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A novel method named as coherent column replacement method is proposed to reduce the coherence of a partially deterministic
sensing matrix, which is comprised of highly coherent columns and random Gaussian columns. The proposed method is to
replace the highly coherent columns with random Gaussian columns to obtain a new sensing matrix. The measurement vector is
changed accordingly. It is proved that the original sparse signal could be reconstructed well from the newly changed measurement
vector based on the new sensing matrix with large probability. This method is then extended to a more practical condition when
highly coherent columns and incoherent columns are considered, for example, the direction of arrival (DOA) estimation problem
in phased array radar system using compressed sensing. Numerical simulations show that the proposed method succeeds in
identifyingmultiple targets in a sparse radar scene, where the compressed sensingmethod based on the original sensingmatrix fails.
The proposed method also obtains more precise estimation of DOA using one snapshot compared with the traditional estimation
methods such as Capon, APES, and GLRT, based on hundreds of snapshots.

1. Introduction

Compressed sensing has received considerable attention
recently and has been applied successfully in diverse fields, for
example, image processing [1], video technology [2], wireless
communication [3], and radar systems [4–10]. The central
goal of compressed sensing is to capture attributes of a signal
using very few measurements. In most work to date, this
broader objective is exemplified by the important special
case in which a 𝐾-sparse vector 𝑥 ∈ 𝑅

𝑁 (with 𝑁 large)
is to be reconstructed from a small number 𝑀 of linear
measurements with 𝐾 < 𝑀 < 𝑁. The two fundamental
questions in compressed sensing are how to construct suitable
sensing matricesΦ and how to recover 𝑥 from 𝑦 efficiently.

In early work of compressed sensing, the entries of
the sensing matrix are generated by an i.i.d Gaussian or
Bernoulli process or from random Fourier ensembles [11–
13]. The role of random measurement provides the worst
case performance guarantees in the context of an adver-
sarial signal/error model. Random sensing matrices are

easy to construct and are 2𝐾-RIP with high probability
[13].

With the application area of compressed sensing extended
towider fields, the randomsensingmatrix is replaced bymore
structured sensing matrix. Most of the recent compressed
sensing work related to sensing matrix construction focuses
on the construction of structured matrices which often
exhibit a considerable structure [14]. This largely follows
from efforts to model the way the samples are acquired
in practice, which leads to sensing matrices that inherent
their structure from the real world. However, most of the
structured sensingmatrices based on the practical acquisition
equipment do not satisfy the RIP property, which guarantees
the perfect reconstruction of the original sparse signal with
large probability.

In this paper, we are considering changing the original
sensing matrix into a random Gaussian matrix or a matrix
with low coherence via some software-based algorithm in
the reconstruction side. Firstly, a novel method, named as
coherent column replacement method, is proposed to reduce
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the coherence of a partially deterministic sensing matrix.The
proposedmethod is to replace the highly coherent columns in
the original sensingmatrixΦwith randomGaussian columns
to obtain a new sensing matrix Φ

󸀠. The measurement vector
𝑦 is changed accordingly. It is proved that the original sparse
signal 𝑥 could be reconstructed well from the newly changed
measurement vector 𝑦󸀠 based on the new sensing matrix Φ

󸀠

with large probability.
The proposed column replacement method is then

extended to a more practical condition when highly coherent
columns and incoherent columns are considered, for exam-
ple, the direction of arrival (DOA) estimation problem in
phased array radar system. The applications of compressed
sensing to radar systems are investigated in [4–10]. In [4], it
is demonstrated that the compressed sensing method could
eliminate the need for match filter at the receiver and has the
potential to reduce the required sampling rate. In the context
of groundpenetrating radar (GPR), [5] presents a compressed
sensing based data acquisition and imaging algorithm. By
exploiting the sparsity of targets in the spatial space, the
proposed algorithm could generate sharper target space
images with much less compressed sensing measurements
than the standard back projection methods. Also the sparsity
of targets in the time-frequency plane is exploited for radar
in [6, 7]. In [8], compressed sensing is used to identify
targets in a passive radar system. There are plenty of work
concerning compressed sensing based phased array radar in
recent years [9, 15, 16]. In [9], the author puts focus on the
generalization of the radar signal model for compressed sens-
ing and does not provide realizable procedures. In [15], the
authors address the narrow-band source localization problem
for arbitrary arrays with known geometry in the presence
of arbitrary noise of unknown spatial spectral density. In
[16], the authors present a source localization method based
on a sparse representation of sensor measurements with
an overcomplete basis composed of samples from the array
manifold.

Most of the present work for compressed sensing radar
systems concentrates in designing the transmitted wave to
implement a sensing matrix Φ with low coherence [10].
However, in phased array radar system, the steering matrix is
deterministic and cannot be changed in practice. Therefore,
it is required to develop a novel compressed sensing method
which brings a little change to the existing hardware system
of the phased array radar.

In the proposed method developed for compressed sens-
ing based phased array radar system, a hybrid system is
built with a bottom subsystem and a top subsystem for
reconstruction.The bottom subsystem consists of a hardware
specific sensing matrix Φ, an acquired measurement vector
𝑦, and the original signal 𝑥. The original sensing matrix Φ

and measurement vector 𝑦 are input to the software-based
top subsystem, where a new sensing matrix Φ

󸀠 and a new
measurement vector 𝑦󸀠 are generated. Since the new sensing
matrixΦ󸀠 is with low coherence, the original signal𝑥 could be
reconstructed from the newmeasurement vector 𝑦󸀠 perfectly
with large probability. There are three key points to be aware
of with this compressed sensing based approach for phased
array radar system as follows. (1) There is no requirement

for the transmitted signal; it could be either “incoherent” or
“coherent.” (2) This approach does not use a matched filter.
(3) The beamforming procedure is omitted in the proposed
compressed phased array radar system.

The rest of the sections are organized as follows: the pro-
posed coherent column replacementmethod is introduced in
Section 2. In Section 3, the proposed method is extended to
solve the DOA estimation problem in phased array radar sys-
tem. Firstly, the signal model for DOA estimation in phased
array radar system is represented in a standard compressed
sensing form in Section 3.1, where the sparse radar scene is
abstracted as a sparse signal. In Section 3.2, the proposed
method is then used to generate a new sensing matrix
with low coherence, based on which the original sparse
signal could be reconstructed well with large probability. The
simulation results are listed in Section 4, and the paper is
summarized in Section 5.

2. The Proposed Coherent Column
Replacement Method

Recent work related with structured sensingmatrix construc-
tion tries to change the existing hardware system to generate
a new sensing matrix satisfying the RIP property. In this
paper, we are exploring the possibility of changing the sensing
matrix and measurement vector in the reconstruction side
while not changing the hardware system.

It is assumed that the original sensing matrix Φ is
a partially deterministic matrix which is comprised of
highly coherent columns and random Gaussian columns,
and this could be extended to a more practical condition
when highly coherent columns and incoherent columns
are considered. For the original sensing matrix Φ, its
highly coherent columns and random Gaussian columns
are denoted by 𝜑

𝑗
, 𝑗 = 1, . . . , 𝑁

𝑐
and 𝜓

𝑗
, 𝑗 = 1, . . . , 𝑁

𝑟
,

respectively. 𝑁
𝑐
is the number of highly coherent columns,

and 𝑁
𝑟
is the number of random Gaussian columns with

𝑁
𝑐

+ 𝑁
𝑟

= 𝑁. Without loss of generality, the highly
coherent columns are put at the leftmost of the sensing
matrix, while the random Gaussian columns are put next
to them as Φ = [𝜑

1
, 𝜑
2
, . . . , 𝜑

𝑁
𝑐

, 𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑁
𝑟

]. Accord-
ingly, the signal 𝑥 could be divided into two groups, 𝑥 =

[𝑥
𝑐
; 𝑥
𝑟
]
𝑇

= [𝑥
𝑐,1

, 𝑥
𝑐,2

, . . . , 𝑥
𝑐,𝑁
𝑐

, 𝑥
𝑟,1

, 𝑥
𝑟,2

, . . . , 𝑥
𝑟,𝑁
𝑟

]
𝑇, where

𝑥
𝑐

= [𝑥
𝑐,1

, 𝑥
𝑐,2

, . . . , 𝑥
𝑐,𝑁
𝑐

]
𝑇 and 𝑥

𝑟
= [𝑥
𝑟,1

, 𝑥
𝑟,2

, . . . , 𝑥
𝑟,𝑁
𝑟

]
𝑇

correspond to the highly coherent columns and random
Gaussian columns respectively. It is assumed that the value
of each element of 𝑥

𝑐
, {𝑥
𝑐,1

, 𝑥
𝑐,2

, . . . , 𝑥
𝑐,𝑁
𝑐

}, is chosen as either
one or zero.

The sensing matrix Φ is changed into a random Gaus-
sian matrix Φ

󸀠 through replacing the highly coherent
columns [𝜑

1
, 𝜑
2
, . . . , 𝜑

𝑁
𝑐

] with random Gaussian columns
[𝜑
󸀠

1
, 𝜑
󸀠

2
, . . . , 𝜑

󸀠

𝑁
𝑐

]. The resulting new sensing matrix Φ
󸀠 could

be represented as Φ󸀠 = [𝜑
󸀠

1
, 𝜑
󸀠

2
, . . . , 𝜑

󸀠

𝑁
𝑐

, 𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑁
𝑟

].

Lemma 1. Given the standard model in compressed sensing
𝑦 = Φ𝑥 + 𝑒, where 𝑒 denotes the measurement noise,
and given the sensing matrix Φ

󸀠 defined above, the 𝐾-sparse
signal 𝑥 could be reconstructed from the new measurement
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vector 𝑦
󸀠
= Φ
󸀠
𝑥 + 𝑒 perfectly with large probability. The new

measurement vector𝑦󸀠 could be calculated via (1) provided that
part of the signal 𝑥, 𝑥

𝑐
= [𝑥
𝑐,1

, 𝑥
𝑐,2

, . . . , 𝑥
𝑐,𝑁
𝑐

]
𝑇 is known:

𝑦
󸀠
= 𝑦 + 𝑥

𝑐,1
(𝜑
󸀠

1
− 𝜑
1
) + 𝑥
𝑐,2

(𝜑
󸀠

2
− 𝜑
2
)

+ ⋅ ⋅ ⋅ + 𝑥
𝑐,𝑁
𝑐

(𝜑
󸀠

𝑁
𝑐

− 𝜑
𝑁
𝑐

) .

(1)

Proof. Obviously, the new sensing matrix Φ
󸀠 is a Gaussian

random matrix and satisfies the RIP property. We could
reconstruct 𝑥 perfectly from the new measurement vector
𝑦
󸀠
= Φ
󸀠
𝑥 + 𝑒 with large probability.

The equation 𝑦
󸀠
= Φ
󸀠
𝑥+𝑒 could be expanded in columns:

𝑦
󸀠
= Φ
󸀠
𝑥

= 𝑥
𝑐,1

𝜑
󸀠

1
+ 𝑥
𝑐,2
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󸀠

2
+ ⋅ ⋅ ⋅ + 𝑥

𝑐,𝑁
𝑐
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󸀠

𝑁
𝑐
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𝑟,1

𝜓
1
+ 𝑥
𝑟,2

𝜓
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑟,𝑁
𝑟

𝜓
𝑁
𝑟

+ 𝑒.

(2)

Similarly, the equation 𝑦 = Φ𝑥 + 𝑒 could be expanded as in

𝑦 = Φ𝑥

= 𝑥
𝑐,1

𝜑
1
+ 𝑥
𝑐,2

𝜑
2
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𝑟

𝜓
𝑁
𝑟

+ 𝑒.

(3)

Equation (3) subtracts (2), resulting in

𝑦
󸀠
− 𝑦 = 𝑥

𝑐,1
(𝜑
󸀠

1
− 𝜑
1
) + 𝑥
𝑐,2

(𝜑
󸀠

2
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2
)
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𝑐,𝑁
𝑐

(𝜑
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− 𝜑
𝑁
𝑐

) .

(4)

So we can obtain the new measurement vector 𝑦
󸀠 based on

the original measurement vector 𝑦 and the error between the
highly coherent columns and random columns:

𝑦
󸀠
= 𝑦 + 𝑥

𝑐,1
(𝜑
󸀠

1
− 𝜑
1
) + 𝑥
𝑐,2

(𝜑
󸀠

2
− 𝜑
2
)
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𝑐,𝑁
𝑐

(𝜑
󸀠

𝑁
𝑐

− 𝜑
𝑁
𝑐

) .

(5)

This ends the proof.

However, in reality the original signal 𝑥 is unknown,
and it is difficult to obtain the exact value of 𝑥

𝑐
(𝑥
𝑐

=

[𝑥
𝑐,1

, 𝑥
𝑐,2

, . . . , 𝑥
𝑐,𝑁
𝑐

]
𝑇) in advance. If the number of highly

coherent columns is small (e.g. 𝑁
𝑐

≤ 10), we could list all
the configurations of 𝑥

𝑐
with each element’s value chosen

as one or zero. Based on each configuration, we could
obtain a candidate signal using a reconstruction algorithm.
The error between the true measurement and the estimate
measurement based on each candidate signal is calculated
and then normalized. The candidate signal with the smallest
error is the one closest to the original sparse signal and is what
we pursuit. The detailed procedure is listed in Algorithm 2.

Algorithm 2. The coherent column replacement method for
a partially deterministic sensing matrix is as follows.

(1) The sensingmatrixΦ is changed into a randomGaus-
sian matrix Φ

󸀠 through replacing the highly coher-
ent columns [𝜑

1
, 𝜑
2
, . . . , 𝜑

𝑁
𝑐

] with random Gaussian
columns [𝜑󸀠

1
, 𝜑
󸀠

2
, . . . , 𝜑

󸀠

𝑁
𝑐

].
(2) List all the configurations of 𝑥

𝑐
with each element’s

value chosen as one or zero. The total number of
configurations 𝐶𝑁 equals 2

𝑁
𝑐 . The 𝑖th configuration

could be represented as 𝜆
𝑖
(𝑥
𝑖

𝑐,1
, 𝑥
𝑖

𝑐,2
, . . . , 𝑥

𝑖

𝑐,𝑁
𝑐

), 𝑖 =

1, . . . , 𝐶𝑁 and is abbreviated as 𝜆𝑖 for briefness.
(3) For the 𝑖th configuration 𝜆

𝑖, 𝑖 = 1, . . . , 𝐶𝑁, calculate
the new measurement vector 𝑦󸀠,𝑖 via (5) and obtain a
candidate signal 𝑥𝑖 using a reconstruction algorithm
as

𝑥
𝑖
= Reconstruct (𝑦󸀠,𝑖, Φ󸀠) . (6)

(4) For the 𝑖th candidate signal 𝑥
𝑖, 𝑖 = 1, . . . , 𝐶𝑁,

calculate ERR𝑖, which is defined as the normalized
error between the truemeasurement and the estimate
measurement based on 𝑥

𝑖,

ERR𝑖 =
󵄩󵄩󵄩󵄩󵄩
𝑦 − (Φ𝑥

𝑖
)
󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩2

, (7)

where ‖ ⋅ ‖ denotes the 𝑙
2
-norm.

(5) Find the smallest one in {ERR𝑖, 𝑖 = 1, . . . , 𝐶𝑁} and
define it as ERRmin. The candidate signal correspond-
ing to ERRmin is what we pursuit and is defined as
𝑥
estimate.

In the above algorithm, “Reconstruct” in (6) refers to
any available reconstruction algorithm and the basis pursuit
denoising (BPDN) method [14] is chosen as the reconstruc-
tion algorithm here.

3. Compressed Sensing Based DOA Estimation
in Phased Array Radar System

In this section, the proposed column replacement method is
extended to solve the DOA estimation problem in phased
array radar system. Firstly, the signal model for DOA
estimation in phased array radar system is represented in
a standard compressed sensing form in Section 3.1, where
the sparse radar scene is abstracted as a sparse signal. In
Section 3.2, the proposed method is then used to generate a
new sensing matrix with low coherence, based on which the
original sparse signal could be reconstructed well with large
probability.

3.1. Signal Model for DOA Estimation and Sparse Represen-
tation. Assume a phased array radar system consisting of
half-wavelength spaced uniform linear arrays (ULA). Targets
may appear at directions represented by DOA angles. The
task of signal processing is to estimate the directions to the
targets and the corresponding complex amplitudes (DOA
estimation, see [17]). We assume that the other parameters
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like range and Doppler frequency have been isolated before
by appropriate processing.

The ULA of the phased array radar system consists of 𝑀
antennas, which are used to emit the transmitted signal 𝑠(𝑡).
The 𝑀 × 1 received complex vector of array observations is
defined as 𝐹(𝑡) = [𝑓

1
(𝑡), . . . , 𝑓

𝑀
(𝑡)]
𝑇. Assuming a hypothet-

ical target located at a DOA angle of 𝜃 in the far field, the
received complex vector of array observations can be written
as

𝐹 (𝑡) = 𝛽 (𝜃) 𝑠 (𝑡) 𝑎 (𝜃) + 𝐸 (𝑡) , (8)

where 𝛽(𝜃) is the reflection coefficient of the hypothetical
target, and 𝐸(𝑡) is a 𝑀 × 1 complex Gaussian noise vector.
𝑎(𝜃) is the𝑀 × 1 steering vector, which is defined as

𝑎 (𝜃) = [1𝑒
𝑗(2𝜋 𝑑 sin 𝜃/𝜆)

, . . . , 𝑒
𝑗(𝑀−1)(2𝜋 𝑑 sin 𝜃/𝜆)

]
𝑇

, (9)

where 𝑑 is the distance between the elements of the arrays,
and 𝜆 denotes wavelength.

Assuming 𝐷 targets are observed with reflection coeffi-
cients {𝛽

𝑖
}
𝐷

𝑖=1
and DOA angles {𝜃

𝑖
}
𝐷

𝑖=1
, the 𝑀 × 1 received

complex vector of array observations can be written as

𝐹
𝑀 (𝑡) =

𝐷

∑

𝑖=1

𝛽 (𝜃
𝑖
) 𝑠 (𝑡) 𝑎 (𝜃

𝑖
) + 𝐸
𝑀 (𝑡) , (10)

where 𝐸
𝑀
(𝑡) is a 𝑀 × 1 complex Gaussian noise vector.

Equation (10) could be rewritten as

𝐹
𝑀 (𝑡) = 𝐴 (𝜃) 𝑆 (𝑡, 𝜃) + 𝐸

𝑀 (𝑡) , (11)

where 𝐴(𝜃) = [𝑎(𝜃
1
), 𝑎(𝜃
2
), . . . , 𝑎(𝜃

𝐷
)] is a 𝑀 × 𝐷 steering

matrix, and 𝑆(𝑡, 𝜃) = 𝑠(𝑡)[𝛽(𝜃
1
), 𝛽(𝜃
2
), . . . , 𝛽(𝜃

𝐷
)]
𝑇 denotes a

𝐷 × 1 reflection vector.
Since the radar scene is generally in practice sparse,

compressed sensing is a valid candidate for estimating the
DOA angles for multiple targets. To do so, the DOA angle
plane is divided into 𝑁 fine grids, each cell generally with
the same size Δ𝜃. The 𝑖th grid represents the DOA angle
of 𝜃
0
+ (𝑖 − 1)Δ𝜃, where 𝜃

0
is the initial angle of the DOA

plane. Each cell has a unique mathematical representation as
well as physical explanation: for example, if a target’s DOA
angle occupies the 𝑖th grid, its contribution could be uniquely
written as 𝑠(𝑡)𝛽(𝜃

0
+(𝑖−1)Δ𝜃) ⃗𝑎(𝜃

0
+(𝑖−1)Δ𝜃). Now, the DOA

estimation problem is recast as the search for the grid cells in
which the targets lie.

As the system has no knowledge of the numbers and
locations of the targets, the information of all the grids in
the DOA plane should be considered. Therefore, the steering
matrix and reflection vector in (11) are extended to obtain the
𝑀 × 𝑁 extended steering matrix Φ and the 𝑁 × 1 extended
reflection vector 𝑥, which are defined as Φ = [𝑎(𝜃

0
), 𝑎(𝜃
0
+

Δ𝜃), . . . , 𝑎(𝜃
0

+ (𝑖 − 1)Δ𝜃)𝑎(𝜃
0

+ (𝑁 − 1)Δ𝜃)] and 𝑥 =

𝑠(𝑡)[𝛽(𝜃
0
)𝛽(𝜃
0
+Δ𝜃), . . . , 𝛽(𝜃

0
+(𝑖−1)Δ𝜃)𝛽(𝜃

0
+(𝑁−1)Δ𝜃)]

𝑇.
Since small numbers of grids are occupied by the targets,
𝑥 is a sparse vector with the 𝑖th element defined as 𝑥(𝑖) =

𝑠(𝑡)𝛽(𝜃
0
+ (𝑖 − 1)Δ𝜃) if the 𝑖th grid is occupied by the target;

otherwise, 𝑥(𝑖) = 0. As a result, the 𝑀 × 1 received complex
vector of array observations 𝑦 could be written as follows:

𝑦 = Φ𝑥 + 𝑒, (12)

where 𝑒 is a 𝑀 × 1 complex Gaussian noise vector. Though
in (12) the radar vectors and matrices are complex valued in
contrary to the original compressed sensing environment, it
is easy to transfer it to real variables according to [9, 18].

Discussion. In [10, 19], it is assumed that the discretized step
is small enough so that each target falls on some specific
grid point. However, no matter how finely the parameter
space is gridded, the sources may not lie in the center of the
grid cells, and consequently there is a mismatch between the
assumed and the actual bases for sparsity. The sensitivity of
compressed sensing to mismatch between the assumed and
the actual sparsity bases is studied in [20]. The effect of basis
mismatch is analyzed on the best 𝑘-term approximation error,
and some achievable bounds for the 𝑙

1
error of the best 𝑘-term

approximation are provided.The readers can refer to [20] for
a detailed analysis on the influence of the griding operations
on the estimation performance.

3.2. DOA Estimation Based on the Column Replacement
Method. The proposed column replacement method is then
extended to solve the DOA estimation problem in phased
array radar system where the sensing matrix is comprised of
highly coherent columns and incoherent columns. In order to
distinguish the highly coherent columns from the incoherent
columns, the coherence of the sensing matrix is adopted,
which is defined in [21, 22] as follows.

Definition 3. For the sensing matrix Φ, its coherence is
defined as the largest absolute and normalized inner product
between different columns in Φ. Formally, this reads

𝜇 {Φ} = max
1≤𝑖,𝑗≤𝑁, 𝑖 ̸= 𝑗

󵄨󵄨󵄨󵄨󵄨
Φ
𝑇

𝑖
Φ
𝑗

󵄨󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩Φ𝑖

󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗

󵄩󵄩󵄩󵄩󵄩

. (13)

The coherence provides a measure of the worst similarity
between the sensing matrix columns.

A different way to understand the coherence is by consid-
ering the Gram matrix 𝐺 which is defined as

𝐺 =
̃
Φ𝑇Φ̃, (14)

wherẽΦ𝑇 is the normalized sensingmatrix obtained from the
original sensing matrix with each column normalized. The
off-diagonal entries in 𝐺 are the inner products that appear
in (13). The coherence is the off-diagonal entry 𝑔

𝑖,𝑗
with the

largest magnitude.
In the proposedmethod, theGrammatrix𝐺 is firstly built

via (14), and a threshold 𝑇 is then set properly to distinguish
the highly coherent columns from the incoherent columns as
follows. For each off-diagonal entry {𝑔

𝑖,𝑗
, 𝑖 = 1, . . . , 𝑁, 𝑗 =

1, . . . , 𝑁}, if 𝑔
𝑖,𝑗
is larger than𝑇, the columns 𝑖 and 𝑗 are added

to the set of highly coherent columns.The remaining columns
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that do not belong to the set of highly coherent columns form
the set of incoherent columns.

The set of highly coherent columns and the set of
incoherent columns are denoted by 𝛼

𝑗
, 𝑗 = 1, . . . , 𝑁

ℎ𝑐
and

𝛽
𝑗
, 𝑗 = 1, . . . , 𝑁

𝑖𝑐
, respectively. 𝑁

ℎ𝑐
is the number of highly

coherent columns, and 𝑁
𝑖𝑐

is the number of incoherent
columns with 𝑁

ℎ𝑐
+ 𝑁
𝑖𝑐

= 𝑁. Without loss of generality, the
highly coherent columns are put at the leftmost of the sensing
matrix, while the incoherent columns are put next to them
as Φ = [𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑁
ℎ𝑐

, 𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑁
𝑖𝑐

]. Accordingly, the
signal 𝑥 could be divided into two groups, 𝑥 = [𝑥

ℎ𝑐
; 𝑥
𝑖𝑐
]
𝑇

=

[𝑥
ℎ𝑐,1

, 𝑥
ℎ𝑐,2

, . . . , 𝑥
ℎ𝑐,𝑁
ℎ𝑐

, 𝑥
𝑖𝑐,1

, 𝑥
𝑖𝑐,2

, . . . , 𝑥
𝑖𝑐,𝑁
𝑖𝑐

]
𝑇, where 𝑥

ℎ𝑐
=

[𝑥
ℎ𝑐,1

, 𝑥
ℎ𝑐,2

, . . . , 𝑥
ℎ𝑐,𝑁
ℎ𝑐

]
𝑇 and 𝑥

𝑖𝑐
= [𝑥

𝑖𝑐,1
, 𝑥
𝑖𝑐,2

, . . . , 𝑥
𝑖𝑐,𝑁
𝑖𝑐

]
𝑇

correspond to the highly coherent columns and incoherent
columns respectively. It is assumed that the value of each
element of 𝑥

ℎ𝑐
, {𝑥
ℎ𝑐,1

, 𝑥
ℎ𝑐,2

, . . . , 𝑥
ℎ𝑐,𝑁
ℎ𝑐

} is chosen as either one
or zero.

The sensing matrix Φ is changed into a new matrix Φ
󸀠

through replacing the highly coherent columns [𝛼
1
, 𝛼
2
, . . . ,

𝛼
𝑁
ℎ𝑐

] with random Gaussian columns [𝛼󸀠
1
, 𝛼
󸀠

2
, . . . , 𝛼

󸀠

𝑁
ℎ𝑐

]. The
resulted new sensing matrixΦ

󸀠 could be represented asΦ󸀠 =
[𝛼
󸀠

1
, 𝛼
󸀠

2
, . . . , 𝛼

󸀠

𝑁
ℎ𝑐

, 𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑁
𝑖𝑐

].

Theorem 4 (see [23]). Let 𝑥 be a 𝐾-sparse signal, and write
𝑦 = Φ𝑥 + 𝑒, where 𝑒 ∼ 𝑁(0; 𝜎

2
𝐼). Suppose that

𝐾 <
1

3𝜇 (Φ)
, (15)

and consider the BPDN optimization problem (16) with 𝜆 =

√16𝜎2 log𝑀:

𝑥 = argmin
𝑥∈𝑅
𝑁

‖𝑥‖1 + 𝜆
󵄩󵄩󵄩󵄩𝑦 − Φ𝑥

󵄩󵄩󵄩󵄩2
. (16)

Then, with probability on the order of 1 − 1/𝑀
2, the solution 𝑥

of (16) is unique, and its error is bounded by

‖𝑥 − 𝑥‖2 ≤ 𝐶𝜎√𝐾 log𝑀, (17)

and its support is a subset of the true 𝐾-element support of 𝑥.

Lemma 5. Given the standard model in compressed sensing
𝑦 = Φ𝑥 + 𝑒 and given the sensing matrix Φ

󸀠 defined
above, the 𝐾-sparse signal 𝑥 could be reconstructed from the
new measurement vector 𝑦

󸀠
= Φ
󸀠
𝑥 + 𝑒 perfectly using the

BPDN optimization method with probability on the order
of 1 − 1/𝑀

2. The new measurement vector 𝑦
󸀠 could be

calculated via (18) provided that part of the signal 𝑥, 𝑥
ℎ𝑐

=

[𝑥
ℎ𝑐,1

, 𝑥
ℎ𝑐,2

, . . . , 𝑥
ℎ𝑐,𝑁
ℎ𝑐

]
𝑇 is known:

𝑦
󸀠
= 𝑦 + 𝑥

ℎ𝑐,1
(𝛼
󸀠

1
− 𝛼
1
) + 𝑥
ℎ𝑐,2

(𝛼
󸀠

2
− 𝛼
2
)

+ ⋅ ⋅ ⋅ + 𝑥
ℎ𝑐,𝑁
ℎ𝑐

(𝛼
󸀠

𝑁
ℎ𝑐

− 𝛼
𝑁
ℎ𝑐

) .

(18)

Proof. The threshold 𝑇 is set to distinguish the highly coher-
ent columns from the incoherent columns. In theory, the
threshold 𝑇 could be designed as small as possible to obtain

a very small coherence 𝜇(Φ). As a consequence, the new
sensing matrixΦ

󸀠 satisfies (15) properly with set threshold 𝑇.
We could reconstruct 𝑥 perfectly from the newmeasurement
vector 𝑦

󸀠
= Φ
󸀠
𝑥 + 𝑒 using the BPDN optimization method

with probability on the order of 1 − 1/𝑀
2 according to

Theorem 4.The deviation of (18) is similar to that of (1). This
ends the proof.

However, in reality the original signal 𝑥 is unknown,
and it is difficult to obtain the exact value of 𝑥

ℎ𝑐
(𝑥
ℎ𝑐

=

[𝑥
ℎ𝑐,1

, 𝑥
ℎ𝑐,2

, . . . , 𝑥
ℎ𝑐,𝑁
ℎ𝑐

]
𝑇) in advance. If the number of highly

coherent columns is small (e.g., 𝑁
ℎ𝑐

≤ 10), we could
list all the configurations of 𝑥

ℎ𝑐
with each element’s value

chosen as one or zero. Based on each configuration, we could
obtain a candidate signal using a reconstruction algorithm.
The error between the true measurement and the estimate
measurement based on each candidate signal is calculated
and then normalized. The candidate signal with the smallest
error is the one closest to the original sparse signal and is what
we pursuit. The detailed procedure is listed in Algorithm 6.

Algorithm 6. The coherent column replacement method for
a deterministic sensing matrix is as follows.

(1) The Gram matrix 𝐺 is firstly built via (14), and
a threshold 𝑇 is then set properly to distinguish
the highly coherent columns from the incoherent
columns as follows. For each off-diagonal entry
{𝑔
𝑖,𝑗
, 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . , 𝑁}, if 𝑔

𝑖,𝑗
is larger than

𝑇, the columns 𝑖 and 𝑗 are added to the set of highly
coherent columns. The remaining columns that do
not belong to the set of highly coherent columns form
the set of incoherent columns.

(2) The sensing matrix Φ is changed into a new sens-
ing matrix Φ

󸀠 through replacing the highly coher-
ent columns [𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑁
ℎ𝑐

] with random Gaussian
columns [𝛼󸀠

1
, 𝛼
󸀠

2
, . . . , 𝛼

󸀠

𝑁
ℎ𝑐

].

Steps (3)–(6) are the same as steps (2)–( 5) inAlgorithm 2.

4. Simulation Results and Analysis

In this section, a simple example is firstly carried out to
verify the performance of the proposed column replacement
algorithm for a partially deterministic sensing matrix. The
proposed method is then extended to cope with the DOA
estimation problem in phased array radar system.

4.1. A Simple Example. In this section, a simple example is
used to evaluate the performance of the proposed algorithm.
The original sensing matrix Φ is a 20 × 30 matrix with
5(𝑁
𝑐
) highly coherent columns, which are put at the leftmost

of it, and 25(𝑁
𝑟
) random Gaussian columns. The original

signal 𝑥 is shown in Figure 1, which shows that its nonzero
entries are in indexes {1, 3, 5, 11, 17, 20, 27}. Since the highly
coherent columns are put at the leftmost of Φ, the true
value of 𝑥

𝑐
is 𝑥
𝑐

= {𝑥
𝑐,1

= 1, 𝑥
𝑐,2

= 0, 𝑥
𝑐,3

=

1, 𝑥
𝑐,4

= 0, 𝑥
𝑐,5

= 1} (abbreviated as 10101). In the proposed
method, each element of 𝑥

𝑐
, {𝑥
𝑐,1

, 𝑥
𝑐,2

, . . . , 𝑥
𝑐,5

} is chosen as
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Figure 1: The original signal 𝑥.
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Figure 2: Reconstruction error based on configurations of 𝑥
𝑐
in one

trial.

one or zero, resulting in totally 2
5

= 32 configurations as
{00000, 00001, 00010, . . . , 11111}. The reconstruction error
obtained based on each configuration in one trial is shown
in Figure 2, which shows that the configuration number
with the smallest reconstruction error is 21 (10101 in binary
format). This matches the true 𝑥

𝑐
exactly. The whole recon-

structed signal corresponding to configuration 21 is shown
in Figure 3. Moreover, five hundredMonte Carlo simulations
are carried out, and the average reconstruction error is shown
in Figure 4, which shows that the configuration 21 is with the
smallest average reconstruction error 0.06868.

4.2. DOA Estimation Based on the Proposed Column Replace-
ment Method. In this section, a synthetic example about
DOA estimation based on the phased array radar system is
provided. A hybrid system is built which consists of a bottom
subsystem and a top subsystem. The bottom subsystem is
built based on the specific hardware structure of the phased
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Figure 3: Reconstructed signal corresponding to the configuration
with the smallest reconstruction error.

0 5 10 15 20 25 30 35
Configuration number

Av
er

ag
e r

ec
on

str
uc

tio
n 

er
ro

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4: Average reconstruction error based on configurations of
𝑥
𝑐
.

array system, which consists of half-wavelength spaced uni-
form linear arrays (ULA). The number of transmit/receive
antennas is 20. The antennas transmit independent orthogo-
nal quadrature phase shift keyed (QPSK) waveforms, and the
carrier frequency is 8.62GHz. The SNR of the measurement
noise is set to a fixed value (20 dB). The range of the
DOA plane is [0

∘
, 90
∘
], which is divided into 30 cells with

the initial angle (𝜃
0
) and angle interval (Δ𝜃) equaling 0

∘

and 3
∘, respectively. A maximum of 𝐿 = 512 snapshots

are considered at the receive node. Targets may appear at
directions represented by DOA angles. The task of signal
processing is to estimate the directions to the targets and
the corresponding complex amplitudes (DOA estimation; see
[17]).

In the proposed method, the Gram matrix 𝐺 of the
original sensing matrix Φ is built via (14). In the next, we
will set the threshold 𝑇 to distinguish the highly coherent
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Figure 5: Histogram of the absolute off-diagonal entries of 𝐺 based
on the original sensing matrix.

columns from the incoherent columns. In theory, the thresh-
old 𝑇 is designed as small as possible to obtain a very small
coherence 𝜇(Φ), which guarantees the perfect reconstruction
of the 𝐾-sparse signal 𝑥. However, small 𝑇 will result in
a large number of highly coherent columns, leading to a
huge number of configurations of 𝑥

ℎ𝑐
. This will increase the

computing time dramatically. While the restrict selection of
𝑇 is true from a worst-case standpoint, it turns out that
the coherence as defined previously does not do justice to
the actual behavior of sparse representations and pursuit
algorithms’ performance. Thus, if we relax our expectations
and allow a small fraction of failed reconstructions, then
values substantially beyond the above bound are still leading
to successful compressed sensing [24]. In this simulation
example, the threshold 𝑇 is set as 0.6, resulting in 10 highly
coherent columns and 20 incoherent columns.

A new sensing matrix Φ
󸀠 is then generated, based on

which a new Grammatrix 𝐺
󸀠 is built. Figures 5 and 6 present

the histograms of the absolute off-diagonal entries of 𝐺 and
𝐺
󸀠 respectively. As can be seen, there is a shift towards the

origin of the histogram after using the proposedmethod.The
tail representing the higher values in Figure 5 disappears in
Figure 6. Therefore the coherence of the new sensing matrix
Φ
󸀠 is far less than that of the original sensing matrixΦ.
Firstly, the performance of the proposed column replace-

mentmethod is compared to the compressed sensingmethod
using the original sensing matrix (abbreviated as standard
compressed sensing) and other three commonly used esti-
mation methods, the Capon, APES, and GLRT method, in
one trial. Figure 7 shows the original scene, the modulus
of the reflection coefficients 𝛽

𝑘
, as functions of the DOA.

Figures 8, 9, 10, 11, and 12 correspond to the DOA estimates
obtained via the standard compressed sensing method, the
proposed method, Capon, APES, and GLRT, respectively.
The proposed method and the standard compressed sensing
method use one snapshot only, and the other three methods
use 512 snapshots each. One can see that the presence of
the four targets is clearly evident via the proposed method

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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150

Figure 6: Histogram of the absolute off-diagonal entries of𝐺󸀠 based
on the new sensing matrix, using a fixed threshold 𝑡 = 0.6.

Table 1: Performance comparison.

Average
reconstruction error

Average RMSE
of DOA angles

(degree)
Standard compressed
sensing 0.64 2.5

The proposed
algorithm 0.04 0.01

(Figure 9), while the standard compressed sensing method
fails in identifying the targets (Figure 8). Secondly, five
hundredMonteCarlo simulations are carried out, and in each
trial four targets are located randomly within the DOA range
of [0∘, 90∘], and the corresponding reflection coefficients are
set as {𝛽

𝑘
= 1, 𝑘 = 1, . . . , 4}.The performance of the proposed

method is compared to the standard compressed sensing
method via the average reconstruction error and the average
root mean square error (RMSE) [25] of the estimated DOA
angles of all four targets. The results in Table 1 show that
the proposed method is with less reconstruction error and
RMSE.This shows that the proposedmethod outperforms the
standard compressed sensing with more accurate estimated
DOA angles.

5. Conclusion

In this paper, the coherent column replacement method is
proposed to reduce the coherence of a partially determin-
istic sensing matrix, which is comprised of highly coherent
columns and random Gaussian columns. The proposed
method is then extended to a more practical condition when
highly coherent columns and incoherent columns are consid-
ered, for example, the direction of arrival (DOA) estimation
problem in phased array radar system using compressed
sensing. Numerical simulations show that the proposed
method obtains more precise estimation of DOA using one
snapshot compared with the traditional estimation methods
such as Capon, APES, and GLRT, based on hundreds of
snapshots.
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Figure 7: The original scene.
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Figure 8: DOA estimation using the standard compressed sensing
method.
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Figure 9: DOA estimation using the proposed coherent column
replacement method.
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Figure 10: DOA estimation using Capon.
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Figure 11: DOA estimation using APES.
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Figure 12: DOA estimation using GLRT.
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