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We consider the extremal inertias and ranks of the matrix expressions 𝑓(𝑋, 𝑌) = 𝐴
3
− 𝐵

3
𝑋 − (𝐵

3
𝑋)∗ − 𝐶

3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)∗, where

𝐴
3
= 𝐴∗

3
, 𝐵

3
, 𝐶

3
, and 𝐷

3
are known matrices and 𝑌 and 𝑋 are the solutions to the matrix equations 𝐴

1
𝑌 = 𝐶

1
, 𝑌𝐵

1
= 𝐷

1
, and

𝐴
2
𝑋 = 𝐶

2
, respectively. As applications, we present necessary and sufficient condition for the previous matrix function 𝑓(𝑋, 𝑌)

to be positive (negative), non-negative (positive) definite or nonsingular. We also characterize the relations between the Hermitian
part of the solutions of the above-mentioned matrix equations. Furthermore, we establish necessary and sufficient conditions for
the solvability of the system of matrix equations 𝐴

1
𝑌 = 𝐶

1
, 𝑌𝐵

1
= 𝐷

1
, 𝐴

2
𝑋 = 𝐶

2
, and 𝐵

3
𝑋 + (𝐵

3
𝑋)∗ + 𝐶

3
𝑌𝐷

3
+ (𝐶

3
𝑌𝐷

3
)∗ = 𝐴

3
,

and give an expression of the general solution to the above-mentioned system when it is solvable.

1. Introduction

Throughout, we denote the field of complex numbers by C,
the set of all 𝑚 × 𝑛 matrices over C by C𝑚×𝑛, and the set of
all𝑚 ×𝑚Hermitian matrices by C𝑚×𝑚

ℎ
. The symbols 𝐴∗ and

R(𝐴) stand for the conjugate transpose, the column space of
a complex matrix𝐴 respectively. 𝐼

𝑛
denotes the 𝑛 × 𝑛 identity

matrix. TheMoore-Penrose inverse [1] 𝐴† of 𝐴, is the unique
solution𝑋 to the four matrix equations:

(i) 𝐴𝑋𝐴 = 𝐴,

(ii) 𝑋𝐴𝑋 = 𝑋,

(iii) (𝐴𝑋)∗ = 𝐴𝑋,

(iv) (𝑋𝐴)∗ = 𝑋𝐴.

(1)

Moreover, 𝐿
𝐴
and 𝑅

𝐴
stand for the projectors 𝐿

𝐴
= 𝐼 −

𝐴†𝐴, 𝑅
𝐴
= 𝐼 − 𝐴𝐴† induced by 𝐴. It is well known that the

eigenvalues of a Hermitian matrix 𝐴 ∈ C𝑛×𝑛 are real, and the
inertia of 𝐴 is defined to be the triplet

I
𝑛
(𝐴) = {𝑖

+
(𝐴) , 𝑖

−
(𝐴) , 𝑖

0
(𝐴)} , (2)

where 𝑖
+
(𝐴), 𝑖

−
(𝐴), and 𝑖

0
(𝐴) stand for the numbers of

positive, negative, and zero eigenvalues of𝐴, respectively.The

symbols 𝑖
+
(𝐴) and 𝑖

−
(𝐴) are called the positive index and

the negative index of inertia, respectively. For two Hermitian
matrices 𝐴 and 𝐵 of the same sizes, we say 𝐴 ≥ 𝐵 (𝐴 ≤ 𝐵)
in the Löwner partial ordering if 𝐴 − 𝐵 is positive (negative)
semidefinite. The Hermitian part of 𝑋 is defined as 𝐻(𝑋) =
𝑋 + 𝑋∗. We will say that 𝑋 is Re-nnd (Re-nonnegative
semidefinite) if 𝐻(𝑋) ≥ 0, 𝑋 is Re-pd (Re-positive definite)
if𝐻(𝑋) > 0, and𝑋 is Re-ns if𝐻(𝑋) is nonsingular.

It is well known that investigation on the solvability
conditions and the general solution to linearmatrix equations
is very active (e.g., [2–9]). In 1999, Braden [10] gave the
general solution to

𝐵𝑋 + (𝐵𝑋)
∗ = 𝐴. (3)

In 2007, Djordjević [11] considered the explicit solution to (3)
for linear bounded operators on Hilbert spaces. Moreover,
Cao [12] investigated the general explicit solution to

𝐵𝑋𝐶 + (𝐵𝑋𝐶)
∗ = 𝐴. (4)

Xu et al. [13] obtained the general expression of the solution
of operator equation (4). In 2012, Wang and He [14] studied
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some necessary and sufficient conditions for the consistence
of the matrix equation

𝐴
1
𝑋 + (𝐴

1
𝑋)

∗
+ 𝐵

1
𝑌𝐶

1
+ (𝐵

1
𝑌𝐶

1
)
∗
= 𝐸

1
(5)

and presented an expression of the general solution to (5).
Note that (5) is a special case of the following system:

𝐴
1
𝑌 = 𝐶

1
, 𝑌𝐵

1
= 𝐷

1
, 𝐴

2
𝑋 = 𝐶

2
,

𝐵
3
𝑋 + (𝐵

3
𝑋)

∗
+ 𝐶

3
𝑌𝐷

3
+ (𝐶

3
𝑌𝐷

3
)
∗
= 𝐴

3
.

(6)

To our knowledge, there has been little information about (6).
One goal of this paper is to give some necessary and sufficient
conditions for the solvability of the system of matrix (6) and
present an expression of the general solution to system (6)
when it is solvable.

In order to find necessary and sufficient conditions for the
solvability of the system of matrix equations (6), we need to
consider the extremal ranks and inertias of (10) subject to (13)
and (11).

There have been many papers to discuss the extremal
ranks and inertias of the following Hermitian expressions:

𝑝 (𝑋) = 𝐴
3
− 𝐵

3
𝑋 − (𝐵

3
𝑋)

∗
, (7)

𝑔 (𝑌) = 𝐴 − 𝐵𝑌𝐶 − (𝐵𝑌𝐶)
∗, (8)

ℎ (𝑋, 𝑌) = 𝐴
1
− 𝐵

1
𝑋𝐵∗

1
− 𝐶

1
𝑌𝐶∗

1
, (9)

𝑓 (𝑋, 𝑌) = 𝐴3
− 𝐵

3
𝑋 − (𝐵

3
𝑋)

∗
− 𝐶

3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)
∗
.

(10)

Tian has contributed much in this field. One of his works
[15] considered the extremal ranks and inertias of (7). He
and Wang [16] derived the extremal ranks and inertias of (7)
subject to𝐴

1
𝑋 = 𝐶

1
,𝐴

2
𝑋𝐵

2
= 𝐶

2
. Liu and Tian [17] studied

the extremal ranks and inertias of (8). Chu et al. [18] and Liu
and Tian [19] derived the extremal ranks and inertias of (9).
Zhang et al. [20] presented the extremal ranks and inertias of
(9), where𝑋 and 𝑌 are Hermitian solutions of

𝐴
2
𝑋 = 𝐶

2
, (11)

𝑌𝐵
2
= 𝐷

2
, (12)

respectively. He and Wang [16] derived the extremal ranks
and inertias of (10).We consider the extremal ranks and iner-
tias of (10) subject to (11) and

𝐴
1
𝑌 = 𝐶

1
, 𝑌𝐵

1
= 𝐷

1
, (13)

which is not only the generalization of the abovematrix func-
tions, but also can be used to investigate the solvability con-
ditions for the existence of the general solution to the system
(6). Moreover, it can be applied to characterize the relations
between Hermitian part of the solutions of (11) and (13).

The remainder of this paper is organized as follows. In
Section 2, we consider the extremal ranks and inertias of
(10) subject to (11) and (13). In Section 3, we characterize the
relations between the Hermitian part of the solution to (11)
and (13). In Section 4, we establish the solvability conditions
for the existence of a solution to (6) and obtain an expression
of the general solution to (6).

2. Extremal Ranks and Inertias of Hermitian
Matrix Function (10) with Some Restrictions

In this section, we consider formulas for the extremal ranks
and inertias of (10) subject to (11) and (13). We begin with the
following Lemmas.

Lemma 1 (see [21]). (a) Let𝐴
1
,𝐶

1
, 𝐵

1
, and𝐷

1
be given.Then

the following statements are equivalent:

(1) system (13) is consistent,
(2)

𝑅
𝐴
1

𝐶
1
= 0, 𝐷

1
𝐿

𝐵
1

= 0, 𝐴
1
𝐷

1
= 𝐶

1
𝐵
1
. (14)

(3)

𝑟 [𝐴1
𝐶

1] = 𝑟 (𝐴1
) ,

[
𝐷

1

𝐵
1

] = 𝑟 (𝐵
1
) ,

𝐴
1
𝐷

1
= 𝐶

1
𝐵
1
.

(15)

In this case, the general solution can be written as

𝑌 = 𝐴†

1
𝐶

1
+ 𝐿

𝐴
1

𝐷
1
𝐵†

1
+ 𝐿

𝐴
1

𝑉𝑅
𝐵
1

, (16)

where 𝑉 is arbitrary.
(b) Let 𝐴

2
and 𝐶

2
be given. Then the following statements

are equivalent:

(1) equation (11) is consistent,
(2)

𝑅
𝐴
2

𝐶
2
= 0, (17)

(3)

𝑟 [𝐴2
𝐶

2] = 𝑟 (𝐴2
) . (18)

In this case, the general solution can be written as

𝑋 = 𝐴†𝐶 + 𝐿
𝐴
𝑊, (19)

where𝑊 is arbitrary.

Lemma 2 ([22, Lemma 1.5, Theorem 2.3]). Let 𝐴 ∈ C𝑚×𝑚

ℎ
,

𝐵 ∈ C𝑚×𝑛, and𝐷 ∈ C𝑛×𝑛

ℎ
, and denote that

𝑀 = [
𝐴 𝐵
𝐵∗ 0

] ,

𝑁 = [
0 𝑄
𝑄∗ 0

] ,

𝐿 = [
𝐴 𝐵
𝐵∗ 𝐷

] ,

𝐺 = [
𝑃 𝑀𝐿

𝑁

𝐿
𝑁
𝑀∗ 0

] .

(20)
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Then one has the following

(a) the following equalities hold

𝑖
±
(𝑀) = 𝑟 (𝐵) + 𝑖

±
(𝑅

𝐵
𝐴𝑅

𝐵
) , (21)

𝑖
±
(𝑁) = 𝑟 (𝑄) , (22)

(b) if R(𝐵) ⊆ R(𝐴), then 𝑖
±
(𝐿) = 𝑖

±
(𝐴) + 𝑖

±
(𝐷 −

𝐵∗𝐴†𝐵)). Thus 𝑖
±
(𝐿) = 𝑖

±
(𝐴) if and only if R(𝐵) ⊆

R(𝐴) and 𝑖
±
(𝐷 − 𝐵∗𝐴†𝐵) = 0,

(c)

𝑖
± (𝐺) = [

[

𝑃 𝑀 0
𝑀∗ 0 𝑁∗

0 𝑁 0

]

]

− 𝑟 (𝑁) . (23)

Lemma 3 (see [23]). Let 𝐴 ∈ C𝑚×𝑛, 𝐵 ∈ C𝑚×𝑘, and 𝐶 ∈ C𝑙×𝑛.
Then they satisfy the following rank equalities:

(a) 𝑟[𝐴 𝐵] = 𝑟(𝐴) + 𝑟(𝐸
𝐴
𝐵) = 𝑟(𝐵) + 𝑟(𝐸

𝐵
𝐴),

(b) 𝑟 [ 𝐴
𝐶
] = 𝑟(𝐴) + 𝑟(𝐶𝐹

𝐴
) = 𝑟(𝐶) + 𝑟(𝐴𝐹

𝐶
),

(c) 𝑟 [ 𝐴 𝐵

𝐶 0
] = 𝑟(𝐵) + 𝑟(𝐶) + 𝑟(𝐸

𝐵
𝐴𝐹

𝐶
),

(d) 𝑟[𝐵 𝐴𝐹
𝐶
] = 𝑟 [ 𝐵 𝐴

0 𝐶
] − 𝑟(𝐶),

(e) 𝑟 [ 𝐶

𝐸
𝐵
𝐴 ] = 𝑟 [

𝐶 0

𝐴 𝐵
] − 𝑟(𝐵),

(f) 𝑟 [ 𝐴 𝐵𝐹
𝐷

𝐸
𝐸
𝐶 0

] = 𝑟 [
𝐴 𝐵 0

𝐶 0 𝐸

0 𝐷 0

] − 𝑟(𝐷) − 𝑟(𝐸),

Lemma 4 (see [15]). Let𝐴 ∈ C𝑚×𝑚

ℎ
, 𝐵 ∈ C𝑚×𝑛,𝐶 ∈ C𝑛×𝑛

ℎ
,𝑄 ∈

C𝑚×𝑛, and 𝑃 ∈ C𝑝×𝑛 be given, and 𝑇 ∈ C𝑚×𝑚 be nonsingular.
Then one has the following

(1) 𝑖
±
(𝑇𝐴𝑇∗) = 𝑖

±
(𝐴),

(2) 𝑖
±
[ 𝐴 0

0 𝐶
] = 𝑖

±
(𝐴) + 𝑖

±
(𝐶),

(3) 𝑖
±
[

0 𝑄

𝑄
∗

0
] = 𝑟(𝑄),

(4) 𝑖
±
[

𝐴 𝐵𝐿
𝑃

𝐿
𝑃
𝐵
∗

0
] + 𝑟(𝑃) = 𝑖

±
[

𝐴 𝐵 0

𝐵
∗

0 𝑃
∗

0 𝑃 0

].

Lemma 5 (see [22, Lemma 1.4]). Let 𝑆 be a set consisting of
(square) matrices over C𝑚×𝑚, and let 𝐻 be a set consisting of
(square) matrices overC𝑚×𝑚

ℎ
. ThenThen one has the following

(a) 𝑆 has a nonsingularmatrix if and only ifmax
𝑋∈𝑆
𝑟(𝑋) =

𝑚;
(b) any 𝑋 ∈ 𝑆 is nonsingular if and only if min

𝑋∈𝑆
𝑟(𝑋) =

𝑚;
(c) {0} ∈ 𝑆 if and only ifmin

𝑋∈𝑆
𝑟(𝑋) = 0;

(d) 𝑆 = {0} if and only ifmax
𝑋∈𝑆
𝑟(𝑋) = 0;

(e) 𝐻 has a matrix 𝑋 > 0 (𝑋 < 0) if and only if
max

𝑋∈𝐻
𝑖
+
(𝑋) = 𝑚(max

𝑋∈𝐻
𝑖
−
(𝑋) = 𝑚);

(f) any 𝑋 ∈ 𝐻 satisfies 𝑋 > 0 (𝑋 < 0) if and only if
min

𝑋∈𝐻
𝑖
+
(𝑋) = 𝑚 (min

𝑋∈𝐻
𝑖
−
(𝑋) = 𝑚);

(g) 𝐻 has a matrix 𝑋 ≥ 0 (𝑋 ≤ 0) if and only if
min

𝑋∈𝐻
𝑖
−
(𝑋) = 0 (min

𝑋∈𝐻
𝑖
+
(𝑋) = 0);

(h) any 𝑋 ∈ 𝐻 satisfies 𝑋 ≥ 0 (𝑋 ≤ 0) if and only if
max

𝑋∈𝐻
𝑖
−
(𝑋) = 0 (max

𝑋∈𝐻
𝑖
+
(𝑋) = 0).

Lemma 6 (see [16]). Let 𝑝(𝑋, 𝑌) = 𝐴−𝐵𝑋− (𝐵𝑋)∗ −𝐶𝑌𝐷−
(𝐶𝑌𝐷)∗, where𝐴,𝐵,𝐶, and𝐷 are givenwith appropriate sizes,
and denote that

𝑀
1
= [

[

𝐴 𝐵 𝐶
𝐵∗ 0 0
𝐶∗ 0 0

]

]

,

𝑀
2
= [

[

𝐴 𝐵 𝐷∗

𝐵∗ 0 0
𝐷 0 0

]

]

,

𝑀
3
= [

𝐴 𝐵 𝐶 𝐷∗

𝐵∗ 0 0 0
] ,

𝑀
4
= [

[

𝐴 𝐵 𝐶 𝐷∗

𝐵∗ 0 0 0
𝐶∗ 0 0 0

]

]

,

𝑀
5
= [

[

𝐴 𝐵 𝐶 𝐷∗

𝐵∗ 0 0 0
𝐷 0 0 0

]

]

.

(24)

Then one has the following:

(1) the maximal rank of 𝑝(𝑋, 𝑌) is

max
𝑋∈C𝑛×𝑚 ,𝑌

𝑟 [𝑝 (𝑋, 𝑌)] = min {𝑚, 𝑟 (𝑀
1
) , 𝑟 (𝑀

2
) , 𝑟 (𝑀

3
)} ,

(25)

(2) the minimal rank of 𝑝(𝑋, 𝑌) is

min
𝑋∈C𝑛×𝑚 ,𝑌

𝑟 [𝑝 (𝑋, 𝑌)]

= 2𝑟 (𝑀
3
) − 2𝑟 (𝐵)

+max {𝑢
+
+ 𝑢

−
, V

+
+ V

−
, 𝑢

+
+ V

−
, 𝑢

−
+ V

+
} ,

(26)

(3) the maximal inertia of 𝑝(𝑋, 𝑌) is

max
𝑋∈C𝑛×𝑚,𝑌

𝑖
±
[𝑝 (𝑋, 𝑌)] = min {𝑖

±
(𝑀

1
) , 𝑖

±
(𝑀

2
)} , (27)

(4) the minimal inertias of 𝑝(𝑋, 𝑌) is

min
𝑋∈C𝑛×𝑚,𝑌

𝑖
±
[𝑝 (𝑋, 𝑌)] = 𝑟 (𝑀3

) − 𝑟 (𝐵)

+max {𝑖
±
(𝑀

1
) − 𝑟 (𝑀

4
) ,

𝑖
±
(𝑀

2
) − 𝑟 (𝑀

5
)} ,

(28)

where

𝑢
±
= 𝑖

±
(𝑀

1
) − 𝑟 (𝑀

4
) , V

±
= 𝑖

±
(𝑀

2
) − 𝑟 (𝑀

5
) . (29)

Now we present the main theorem of this section.
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Theorem7. Let𝐴
1
∈ C𝑚×𝑛,𝐶

1
∈ C𝑚×𝑘,𝐵

1
∈ C𝑘×𝑙,𝐷

1
∈ C𝑛×𝑙,

𝐴
2
∈ C𝑡×𝑞, 𝐶

2
∈ C𝑡×𝑝,𝐴

3
∈ C

𝑝×𝑝

ℎ
, 𝐵

3
∈ C𝑝×𝑞, 𝐶

3
∈ C𝑝×𝑛,

and𝐷
3
∈ C𝑝×𝑛 be given, and suppose that the system of matrix

equations (13) and (11) is consistent, respectively. Denote the set
of all solutions to (13) by 𝑆 and (11) by 𝐺. Put

𝐸
1
=

[
[
[
[
[

[

𝐴
3

𝐶
3
𝐷∗

3
𝐶∗

1
𝐵
3
𝐶∗

2

𝐶∗

3
0 𝐴∗

1
0 0

𝐶
1
𝐷

3
𝐴

1
0 0 0

𝐵∗

3
0 0 0 𝐴∗

2

𝐶
2

0 0 𝐴
2
0

]
]
]
]
]

]

,

𝐸
2
= 𝑟

[
[
[
[
[

[

𝐴
3

𝐷∗

3
𝐶

3
𝐷

1
𝐵
3
𝐶∗

2

𝐷
3

0 𝐵
1

0 0
𝐷∗

1
𝐶∗

3
𝐵∗

1
0 0 0

𝐵∗

3
0 0 0 𝐴∗

2

𝐶
2

0 0 𝐴
2
0

]
]
]
]
]

]

,

𝐸
3
=

[
[
[
[
[

[

𝐴
3

𝐵
3
𝐶∗

3
𝐷∗

3
𝐶∗

2

𝐵∗

3
0 0 0 𝐴∗

2

𝐷∗

1
𝐶∗

3
0 0 𝐵∗

1
0

𝐶
1
𝐷

3
0 𝐴

1
0 0

𝐶
2

𝐴
2
0 0 0

]
]
]
]
]

]

,

𝐸
4
=

[
[
[
[
[
[
[

[

𝐴
3

𝐵
3
𝐶

3
𝐷∗

3
𝐶∗

2
𝐷∗

3
𝐶∗

1

𝐵∗

3
0 0 0 𝐴∗

2
0

𝐶∗

3
0 0 0 0 𝐴∗

1

0 0 0 𝐵∗

1
0 0

𝐶
1
𝐷

3
0 𝐴

1
0 0 0

𝐶
2

𝐴
2
0 0 0 0

]
]
]
]
]
]
]

]

,

𝐸
5
=

[
[
[
[
[
[
[

[

𝐴
3

𝐵
3
𝐶

3
𝐷∗

3
𝐶∗

2
𝐶

3
𝐷

1

𝐵∗

3
0 0 0 𝐴∗

2
0

𝐷
3

0 0 0 0 𝐵
1

𝐷∗

1
𝐶∗

3
0 0 𝐴∗

1
0 0

0 0 𝐴
1
0 0 0

𝐶
2

𝐴
2
0 0 0 0

]
]
]
]
]
]
]

]

.

(30)

Then one has the following:
(a) the maximal rank of (10) subject to (13) and (11) is

max
𝑋∈𝐺,𝑌∈𝑆

𝑟 [𝑓 (𝑋, 𝑌)]

= min {𝑝, 𝑟 (𝐸
1
) − 2𝑟 (𝐴

1
) − 2𝑟 (𝐴

2
) ,

𝑟 (𝐸
2
) − 2𝑟 (𝐵

1
) − 2𝑟 (𝐴

2
) ,

𝑟 (𝐸
3
) − 2𝑟 (𝐴

2
) − 𝑟 (𝐴

1
) − 𝑟 (𝐵

1
)} ,

(31)

(b) the minimal rank of (10) subject to (13) and (11) is

min
𝑋∈𝐺,𝑌∈𝑆

𝑟 [𝑓 (𝑋, 𝑌)]

= 2𝑟 (𝐸
3
) − 2𝑟 [

𝐵
3

𝐴
2

]

+max {𝑟 (𝐸
1
) − 2𝑟 (𝐸

4
) , 𝑟 (𝐸

2
) − 2𝑟 (𝐸

5
) ,

𝑖
+
(𝐸

1
) + 𝑖

−
(𝐸

2
) − 𝑟 (𝐸

4
) − 𝑟 (𝐸

5
) ,

𝑖
−
(𝐸

1
) + 𝑖

+
(𝐸

2
) − 𝑟 (𝐸

4
) − 𝑟 (𝐸

5
)} ,

(32)

(c) the maximal inertia of (10) subject to (13) and (11) is

max
𝑋∈𝐺,𝑌∈𝑆𝑥

𝑖
±
[𝑓 (𝑋, 𝑌)] = min {𝑖

±
(𝐸

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ,

𝑖
±
(𝐸

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
)} ,

(33)

(d) the minimal inertia of (10) subject to (13) and (11) is

min
𝑋∈𝐺,𝑌∈𝑆

𝑖
±
[𝑓 (𝑋, 𝑌)] = 𝑟 (𝐸3

) − 𝑟 [
𝐵
3

𝐴
2

]

+max {𝑖
±
(𝐸

1
) − 𝑟 (𝐸

4
) ,

𝑖
±
(𝐸

2
) − 𝑟 (𝐸

5
)} .

(34)

Proof. By Lemma 1, the general solutions to (13) and (11) can
be written as

𝑋 = 𝐴†

2
𝐶

2
+ 𝐿

𝐴
2

𝑊,

𝑌 = 𝐴†

1
𝐶

1
+ 𝐿

𝐴
1

𝐷
1
𝐵†

1
+ 𝐿

𝐴
1

𝑍𝑅
𝐵
1

,
(35)

where𝑊 and 𝑍 are arbitrary matrices with appropriate sizes.
Put

𝑄 = 𝐵
3
𝐿

𝐴
2

, 𝑇 = 𝐶
3
𝐿

𝐴
1

, 𝐽 = 𝑅
𝐵
1

𝐷
3
,

𝑃 = 𝐴
3
− 𝐵

3
𝐴†

2
𝐶

2
− (𝐵

3
𝐴†

2
𝐶

2
)
∗

− 𝐶
3
(𝐴†

1
𝐶

1
+ 𝐿

𝐴
1

𝐷
1
𝐵†

1
)𝐷

3

− (𝐶
3
(𝐴†

1
𝐶

1
+ 𝐿

𝐴
1

𝐷
1
𝐵†

1
)𝐷

3
)
∗

.

(36)

Substituting (36) into (10) yields

𝑓 (𝑋, 𝑌) = 𝑃 − 𝑄𝑊 − (𝑄𝑊)
∗ − 𝑇𝑍𝐽 − (𝑇𝑍𝐽)

∗. (37)

Clearly 𝑃 is Hermitian. It follows from Lemma 6 that

max
𝑋∈𝐺,𝑌∈𝑆

𝑟 [𝑓 (𝑋, 𝑌)]

= max
𝑊,𝑍

𝑟 (𝑃 − 𝑄𝑊 − (𝑄𝑊)
∗ − 𝑇𝑍𝐽 − (𝑇𝑍𝐽)

∗)

= min {𝑚, 𝑟 (𝑁
1
) , 𝑟 (𝑁

2
) , 𝑟 (𝑁

3
)} ,

(38)

min
𝑋∈𝐺,𝑌∈𝑆

𝑟 [𝑓 (𝑋, 𝑌)]

= max
𝑊,𝑍

𝑟 (𝑃 − 𝑄𝑊 − (𝑄𝑊)
∗ − 𝑇𝑍𝐽 − (𝑇𝑍𝐽)

∗)

= 2𝑟 (𝑁
3
) − 2𝑟 (𝑄)

+max {𝑠
+
+ 𝑠

−
, 𝑡

+
+ 𝑡

−
, 𝑠

+
+ 𝑡

−
, 𝑠

−
+ 𝑡

+
} ,

(39)
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max
𝑋∈𝐺,𝑌∈𝑆

𝑖
±
[𝑓 (𝑋, 𝑌)]

= max
𝑊,𝑍

𝑟 (𝑃 − 𝑄𝑊 − (𝑄𝑊)
∗ − 𝑇𝑍𝐽 − (𝑇𝑍𝐽)

∗)

= min {𝑖
±
(𝑁

1
) , 𝑖

±
(𝑁

2
)} ,

(40)

min
𝑋∈𝐺,𝑌∈𝑆

𝑖
±
[𝑓 (𝑋, 𝑌)]

= max
𝑊,𝑍

𝑟 (𝑃 − 𝑄𝑊 − (𝑄𝑊)
∗ − 𝑇𝑍𝐽 − (𝑇𝑍𝐽)

∗)

= 𝑟 (𝑁
3
) − 𝑟 (𝑄) +max {𝑠

±
, 𝑡

±
} ,

(41)

where

𝑁
1
= [

[

𝑃 𝑄 𝑇
𝑄∗ 0 0
𝑇∗ 0 0

]

]

,

𝑁
2
= [

[

𝑃 𝑄 𝐽∗

𝑄∗ 0 0
𝐽 0 0

]

]

,

𝑁
3
= [

𝑃 𝑄 𝑇 𝐽∗

𝑄∗ 0 0 0
] ,

𝑁
4
= [

[

𝑃 𝑄 𝑇 𝐽∗

𝑄∗ 0 0 0
𝑇∗ 0 0 0

]

]

,

𝑁
5
= [

[

𝑃 𝑄 𝑇 𝐽∗

𝑄∗ 0 0 0
𝐽 0 0 0

]

]

,

𝑠
±
= 𝑖

±
(𝑁

1
) − 𝑟 (𝑁

4
) , 𝑡

±
= 𝑖

±
(𝑁

2
) − 𝑟 (𝑁

5
) .

(42)

Now, we simplify the ranks and inertias of block matrices in
(38)–(41).

By Lemma 4, blockGaussian elimination, and noting that

𝐿∗
𝑆
= (𝐼 − 𝑆†𝑆)

∗

= 𝐼 − 𝑆∗(𝑆∗)
†
= 𝑅

𝑆
∗ , (43)

we have the following:

𝑟 (𝑁
1
) = 𝑟[

[

𝑃 𝑄 𝑇
𝑄∗ 0 0
𝑇∗ 0 0

]

]

= 𝑟

[
[
[
[
[

[

𝐴
3

𝐶
3
𝐷∗

3
𝐶∗

1
𝐵
3
𝐶∗

2

𝐶∗

3
0 𝐴∗

1
0 0

𝐶
1
𝐷

3
𝐴

1
0 0 0

𝐵∗

3
0 0 0 𝐴∗

2

𝐶
2

0 0 𝐴
2
0

]
]
]
]
]

]

− 2𝑟 (𝐴
1
) − 2𝑟 (𝐴

2
) .

(44)

By 𝐶
1
𝐵
1
= 𝐴

1
𝐷

1
, we obtain

𝑟 (𝑁
2
) = 𝑟

[
[

[

𝑃 𝑄 𝐽∗

𝑄∗ 0 0

𝐽 0 0

]
]

]

= 𝑟

[
[
[
[
[
[
[
[

[

𝐴
3

𝐷∗

3
𝐶

3
𝐷

1
𝐵
3
𝐶∗

2

𝐷
3

0 𝐵
1

0 0

𝐷∗

1
𝐶∗

3
𝐵∗

1
0 0 0

𝐵∗

3
0 0 0 𝐴∗

2

𝐶
2

0 0 𝐴
2
0

]
]
]
]
]
]
]
]

]

− 2𝑟 (𝐵
1
) − 2𝑟 (𝐴

2
) ,

𝑟 (𝑁
3
) = 𝑟 [

𝑃 𝑄 𝑇 𝐽∗

𝑄∗ 0 0 0
]

= 𝑟

[
[
[
[
[
[
[
[

[

𝐴
3

𝐵
3
𝐶∗

3
𝐷∗

3
𝐶∗

2

𝐵∗

3
0 0 0 𝐴∗

2

𝐷∗

1
𝐶∗

3
0 0 𝐵∗

1
0

𝐶
1
𝐷

3
0 𝐴

1
0 0

𝐶
2

𝐴
2
0 0 0

]
]
]
]
]
]
]
]

]

− 𝑟 (𝐵
1
) − 2𝑟 (𝐴

2
) − 𝑟 (𝐴

1
) ,

𝑟 (𝑁
4
) = 𝑟

[
[

[

𝑃 𝑄 𝑇 𝐽∗

𝑄∗ 0 0 0

𝑇∗ 0 0 0

]
]

]

= 𝑟

[
[
[
[
[
[
[

[

𝐴
3

𝐵
3
𝐶

3
𝐷∗

3
𝐶∗

2
𝐷∗

3
𝐶∗

1

𝐵∗

3
0 0 0 𝐴∗

2
0

𝐶∗

3
0 0 0 0 𝐴∗

1

0 0 0 𝐵∗

1
0 0

𝐶
1
𝐷

3
0 𝐴

1
0 0 0

𝐶
2

𝐴
2
0 0 0 0

]
]
]
]
]
]
]

]

− 𝑟 (𝐵
1
) − 2𝑟 (𝐴

2
) − 2𝑟 (𝐴

1
) ,

𝑟 (𝑁
5
) = 𝑟[

[

𝑃 𝑄 𝑇 𝐽∗

𝑄∗ 0 0 0
𝑇∗ 0 0 0

]

]

= 𝑟

[
[
[
[
[
[
[

[

𝐴
3

𝐵
3
𝐶

3
𝐷∗

3
𝐶∗

2
𝐶

3
𝐷

1

𝐵∗

3
0 0 0 𝐴∗

2
0

𝐷
3

0 0 0 0 𝐵
1

𝐷∗

1
𝐶∗

3
0 0 𝐴∗

1
0 0

0 0 𝐴
1
0 0 0

𝐶
2

𝐴
2
0 0 0 0

]
]
]
]
]
]
]

]

− 2𝑟 (𝐵
1
) − 2𝑟 (𝐴

2
) − 𝑟 (𝐴

1
) .

(45)

By Lemma 2, we can get the following:

𝑖
±
(𝑁

1
) = 𝑖

±
[

[

𝑃 𝑄 𝑇
𝑄∗ 0 0
𝑇∗ 0 0

]

]
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= 𝑖
±

[
[
[
[
[

[

𝐴
3

𝐶
3
𝐷∗

3
𝐶∗

1
𝐵
3
𝐶∗

2

𝐶∗

3
0 𝐴∗

1
0 0

𝐶
1
𝐷

3
𝐴

1
0 0 0

𝐵∗

3
0 0 0 𝐴∗

2

𝐶
2

0 0 𝐴
2
0

]
]
]
]
]

]

− 𝑟 (𝐴
1
) − 𝑟 (𝐴

2
) ,

(46)

𝑖
±
(𝑁

2
) = 𝑖

±
[

[

𝑃 𝑄 𝐽∗

𝑄∗ 0 0
𝐽 0 0

]

]

= 𝑖
±

[
[
[
[
[

[

𝐴
3

𝐷∗

3
𝐶

3
𝐷

1
𝐵
3
𝐶∗

2

𝐷
3

0 𝐵
1

0 0
𝐷∗

1
𝐶∗

3
𝐵∗

1
0 0 0

𝐵∗

3
0 0 0 𝐴∗

2

𝐶
2

0 0 𝐴
2
0

]
]
]
]
]

]

− 𝑟 (𝐵
1
) − 𝑟 (𝐴

2
) .

(47)

Substituting (44)-(47) into (38) and (41) yields (31)–(34),
respectively.

Corollary 8. Let 𝐴
1
, 𝐶

1
, 𝐵

1
, 𝐷

1
, 𝐴

2
, 𝐶

2
, 𝐴

3
, 𝐵

3
, 𝐶

3
, 𝐷

3
,

and 𝐸
𝑖
, (𝑖 = 1, 2, . . . , 5) be as in Theorem 7, and suppose

that the system of matrix equations (13) and (11) is consistent,
respectively. Denote the set of all solutions to (13) by 𝑆 and (11)
by 𝐺. Then, one has the following:

(a) there exist 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that 𝐴
3
− 𝐵

3
𝑋 −

(𝐵
3
𝑋)∗ − 𝐶

3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)∗ > 0 if and only if

𝑖
+
(𝐸

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ≥ 𝑝,

𝑖
+
(𝐸

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
) ≥ 𝑝.

(48)

(b) there exist 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that 𝐴
3
− 𝐵

3
𝑋 −

(𝐵
3
𝑋)∗ − 𝐶

3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)∗ < 0 if and only if

𝑖
−
(𝐸

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ≥ 𝑝,

𝑖
−
(𝐸

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
) ≥ 𝑝,

(49)

(c) there exist 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that 𝐴
3
− 𝐵

3
𝑋 −

(𝐵
3
𝑋)∗ − 𝐶

3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)∗ ≥ 0 if and only if

𝑟 (𝐸
3
) − 𝑟 [

𝐵
3

𝐴
2

] + 𝑖
−
(𝐸

1
) − 𝑟 (𝐸

4
) ≤ 0,

𝑟 (𝐸
3
) − 𝑟 [

𝐵
3

𝐴
2

] + 𝑖
−
(𝐸

2
) − 𝑟 (𝐸

5
) ≤ 0.

(50)

(d) there exist 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that 𝐴
3
− 𝐵

3
𝑋 −

(𝐵
3
𝑋)∗ − 𝐶

3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)∗ ≤ 0 if and only if

𝑟 (𝐸
3
) − 𝑟 [

𝐵
3

𝐴
2

] + 𝑖
+
(𝐸

1
) − 𝑟 (𝐸

4
) ≤ 0,

𝑟 (𝐸
3
) − 𝑟 [

𝐵
3

𝐴
2

] + 𝑖
+
(𝐸

2
) − 𝑟 (𝐸

5
) ≤ 0,

(51)

(e) 𝐴
3
− 𝐵

3
𝑋 − (𝐵

3
𝑋)∗ − 𝐶

3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)∗ > 0 for all

𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 if and only if

𝑟 (𝐸
3
) − 𝑟 [

𝐵
3

𝐴
2

] + 𝑖
+
(𝐸

1
) − 𝑟 (𝐸

4
) = 𝑝

𝑜𝑟 𝑟 (𝐸
3
) − 𝑟 [

𝐵
3

𝐴
2

] + 𝑖
+
(𝐸

2
) − 𝑟 (𝐸

5
) = 𝑝,

(52)

(f) 𝐴
3
− 𝐵

3
𝑋 − (𝐵

3
𝑋)∗ − 𝐶

3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)∗ < 0 for all

𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 if and only if

𝑟 (𝐸
3
) − 𝑟 [

𝐵
3

𝐴
2

] + 𝑖
−
(𝐸

1
) − 𝑟 (𝐸

4
) = 𝑝

𝑜𝑟 𝑟 (𝐸
3
) − 𝑟 [

𝐵
3

𝐴
2

] + 𝑖
−
(𝐸

2
) − 𝑟 (𝐸

5
) = 𝑝,

(53)

(g) 𝐴
3
− 𝐵

3
𝑋 − (𝐵

3
𝑋)∗ − 𝐶

3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)∗ ≥ 0 for all

𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 if and only if

𝑖
−
(𝐸

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ≤ 0

𝑜𝑟 𝑖
−
(𝐸

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
) ≤ 0,

(54)

(h) 𝐴
3
− 𝐵

3
𝑋 − (𝐵

3
𝑋)∗ − 𝐶

3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)∗ ≤ 0 for all

𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 if and only if

𝑖
+
(𝐸

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ≤ 0

𝑜𝑟 𝑖
+
(𝐸

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
) ≤ 0,

(55)

(i) there exist 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that 𝐴
3
− 𝐵

3
𝑋 −

(𝐵
3
𝑋)∗−𝐶

3
𝑌𝐷

3
−(𝐶

3
𝑌𝐷

3
)∗ is nonsingular if and only

if

𝑟 (𝐸
1
) − 2𝑟 (𝐴

1
) − 2𝑟 (𝐴

2
) ≥ 𝑝,

𝑟 (𝐸
2
) − 2𝑟 (𝐵

1
) − 2𝑟 (𝐴

2
) ≥ 𝑝,

𝑟 (𝐸
3
) − 2𝑟 (𝐴

2
) − 𝑟 (𝐴

1
) − 𝑟 (𝐵

1
) ≥ 𝑝.

(56)

3. Relations between the Hermitian Part of
the Solutions to (13) and (11)

Now we consider the extremal ranks and inertias of the
difference between the Hermitian part of the solutions to (13)
and (11).

Theorem 9. Let 𝐴
1
∈ C𝑚×𝑝, 𝐶

1
∈ C𝑚×𝑝, 𝐵

1
∈ C𝑝×𝑙, 𝐷

1
∈

C𝑝×𝑙, 𝐴
2
∈ C𝑡×𝑝, and 𝐶

2
∈ C𝑡×𝑝, be given. Suppose that

the system of matrix equations (13) and (11) is consistent,
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respectively. Denote the set of all solutions to (13) by 𝑆 and (11)
by 𝐺. Put

𝐻
1
=

[
[
[
[
[

[

0 𝐼 𝐶∗

1
−𝐼 𝐶∗

2

𝐼 0 𝐴∗

1
0 0

𝐶
1
𝐴

1
0 0 0

−𝐼 0 0 0 𝐴∗

2

𝐶
2
0 0 𝐴

2
0

]
]
]
]
]

]

,

𝐻
2
= 𝑟

[
[
[
[
[

[

0 𝐼 𝐷
1
−𝐼 𝐶∗

2

𝐼 0 𝐵
1

0 0
𝐷∗

1
𝐵∗

1
0 0 0

−𝐼 0 0 0 𝐴∗

2

𝐶
2
0 0 𝐴

2
0

]
]
]
]
]

]

,

𝐻
3
=

[
[
[
[
[

[

0 −𝐼 𝐼 𝐼 𝐶∗

2

−𝐼 0 0 0 𝐴∗

2

𝐷∗

1
0 0 𝐵∗

1
0

𝐶
1

0 𝐴
1
0 0

𝐶
2
𝐴

2
0 0 0

]
]
]
]
]

]

,

𝐻
4
=

[
[
[
[
[
[
[

[

0 −𝐼 𝐼 𝐼 𝐶∗

2
𝐶∗

1

−𝐼 0 0 0 𝐴∗

2
0

𝐼 0 0 0 0 𝐴∗

1

0 0 0 𝐵∗

1
0 0

𝐶
1
0 𝐴

1
0 0 0

𝐶
2
𝐴

2
0 0 0 0

]
]
]
]
]
]
]

]

,

𝐻
5
=

[
[
[
[
[
[
[

[

0 −𝐼 𝐼 𝐼 𝐶∗

2
𝐷

1

−𝐼 0 0 0 𝐴∗

2
0

𝐼 0 0 0 0 𝐵
1

𝐷∗

1
0 0 𝐴∗

1
0 0

0 0 𝐴
1
0 0 0

𝐶
2
𝐴

2
0 0 0 0

]
]
]
]
]
]
]

]

.

(57)

Then one has the following:

max
𝑋∈𝐺,𝑌∈𝑆

𝑟 [(𝑋 + 𝑋∗) − (𝑌 + 𝑌∗)]

= min {𝑝, 𝑟 (𝐻
1
) − 2𝑟 (𝐴

1
) − 2𝑟 (𝐴

2
) , 𝑟 (𝐻

2
) − 2𝑟 (𝐵

1
)

−2𝑟 (𝐴
2
) , 𝑟 (𝐻

3
) − 2𝑟 (𝐴

2
) − 𝑟 (𝐴

1
) − 𝑟 (𝐵

1
)} ,

min
𝑋∈𝐺,𝑌∈𝑆

𝑟 [(𝑋 + 𝑋∗) − (𝑌 + 𝑌∗)]

= 2𝑟 (𝐻
3
) − 2𝑝

+max {𝑟 (𝐻
1
) − 2𝑟 (𝐻

4
) , 𝑟 (𝐻

2
) − 2𝑟 (𝐻

5
) ,

𝑖
+
(𝐻

1
) + 𝑖

−
(𝐻

2
) − 𝑟 (𝐻

4
) − 𝑟 (𝐻

5
) ,

𝑖
−
(𝐻

1
) + 𝑖

+
(𝐻

2
) − 𝑟 (𝐻

4
) − 𝑟 (𝐻

5
)} ,

max
𝑋∈𝐺,𝑌∈𝑆

𝑖
±
[(𝑋 + 𝑋∗) − (𝑌 + 𝑌∗)]

= min {𝑖
±
(𝐻

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ,

𝑖
±
(𝐻

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
)} ,

min
𝑋∈𝐺,𝑌∈𝑆

𝑖
±
[(𝑋 + 𝑋∗) − (𝑌 + 𝑌∗)]

= 𝑟 (𝐸
3
) − 𝑝 +max {𝑖

±
(𝐻

1
) − 𝑟 (𝐻

4
) , 𝑖

±
(𝐻

2
) − 𝑟 (𝐻

5
)} .

(58)

Proof. By letting 𝐴
3
= 0, 𝐵

3
= −𝐼, 𝐶

3
= 𝐼, and 𝐷

3
= 𝐼 in

Theorem 7, we can get the results.

Corollary 10. Let 𝐴
1
, 𝐶

1
, 𝐵

1
, 𝐷

1
, 𝐴

2
, 𝐶

2
, and 𝐻

𝑖
, (𝑖 =

1, 2, . . . , 5) be as in Theorem 9, and suppose that the system of
matrix equations (13) and (11) is consistent, respectively. Denote
the set of all solutions to (13) by 𝑆 and (11) by 𝐺. Then, one has
the following:

(a) there exist 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that (𝑋 + 𝑋∗) >
(𝑌 + 𝑌∗) if and only if

𝑖
+
(𝐻

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ≥ 𝑝,

𝑖
+
(𝐻

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
) ≥ 𝑝.

(59)

(b) there exist 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that (𝑋 + 𝑋∗) <
(𝑌 + 𝑌∗) if and only if

𝑖
−
(𝐻

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ≥ 𝑝,

𝑖
−
(𝐻

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
) ≥ 𝑝,

(60)

(c) there exist 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that (𝑋 + 𝑋∗) ≥
(𝑌 + 𝑌∗) if and only if

𝑟 (𝐻
3
) − 𝑝 + 𝑖

−
(𝐻

1
) − 𝑟 (𝐻

4
) ≤ 0,

𝑟 (𝐻
3
) − 𝑝 + 𝑖

−
(𝐻

1
) − 𝑟 (𝐻

4
) ≤ 0,

(61)

(d) there exist 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that (𝑋 + 𝑋∗) ≤
(𝑌 + 𝑌∗) if and only if

𝑟 (𝐻
3
) − 𝑝 + 𝑖

+
(𝐻

1
) − 𝑟 (𝐻

4
) ≤ 0,

𝑟 (𝐻
3
) − 𝑝 + 𝑖

+
(𝐻

2
) − 𝑟 (𝐻

5
) ≤ 0,

(62)

(e) (𝑋 + 𝑋∗) > (𝑌 + 𝑌∗) for all 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 if and
only if

𝑟 (𝐻
3
) − 𝑝 + 𝑖

+
(𝐻

1
) − 𝑟 (𝐻

4
) = 𝑝

𝑜𝑟 𝑟 (𝐻
3
) − 𝑝 + 𝑖

+
(𝐻

2
) − 𝑟 (𝐻

5
) = 𝑝,

(63)

(f) (𝑋 + 𝑋∗) < (𝑌 + 𝑌∗) for all 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 if and
only if

𝑟 (𝐻
3
) − 𝑝 + 𝑖

−
(𝐻

1
) − 𝑟 (𝐻

4
) = 𝑝

𝑜𝑟 𝑟 (𝐻
3
) − 𝑝 + 𝑖

−
(𝐻

2
) − 𝑟 (𝐻

5
) = 𝑝,

(64)

(g) (𝑋 + 𝑋∗) ≥ (𝑌 + 𝑌∗) for all 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 if and
only if

𝑖
−
(𝐻

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ≤ 0

𝑜𝑟 𝑖
−
(𝐻

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
) ≤ 0,

(65)
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(h) (𝑋 + 𝑋∗) ≤ (𝑌 + 𝑌∗) for all 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 if and
only if

𝑖
+
(𝐻

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ≤ 0

𝑜𝑟 𝑖
+
(𝐻

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
) ≤ 0,

(66)

(i) there exist𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that (𝑋 +𝑋∗) − (𝑌 +
𝑌∗) is nonsingular if and only if

𝑟 (𝐻
1
) − 2𝑟 (𝐴

1
) − 2𝑟 (𝐴

2
) ≥ 𝑝,

𝑟 (𝐻
2
) − 2𝑟 (𝐵

1
) − 2𝑟 (𝐴

2
) ≥ 𝑝,

𝑟 (𝐻
3
) − 2𝑟 (𝐴

2
) − 𝑟 (𝐴

1
) − 𝑟 (𝐵

1
) ≥ 𝑝.

(67)

4. The Solvability Conditions and the General
Solution to System (6)

We now turn our attention to (6). We in this section use
Theorem 9 to give some necessary and sufficient conditions
for the existence of a solution to (6) and present an expression
of the general solution to (6). We begin with a lemma which
is used in the latter part of this section.

Lemma 11 (see [14]). Let 𝐴
1
∈ C𝑚×𝑛

1 , 𝐵
1
∈ C𝑚×𝑛

2 , 𝐶
1
∈

C𝑞×𝑚, and 𝐸
1
∈ C𝑚×𝑚

ℎ
be given. Let 𝐴 = 𝑅

𝐴
1

𝐵
1
, 𝐵 = 𝐶

1
𝑅

𝐴
1

,
𝐸 = 𝑅

𝐴
1

𝐸
1
𝑅

𝐴
1

,𝑀 = 𝑅
𝐴
𝐵∗,𝑁 = 𝐴∗𝐿

𝐵
, and 𝑆 = 𝐵∗𝐿

𝑀
. Then

the following statements are equivalent:
(1) equation (5) is consistent,
(2)
𝑅

𝑀
𝑅

𝐴
𝐸 = 0, 𝑅

𝐴
𝐸𝑅

𝐴
= 0, 𝐿

𝐵
𝐸𝐿

𝐵
= 0, (68)

(3)

𝑟 [
𝐸

1
𝐵
1
𝐶∗

1
𝐴

1

𝐴∗

1
0 0 0

] = 𝑟 [𝐵1
𝐶∗

1
𝐴

1] + 𝑟 (𝐴1
) ,

𝑟 [

[

𝐸
1
𝐵
1
𝐴

1

𝐴∗

1
0 0

𝐵∗

1
0 0

]

]

= 2𝑟 [𝐵1
𝐴

1] ,

𝑟 [

[

𝐸
1
𝐶∗

1
𝐴

1

𝐴∗

1
0 0

𝐶
1
0 0

]

]

= 2𝑟 [𝐶∗

1
𝐴

1] .

(69)

In this case, the general solution of (5) can be expressed as

𝑌 =
1

2
[𝐴†𝐸𝐵† − 𝐴†𝐵∗𝑀†𝐸𝐵† − 𝐴†𝑆(𝐵†)

∗

𝐸𝑁†𝐴∗𝐵†

+𝐴†𝐸(𝑀†)
∗

+ (𝑁†)
∗

𝐸𝐵†𝑆†𝑆] + 𝐿
𝐴
𝑉
1
+ 𝑉

2
𝑅

𝐵

+ 𝑈
1
𝐿

𝑆
𝐿

𝑀
+ 𝑅

𝑁
𝑈∗

2
𝐿

𝑀
− 𝐴†𝑆𝑈

2
𝑅

𝑁
𝐴∗𝐵†,

𝑋 = 𝐴†

1
[𝐸

1
− 𝐵

1
𝑌𝐶

1
− (𝐵

1
𝑌𝐶

1
)
∗
]

−
1

2
𝐴†

1
[𝐸

1
− 𝐵

1
𝑌𝐶

1
− (𝐵

1
𝑌𝐶

1
)
∗
] 𝐴

1
𝐴†

1

− 𝐴†

1
𝑊

1
𝐴∗

1
+𝑊∗

1
𝐴

1
𝐴†

1
+ 𝐿

𝐴
1

𝑊
2
,

(70)

where 𝑈
1
, 𝑈

2
, 𝑉

1
, 𝑉

2
,𝑊

1
, and𝑊

2
are arbitrary matrices over

C with appropriate sizes.

Now we give the main theorem of this section.

Theorem 12. Let 𝐴
𝑖
, 𝐶

𝑖
, (𝑖 = 1, 2, 3), 𝐵

𝑗
, and 𝐷

𝑗
, (𝑗 = 1, 3) be

given. Set

𝐴 = 𝐵
3
𝐿

𝐴
2

, 𝐵 = 𝐶
3
𝐿

𝐴
1

,

𝐶 = 𝑅
𝐵
1

𝐷
3
, 𝐹 = 𝑅

𝐴
𝐵,

𝐺 = 𝐶𝑅
𝐴
, 𝑀 = 𝑅

𝐹
𝐺∗,

𝑁 = 𝐹∗𝐿
𝐺
, 𝑆 = 𝐺∗𝐿

𝑀
,

(71)

𝐷 = 𝐴
3
− 𝐵

3
𝐴†

2
𝐶

2
− (𝐵

3
𝐴†

2
𝐶

2
)
∗

− 𝐶
3
(𝐴†

1
𝐶

1
+ 𝐿

𝐴
1

𝐷
1
𝐵†

1
)𝐷

3

− 𝐷∗

3
(𝐴†

1
𝐶

1
+ 𝐿

𝐴
1

𝐷
1
𝐵†

1
)
∗

𝐶∗

3
,

(72)

𝐸 = 𝑅
𝐴
𝐷𝑅

𝐴
. (73)

Then the following statements are equivalent:

(1) system (6) is consistent,

(2) the equalities in (14) and (17) hold, and

𝑅
𝑀
𝑅

𝐹
𝐸 = 0, 𝑅

𝐹
𝐸𝑅

𝐹
= 0, 𝐿

𝐺
𝐸𝐿

𝐺
= 0, (74)

(3) the equalities in (15) and (18) hold, and

𝑟

[
[
[
[
[

[

𝐴
3

𝐶
3
𝐷∗

3
𝐵
3
𝐶∗

2

𝐵∗

3
0 0 0 𝐴∗

2

𝐶
1
𝐷

3
𝐴

1
0 0 0

𝐷∗

1
𝐶∗

3
0 𝐵∗

1
0 0

𝐶
2

0 0 𝐴
2
0

]
]
]
]
]

]

= 𝑟
[
[
[

[

𝐶
3
𝐷∗

3
𝐵
3

𝐴
1
0 0

0 𝐵∗

1
0

0 0 𝐴
2

]
]
]

]

+ 𝑟 [
𝐴

2

𝐵
3

] ,

𝑟

[
[
[
[
[

[

𝐴
3

𝐶
3
𝐵
3
𝐷∗

3
𝐶∗

1
𝐶∗

2

𝐶∗

3
0 0 𝐴∗

1
0

𝐵∗

3
0 0 0 𝐴∗

2

𝐶
1
𝐷

3
𝐴

1
0 0 0

𝐶
2

0 𝐴
2

0 0

]
]
]
]
]

]

= 2𝑟[

[

𝐶
3
𝐵
3

𝐴
1
0

0 𝐴
2

]

]

,

𝑟

[
[
[
[
[

[

𝐴
3

𝐷∗

3
𝐵
3
𝐶

3
𝐷

1
𝐶∗

2

𝐷
3

0 0 𝐵
1

0
𝐵∗

3
0 0 0 𝐴∗

2

𝐷∗

1
𝐶∗

3
𝐵∗

1
0 0 0

𝐶
2

0 𝐴
2

0 0

]
]
]
]
]

]

= 2𝑟[

[

𝐷∗

3
𝐵
3

𝐵∗

1
0

0 𝐴
2

]

]

.

(75)

In this case, the general solution of system (6) can be expressed
as

𝑋 = 𝐴†

2
𝐶

2
+ 𝐿

𝐴
2

𝑈,

𝑌 = 𝐴†

1
𝐶

1
+ 𝐿

𝐴
1

𝐷
1
𝐵†

1
+ 𝐿

𝐴
1

𝑉𝑅
𝐵
1

,
(76)
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where

𝑉 =
1

2
[𝐹†𝐸𝐺† − 𝐹†𝐺∗𝑀†𝐸𝐺† − 𝐹†𝑆(𝐺†)

∗

𝐸𝑁†𝐹∗𝐺†

+𝐹†𝐸(𝑀†)
∗

+ (𝑁†)
∗

𝐸𝐺†𝑆†𝑆] + 𝐿
𝐹
𝑉
1

+ 𝑉
2
𝑅

𝐺
+ 𝑈

1
𝐿

𝑆
𝐿

𝑀
+ 𝑅

𝑁
𝑈∗

2
𝐿

𝑀
− 𝐹†𝑆𝑈

2
𝑅

𝑁
𝐹∗𝐺†,

𝑈 = 𝐴† [𝐷 − 𝐵𝑉𝐶 − (𝐵𝑉𝐶)
∗]

−
1

2
𝐴† [𝐷 − 𝐵𝑉𝐶 − (𝐵𝑉𝐶)

∗] 𝐴𝐴†

− 𝐴†𝑊
1
𝐴∗ +𝑊∗

1
𝐴𝐴† + 𝐿

𝐴
𝑊

2
,

(77)

where 𝑈
1
, 𝑈

2
, 𝑉

1
, 𝑉

2
,𝑊

1
, and𝑊

2
are arbitrary matrices over

C with appropriate sizes.

Proof. (2)⇔ (3): Applying Lemma 3 and Lemma 11 gives

𝑅
𝑀
𝑅

𝐹
𝐸 = 0 ⇐⇒ 𝑟 (𝑅

𝑀
𝑅

𝐹
𝐸)

= 0 ⇐⇒ 𝑟[
𝐷 𝐵 𝐶∗ 𝐴
𝐴∗ 0 0 0

]

= 𝑟 [𝐵 𝐶∗ 𝐴] + 𝑟 (𝐴)

⇐⇒ 𝑟

[
[
[
[
[

[

𝐷 𝐶
3
𝐷∗

3
𝐵
3

0
𝐵∗

3
0 0 0 𝐴∗

2

0 𝐴
1
0 0 0

0 0 𝐵∗

1
0 0

0 0 0 𝐴
2
0

]
]
]
]
]

]

= 𝑟
[
[
[

[

𝐶
3
𝐷∗

3
𝐵
3

𝐴
1
0 0

0 𝐵∗

1
0

0 0 𝐴
2

]
]
]

]

+ 𝑟 [
𝐴

2

𝐵
3

]

⇐⇒ 𝑟

[
[
[
[
[

[

𝐴
3

𝐶
3
𝐷∗

3
𝐵
3
𝐶∗

2

𝐵∗

3
0 0 0 𝐴∗

2

𝐶
1
𝐷

3
𝐴

1
0 0 0

𝐷∗

1
𝐶∗

3
0 𝐵∗

1
0 0

𝐶
2

0 0 𝐴
2
0

]
]
]
]
]

]

= 𝑟
[
[
[

[

𝐶
3
𝐷∗

3
𝐵
3

𝐴
1
0 0

0 𝐵∗

1
0

0 0 𝐴
2

]
]
]

]

+ 𝑟 [
𝐴

2

𝐵
3

] .

(78)

By a similar approach, we can obtain that

𝑅
𝐹
𝐸𝑅

𝐹
= 0 ⇐⇒ 𝑟

[
[
[
[
[

[

𝐴
3

𝐶
3
𝐵
3
𝐷∗

3
𝐶∗

1
𝐶∗

2

𝐶∗

3
0 0 𝐴∗

1
0

𝐵∗

3
0 0 0 𝐴∗

2

𝐶
1
𝐷

3
𝐴

1
0 0 0

𝐶
2

0 𝐴
2

0 0

]
]
]
]
]

]

= 2𝑟[

[

𝐶
3
𝐵
3

𝐴
1
0

0 𝐴
2

]

]

,

𝐿
𝐺
𝐸𝐿

𝐺
= 0 ⇐⇒ 𝑟

[
[
[
[
[
[
[
[

[

𝐴
3

𝐷∗

3
𝐵
3
𝐶

3
𝐷

1
𝐶∗

2

𝐷
3

0 0 𝐵
1

0

𝐵∗

3
0 0 0 𝐴∗

2

𝐷∗

1
𝐶∗

3
𝐵∗

1
0 0 0

𝐶
2

0 𝐴
2

0 0

]
]
]
]
]
]
]
]

]

= 2𝑟
[
[

[

𝐷∗

3
𝐵
3

𝐵∗

1
0

0 𝐴
2

]
]

]

.

(79)

(1)⇔ (2): We separate the four equations in system (6) into
three groups:

𝐴
1
𝑌 = 𝐶

1
, 𝑌𝐵

1
= 𝐷

1
, (80)

𝐴
2
𝑋 = 𝐶

2
, (81)

𝐵
3
𝑋 + (𝐵

3
𝑋)

∗
+ 𝐶

3
𝑌𝐷

3
+ (𝐶

3
𝑌𝐷

3
)
∗
= 𝐴

3
. (82)

By Lemma 1, we obtain that system (80) is solvable if and
only if (14), (81) is consistent if and only if (17). The general
solutions to system (80) and (81) can be expressed as (16) and
(19), respectively. Substituting (16) and (19) into (82) yields

𝐴𝑈 + (𝐴𝑈)
∗ + 𝐵𝑉𝐶 + (𝐵𝑉𝐶)

∗ = 𝐷. (83)

Hence, the system (5) is consistent if and only if (80), (81), and
(83) are consistent, respectively. It follows fromLemma 11 that
(83) is solvable if and only if

𝑅
𝑀
𝑅

𝐹
𝐸 = 0, 𝑅

𝐹
𝐸𝑅

𝐹
= 0, 𝐿

𝐺
𝐸𝐿

𝐺
= 0. (84)

We know by Lemma 11 that the general solution of (83) can
be expressed as (77).

InTheorem 12, let 𝐴
1
and𝐷

1
vanish.Then we can obtain

the general solution to the following system:

𝐴
2
𝑋 = 𝐶

2
, 𝑌𝐵

1
= 𝐷

1
,

𝐵
3
𝑋 + (𝐵

3
𝑋)

∗
+ 𝐶

3
𝑌𝐷

3
+ (𝐶

3
𝑌𝐷

3
)
∗
= 𝐴

3
.

(85)

Corollary 13. Let 𝐴
2
, 𝐶

2
, 𝐵

1
, 𝐷

1
, 𝐵

3
, 𝐶

3
, 𝐷

3
, and 𝐴

3
= 𝐴∗

3

be given. Set

𝐴 = 𝐵
3
𝐿

𝐴
2

, 𝐶 = 𝑅
𝐵
1

𝐷
3
,

𝐹 = 𝑅
𝐴
𝐶

3
, 𝐺 = 𝐶𝑅

𝐴
,

𝑀 = 𝑅
𝐹
𝐺∗, 𝑁 = 𝐹∗𝐿

𝐺
,

𝑆 = 𝐺∗𝐿
𝑀
,

𝐷 = 𝐴
3
− 𝐵

3
𝐴†

2
𝐶

2
− (𝐵

3
𝐴†

2
𝐶

2
)
∗

− 𝐶
3
𝐷

1
𝐵†

1
𝐷

3
− (𝐶

3
𝐷

1
𝐵†

1
𝐷

3
)
∗

,

𝐸 = 𝑅
𝐴
𝐷𝑅

𝐴
.

(86)
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Then the following statements are equivalent:

(1) system (85) is consistent
(2)

𝑅
𝐴
2

𝐶
2
= 0, 𝐷

1
𝐿

𝐵
1

= 0, 𝑅
𝑀
𝑅

𝐹
𝐸 = 0, (87)

𝑅
𝐹
𝐸𝑅

𝐹
= 0, 𝐿

𝐺
𝐸𝐿

𝐺
= 0, (88)

(3)

𝑟 [𝐴2
𝐶

2] = 𝑟 (𝐴2
) , [

𝐷
1

𝐵
1

] = 𝑟 (𝐵
1
) ,

𝑟
[
[
[

[

𝐴
3

𝐶
3
𝐷∗

3
𝐵
3
𝐶∗

2

𝐵∗

3
0 0 0 𝐴∗

2

𝐷∗

1
𝐶∗

3
0 𝐵∗

1
0 0

𝐶
2

0 0 𝐴
2
0

]
]
]

]

= 𝑟[

[

𝐶
3
𝐷∗

3
𝐵
3

0 𝐵∗

1
0

0 0 𝐴
2

]

]

+ 𝑟 [
𝐴

2

𝐵
3

] ,

𝑟
[
[
[

[

𝐴
3
𝐶

3
𝐵
3
𝐶∗

2

𝐶∗

3
0 0 0

𝐵∗

3
0 0 𝐴∗

2

𝐶
2
0 𝐴

2
0

]
]
]

]

= 2𝑟 [
𝐶

3
𝐵
3

0 𝐴
2

] ,

𝑟

[
[
[
[
[

[

𝐴
3

𝐷∗

3
𝐵
3
𝐶

3
𝐷

1
𝐶∗

2

𝐷
3

0 0 𝐵
1

0
𝐵∗

3
0 0 0 𝐴∗

2

𝐷∗

1
𝐶∗

3
𝐵∗

1
0 0 0

𝐶
2

0 𝐴
2

0 0

]
]
]
]
]

]

= 2𝑟[

[

𝐷∗

3
𝐵
3

𝐵∗

1
0

0 𝐴
2

]

]

.

(89)

In this case, the general solution of system (6) can be expressed
as

𝑋 = 𝐴†

2
𝐶

2
+ 𝐿

𝐴
2

𝑈,

𝑌 = 𝐷
1
𝐵†

1
+ 𝑉𝑅

𝐵
1

,
(90)

where

𝑉 =
1

2
[𝐹†𝐸𝐺† − 𝐹†𝐺∗𝑀†𝐸𝐺† − 𝐹†𝑆(𝐺†)

∗

𝐸𝑁†𝐹∗𝐺†

+𝐹†𝐸(𝑀†)
∗

+ (𝑁†)
∗

𝐸𝐺†𝑆†𝑆] + 𝐿
𝐹
𝑉
1

+ 𝑉
2
𝑅

𝐺
+ 𝑈

1
𝐿

𝑆
𝐿

𝑀
+ 𝑅

𝑁
𝑈∗

2
𝐿

𝑀
− 𝐹†𝑆𝑈

2
𝑅

𝑁
𝐹∗𝐺†,

𝑈 = 𝐴† [𝐷 − 𝐶
3
𝑉𝐶 − (𝐶

3
𝑉𝐶)

∗
]

−
1

2
𝐴† [𝐷 − 𝐶

3
𝑉𝐶 − (𝐶

3
𝑉𝐶)

∗
] 𝐴𝐴†

− 𝐴†𝑊
1
𝐴∗ +𝑊∗

1
𝐴𝐴† + 𝐿

𝐴
𝑊

2
,

(91)

where 𝑈
1
, 𝑈

2
, 𝑉

1
, 𝑉

2
,𝑊

1
, and𝑊

2
are arbitrary matrices over

C with appropriate sizes.
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