x,) ¢ Q, and hence z € Q. Taking into
consideration that x* = P,Qx" we obtain from (101) that

limsup (Qx* - x*, y, — x*)

n— 00

= limsup [(Qx" - x",x, —x") + (Qx" - x", y, — x,,)]
n—00

= limsup (Qx" —x",x, — x")

n— 00
. * * *
_klingo<Qx - X, X, =X >

=(Qx" -x",z-x") <0.
(102)

Since Y 2o, < oo and Y2 B, = oo, we deduce that

Yoo Mol pll 2y, = x* 11+ Aex, [l pll) < coand 332 (1-p)B, =
00. In terms of Lemma 9 we derive x, — x"asn — co. [

In a similar way, we can derive the following result.

Theorem 28. Let one suppose that Q# 0. Let {B,}, {B,;}, i =
L,..., N, be sequences in (0, 1) such that 3,; — f; for alli as
n — oo. Suppose that there exists k € {1,..., N} for which
B — 0asn — oo. Letk, € {1,..., N} the largest index for
which B, — 0. Moreover, let one suppose that (H1), (H7),
and (H8) hold, and

(@) (o, + B,)/Buk, — Oasn — oo;

(ii) if i < kg and B,; — 0, then B, /B,; — Oasn —
©0;

(iii) if B,; — PB; #0, then f3; lies in (0, 1).

Then, the sequences {x,}, {y,}, and {u,} explicitly defined by
scheme (30) all converge strongly to the unique solution x* € Q
of the following variational inequality:

(Qx" —x",z-x") <0, VzeQ. (103)
Remark 29. According to the above argument processes for
Theorems 27 and 28, we can readily see that if in scheme (30),
the iterative step y, = f3,Qy, ny+(1-p,)Pc( yn,N—}tVfan (Vo))
is replaced by the iterative one y, = f3,Qx,, +(1-,)Pc(y, n—
AVfo (¥un)) then Theorems 27 and 28 remain valid.

Remark 30. Theorems 27 and 28 improve, extend, supple-
ment, and develop [17, Theorems 3.12 and 3.13] and [1,
Theorems 5.2 and 6.1] in the following aspects:

(a) the multistep iterative scheme (30) of [17] is extended
to develop our relaxed viscosity iterative scheme (30)
with regularization for MP (3), EP (10), and strict
pseudocontraction T by virtue of Xu iterative schemes
in [1];

(b) the argument techniques in Theorems 27 and 28 are
very different from the ones in [17, Theorems 3.12 and
3.13] and the ones in [1, Theorems 5.2 and 6.1] because
we use the properties of strict pseudocontractive
mappings and maximal monotone mappings (see,
e.g., Lemmas 7 and 10);



Journal of Applied Mathematics

(c) compared with the proof of Theorems 5.2 and 6.1
in [1], the proof of Theorems 27 and 28 shows that
hmn%oo”yn,N - PC(I - Avfocn)yn,N" = hmnaoo”yn -
Pc(I = AVfy )yl = 0 via the argument of
limn_>oo||Vf%(yn)N) - VF(p)ll = 0, forall p € Q (see
Lemma 20 and its proof);

(d) the problem of finding an element of Fix(T) N
(N; Fix(S;)) N EP(F, h) N T in Theorems 27 and 28 is
more general than the one of finding an element of
Fix(T) n (), Fix(S;)) N EP(F, h) in [17, Theorems 3.12
and 3.13] and the one of finding an element of I in [1,
Theorems 5.2 and 6.1].

4. Applications

For a given nonlinear mapping A : C — H, we consider
again the variational inequality problem (VIP) of finding x €
C such that

(AX,y-%) >0, VyeC. (104)

Recall that if u is a point in C, then the following relation
holds:

ueVI(C,A) &= u=P-(I-AA)u, forsome A >0,

(105)
from which we have the following relation:

uel & ueVI(C,Vf) & u=P(I1-AVf)u,
(106)
for some A > 0.

An operator A : C — H is said to be an a-inverse
strongly monotone operator if there exists a constant o« > 0
such that

(Ax - Ay,x - y) > of|Ax - Ay|", Vx,yeC. (107)

As an example, we recall that the a-inverse strongly
monotone operators are firmly nonexpansive mappings if o« >
1 and that every a-inverse strongly monotone operator is also
a (1/a) Lipschitz continuous (see [19]). We observe that, if A
is a-inverse strongly monotone, the mapping P-(I — pA) is
nonexpansive for all 4 € (0,2«] since they are compositions
of nonexpansive mappings (see [19, page 419]).

Let us consider S,,...,S,, a finite number of nonexpan-
sive self-mappings on C and A, ..., Ay be a finite number
of a-inverse strongly monotone operators. Let T : C — C
be a {-strict pseudocontraction on C with fixed points. Let
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us consider the following mixed problem of finding x* €
Fix(T) N EP(F, h) N T such that

((1-8)x",y-x")20, VyeFix(T)NEP(Fh)NT,

((1-8))x",y-x*)y >0, VyeFix(T)NEP(Fh)NT,

((1-8y)x",y-x")20, V¥yeFix(T)NEP(Eh)NT,

(A x*,y-x")>0, VyeC,
(Ay)x*,y—-x") >0, VyeC,
(Ayx",y-x") >0, VyeC.

(108)

We denote by (SVI) the set of solutions of the above (N +
M) system. This problem is equivalent to finding a common
fixed point of T, {PFix(T)ﬂEP(F,h)nFSi}gl’ {Po(I - ‘uAi)}f\fl. The
following results are then consequences of Theorems 27 and
28.

Theorem 31. Let one suppose that QO = Fix(T) n (SVI) n
EP(F,h) N T #0. Fixy € (0,2«], and A € (0,2/L). Let {«,},
{B.}i = L....,(M + N), be sequences in (0,1) such that
0 < liminf, , B,; < limsup,_ B,; < 1 for all index
i. Moreover, Let one suppose that (H1)-(H6) hold. Then the
sequences {x,}, {v,}, and {u,} explicitly defined by the following
scheme:

1
F(un,y)+h(un,y)+r—(y—un,un—xn) >0, VyeC,

Vo1 = :Bn,IPFix(T)ﬂEP(F,h)nrglun + (1 - ﬁn,l) Up>
Yni = ﬁn,ip Fix(T)nEP(F,h)nl"giun
+(1- ﬁn,z‘) Vnji-1>

YnM+j = ﬂn,M+jPC (I - MAj) Uy,

i=2,...,M,

+ (1= Burtsj) Ywrtsjor» J =1L N,
V= BaQVupten + (1= B,)
x P (}Vn,M+N - AVf, ()’n,M+N)) >
X1 = Opdn + VuPe (Va = Ao, (7))

+8nTPC (yn_AVfoc,, (yn))’ Vn >0,
(109)

all converge strongly to the unique solution x* € Q of the
following variational inequality:

Qx" —x",z-x") <0, VzeQ. (110)
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Theorem 32. Let one suppose that Q # 0. Fixu € (0,2«] and
A €(0,2/L). Let {B,}, {B,;}, i = 1,...,(M + N), be sequences
in(0,1)and B,; — P, foralliasn — oo. Suppose that there
exists k € {1,...,M + N} such that B,;, — Oasn — oo. Let
ko € {1,..., M + N} be the largest index for which B, — 0.
Moreover, let one suppose that (H1), (H7), and (H8) hold, and

(i) (‘xn + /Sn)/ﬁn,kg — O0asn — oo;

(ii) if i < kg and B,; — 0, then B, /B,; — Oasn —
(S o))

(iii) if B,; — PB;#0, then B, lies in (0, 1).

Then, the sequences {x,}, {y,}, and {u,} explicitly defined by
scheme (109) all converge strongly to the unique solution x™ €
Q of the following variational inequality:

(Qx" - x",z-x") <0, VzeQ. (111)

Remark 33. If we choose Vf = A; =--- = Ay = 0 in system

(108), we obtain a system of hierarchical fixed point problems
introduced by Moudafi and Maingé [20, 21].

Further, utilizing Theorems 27 and 28, we again give
the following strong convergence theorems for finding a
common element of the solution set I of MP (3), the solution
set EP(F, h) of EP (10), and the common fixed point set
(N; Fix(S;)) of a finite family of nonexpansive mappings S; :
C->Ci=1,...,N.

Theorem 34. Let one suppose that Q = ([, Fix(§;)) N
EP(F,h) N T#0. Let {B,}, {B,;}, i = 1,..., N, be sequences
in (0,1) such that 0 < liminf, , B,; <limsup,_, fB,; <1
for all index i. Moreover, Let one suppose that there hold (HI1)-
(H6) with y, = 0, for alln > 0. Then, the sequences {x,}, {y,},
and {u,} generated explicitly by

F(u,y)+h(u,y)+ l(y—un,un—xn) >0, VyeC,
Tﬂ

Y1 = :Bn,lslun + (1 - ﬁn,l) Uy

yn,i = ﬂn,isiun + (l - ﬁn,i) yn,i—l’ i= 2,...,N,

Yn = ﬁnQyn,N + (1 - ﬂn) PC (yn,N - /\Vfoc,, (yn,N)) >

X1 = 0,9, + (1= 0,) Pc (3, = AVf, (3,)), ¥n20,
(112)

all converge strongly to the unique solution x* € Q of the
following variational inequality:

(Qx" —=x",z-x") <0, VzeQ. (113)

Proof. In Theorems 27, put T = I the identity mapping and
¥, = 0, for all n > 0. Then, T is a {-strictly pseudocontractive
mapping with { = 0. Hence, we deduce that Q = Fix(T) n
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(N; Fix(S;)) N EP(F,h) N T = (), Fix(S;)) N EP(F,h) N T #0,
(Y, + 8,)¢ <y, foralln > 0, and

Xpy1 = OpYn + YnPC (yn - /\Vftxn (yn))
+6nTPC (yn_lvfocn (yn))
=0yt 6nPC (yn - )‘Vfan (yn))

=0p)nt (1 - an) PC (yn - /lvfocn (yn)) .

Thus, the conditions in Theorem 27 are all satisfied. and from
which we obtain the desired result. O

Theorem 35. Let one suppose that QO = (), Fix(§;)) N
EP(F,h) N T#0. Let {B,}, {B,;}, i = 1,..., N, be sequences
in (0,1) such that B,,; — f; foralliasn — oo. Suppose that
there exists k € {1,..., N} for which B, — 0asn — oo.
Let ky € {1,..., N} be the largest index for which 3, — 0.
Moreover, let one suppose that there hold (HI), (H7), and (H8)
withy, =0, foralln > 0, and

(114)

() (ety + B/ Pug, = Oasn — oo;

(i) if i < ko and B,,; — O, then B, /B,; — Oasn —
60;

(iii) if B,; — PB;#0, then B, lies in (0, 1).

Then the sequences {x,}, {y,}, and {u,} generated explicitly by
(112) all converge strongly to the unique solution x* € Q of the
following variational inequality:

(Qx" —x",z-x") <0, VzeQ. (115)
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